Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87324Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賈景山 | zh_TW |
| dc.contributor.advisor | Jean-San Chia | en |
| dc.contributor.author | 張仕宸 | zh_TW |
| dc.contributor.author | Shih-Chen Chang | en |
| dc.date.accessioned | 2023-05-18T17:04:13Z | - |
| dc.date.available | 2025-12-12 | - |
| dc.date.copyright | 2023-06-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-01-15 | - |
| dc.identifier.citation | 1 Hamilton, S. E. & Jameson, S. C. CD8 T cell memory: it takes all kinds. Front Immunol 3, 353, doi:10.3389/fimmu.2012.00353 (2012).
2 Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22, 745-763, doi:10.1146/annurev.immunol.22.012703.104702 (2004). 3 Martin, M. D. & Badovinac, V. P. Defining Memory CD8 T Cell. Front Immunol 9, 2692, doi:10.3389/fimmu.2018.02692 (2018). 4 Ma, A., Koka, R. & Burkett, P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24, 657-679, doi:10.1146/annurev.immunol.24.021605.090727 (2006). 5 Pangrazzi, L. et al. Increased IL-15 Production and Accumulation of Highly Differentiated CD8(+) Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus. Front Immunol 8, 715, doi:10.3389/fimmu.2017.00715 (2017). 6 Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187-197, doi:10.1016/j.immuni.2012.09.020 (2013). 7 Takata, H., Naruto, T. & Takiguchi, M. Functional heterogeneity of human effector CD8+ T cells. Blood 119, 1390-1398, doi:blood-2011-03-343251 [pii] 10.1182/blood-2011-03-343251 (2012). 8 Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814-828, doi:10.1016/j.cell.2014.10.026 (2014). 9 Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat Med 17, 1290-1297, doi:10.1038/nm.2446 (2011). 10 Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. The Journal of experimental medicine 214, 1593-1606, doi:10.1084/jem.20161760 (2017). 11 Wang, A. et al. The stoichiometric production of IL-2 and IFN-gamma mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci Transl Med 4, 149ra120, doi:10.1126/scitranslmed.3004306 (2012). 12 Barata, J. T., Durum, S. K. & Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 20, 1584-1593, doi:10.1038/s41590-019-0479-x (2019). 13 Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4, 1191-1198, doi:10.1038/ni1009 (2003). 14 Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat Immunol 18, 573-582, doi:10.1038/ni.3706 (2017). 15 Kim, H. R., Hong, M. S., Dan, J. M. & Kang, I. Altered IL-7Ralpha expression with aging and the potential implications of IL-7 therapy on CD8+ T-cell immune responses. Blood 107, 2855-2862, doi:10.1182/blood-2005-09-3560 (2006). 16 Lee, J. J. et al. Skewed distribution of IL-7 receptor-alpha-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PLoS One 9, e85521, doi:10.1371/journal.pone.0085521 (2014). 17 Lee, J. J. et al. Skewed distribution of IL-7 receptor-α-expressing effector memory CD8+ T cells with distinct functional characteristics in oral squamous cell carcinoma. PloS one 9, e85521, doi:10.1371/journal.pone.0085521 (2014). 18 Lee, J. J. et al. Enrichment of Human CCR6(+) Regulatory T Cells with Superior Suppressive Activity in Oral Cancer. Journal of immunology (Baltimore, Md. : 1950) 199, 467-476, doi:10.4049/jimmunol.1601815 (2017). 19 Wei, L. Y. et al. Effects of Interleukin-6 on STAT3-regulated signaling in oral cancer and as a prognosticator of patient survival. Oral oncology 124, 105665, doi:10.1016/j.oraloncology.2021.105665 (2021). 20 Robins, H. S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114, 4099-4107, doi:10.1182/blood-2009-04-217604 (2009). 21 Carlson, C. S. et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun 4, 2680, doi:10.1038/ncomms3680 (2013). 22 Yang, X. et al. TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization. J Immunol 194, 446-454, doi:10.4049/jimmunol.1400711 (2015). 23 Krishna, C., Chowell, D., Gonen, M., Elhanati, Y. & Chan, T. A. Genetic and environmental determinants of human TCR repertoire diversity. Immun Ageing 17, 26, doi:10.1186/s12979-020-00195-9 (2020). 24 Sidhom, J. W. et al. ImmunoMap: A Bioinformatics Tool for T-cell Repertoire Analysis. Cancer Immunol Res 6, 151-162, doi:10.1158/2326-6066.CIR-17-0114 (2018). 25 Su, M. W. et al. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicology and applied pharmacology 305, 169-175, doi:10.1016/j.taap.2016.06.020 (2016). 26 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005). 27 Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281-295, doi:10.1016/j.immuni.2007.07.010 (2007). 28 Baum, P. D. et al. Blood T-cell receptor diversity decreases during the course of HIV infection, but the potential for a diverse repertoire persists. Blood 119, 3469-3477, doi:10.1182/blood-2011-11-395384 (2012). 29 Venturi, V. et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J Immunol 186, 4285-4294, doi:10.4049/jimmunol.1003898 (2011). 30 Ostmeyer, J., Christley, S., Toby, I. T. & Cowell, L. G. Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue. Cancer Res 79, 1671-1680, doi:10.1158/0008-5472.CAN-18-2292 (2019). 31 Park, H. J. et al. Transcriptomic analysis of human IL-7 receptor alpha (low) and (high) effector memory CD8(+) T cells reveals an age-associated signature linked to influenza vaccine response in older adults. Aging Cell 18, e12960, doi:10.1111/acel.12960 (2019). 32 Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670-684, doi:10.1016/j.immuni.2007.09.006 (2007). 33 Arlettaz, L., Degermann, S., De Rham, C., Roosnek, E. & Huard, B. Expression of inhibitory KIR is confined to CD8+ effector T cells and limits their proliferative capacity. Eur J Immunol 34, 3413-3422, doi:10.1002/eji.200324756 (2004). 34 Khan, O. et al. TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature 571, 211-218, doi:10.1038/s41586-019-1325-x (2019). 35 Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19, 10-19, doi:10.1038/s41590-017-0006-x (2018). 36 Peng, Y. M. et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol 90, 735-740, doi:10.1189/jlb.0211092 (2011). 37 Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8(+) T cells. Nat Immunol 22, 370-380, doi:10.1038/s41590-021-00868-7 (2021). 38 Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat Rev Immunol 13, 309-320, doi:10.1038/nri3442 (2013). 39 Jung, Y. W., Kim, H. G., Perry, C. J. & Kaech, S. M. CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7- and IL-15-dependent niches. Proc Natl Acad Sci U S A 113, 8278-8283, doi:10.1073/pnas.1602899113 (2016). 40 Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848-862, doi:10.1016/j.immuni.2008.11.002 (2008). 41 Boyman, O., Letourneau, S., Krieg, C. & Sprent, J. Homeostatic proliferation and survival of naive and memory T cells. Eur J Immunol 39, 2088-2094, doi:10.1002/eji.200939444 (2009). 42 Hogan, S. A. et al. Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma. Cancer Immunol Res 7, 77-85, doi:10.1158/2326-6066.CIR-18-0136 (2019). 43 Hsu, M. et al. TCR Sequencing Can Identify and Track Glioma-Infiltrating T Cells after DC Vaccination. Cancer Immunol Res 4, 412-418, doi:10.1158/2326-6066.CIR-15-0240 (2016). 44 Sallusto, F. & Lanzavecchia, A. Exploring pathways for memory T cell generation. J Clin Invest 108, 805-806, doi:10.1172/JCI14005 (2001). 45 Baron, V. et al. The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18, 193-204, doi:10.1016/s1074-7613(03)00020-7 (2003). 46 Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12, 749-761, doi:10.1038/nri3307 (2012). 47 Calcinotto, A. et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 99, 1047-1078, doi:10.1152/physrev.00020.2018 (2019). 48 Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat Rev Immunol, doi:10.1038/s41577-019-0180-1 (2019). 49 Chiu, Y. L. et al. Emergence of T cell immunosenescence in diabetic chronic kidney disease. Immun Ageing 17, 31, doi:10.1186/s12979-020-00200-1 (2020). 50 Ding, Z. C. et al. IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 5, e1171445, doi:10.1080/2162402X.2016.1171445 (2016). 51 Chiu, Y. L. et al. Sprouty-2 regulates HIV-specific T cell polyfunctionality. J Clin Invest 124, 198-208 52 Vudattu, N. K., Magalhaes, I., Schmidt, M., Seyfert-Margolis, V. & Maeurer, M. J. Reduced numbers of IL-7 receptor (CD127) expressing immune cells and IL-7-signaling defects in peripheral blood from patients with breast cancer. Int J Cancer 121, 1512-1519, doi:10.1002/ijc.22854 (2007). 53 Gao, J., Zhao, L., Wan, Y. Y. & Zhu, B. Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy. Int J Mol Sci 16, 10267-10280, doi:10.3390/ijms160510267 (2015). 54 Miller, P. W. et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11, 53-65, doi:10.1089/10430340050016157 (2000). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87324 | - |
| dc.description.abstract | CD127 (IL-7R)介白素七號α鏈受體蛋白之表現與CD8記憶型T細胞表現型與功能有顯著的關係。在先前研究中顯示口腔癌病人的周邊血與腫瘤環境中,CD127 (IL-7R)介白素七號α鏈受體蛋白在CD8記憶型T細胞表現高低,亦可代表記憶型細胞功能性差異。在目前研究中並無人類介白素七號α鏈受體蛋白差異性表現CD8記憶型T細胞次群與T細胞受體庫之間的關聯之研究。此外,維持介白素七號α鏈受體蛋白差異性表現CD8記憶型T細胞次群所需的基因表現亦未全然知曉。在本研究中,我們分析CD127 (IL-7R)介白素七號α鏈受體蛋白之表現高低之記憶型細胞其T細胞受體庫特性與基因微陣列分析表現之差異。
我們透過T細胞受體庫分析發現CD127 (IL-7R)介白素七號α鏈受體蛋白高表現之T細胞相較於低表現者,具有較高的T細胞受體庫多樣性。而如此現象並不受傳統CD8記憶型T細胞表現型之CD45RO+ TEM 或 CD45RA+TEMRA之細胞型所限制。介白素七號α鏈受體蛋白高表現之T細胞受體庫多樣性高同時代表著較低的株落增值現象。在基因微陣列分析中,介白素七號α鏈受體蛋白低表現之T細胞相較於高表現者表現更多的活化態功能性基因,包含顆粒酶B、穿孔酶、顆粒酶H與泛抑制性殺傷免疫球蛋白樣受體。此外,介白素七號α鏈受體蛋白低表現之T細胞相較於高表現者其經T細胞受器激活和細胞因子驅動的增殖相比,表現出較低的表現型可塑性。在受體庫分析上,介白素七號α鏈受體蛋白高表現之T細胞和介白素七號α鏈受體蛋白低表現之T細胞之間的T細胞受體庫共享顯著高於TEM 和 TEMRA群體之間,並且介白素七號α鏈受體蛋白低表現之T細胞可以在體外穩態細胞因子刺激下從介白素七號α鏈受體蛋白高表現之T細胞細胞誘導。在腫瘤浸潤CD8 T細胞受體庫中也保留了類似的介白素七號α鏈受體蛋白低表現之T細胞明顯株落增殖。這些功能性基因表現的結果是與小鼠相似的。人類記憶CD8 T 細胞的功能可以僅基於介白素七號α鏈受體蛋白進行唯一有效區分。並且無論在週邊血或局部腫瘤微環境中,介白素七號α鏈受體蛋白高表現亞群和低表現亞群之間的維持平衡是無論在TEM 或 TEMRA CD8 記憶T細胞分群都適用的。 | zh_TW |
| dc.description.abstract | We reported and hypothesized that CD127 (IL-7R) expression as either high or low could identify human CD8+ T memory cell subsets with distinct functionalities regardless of their CD45RO+ TEM or CD45RA+TEMRA phenotypes. Here, we further analyzed CD127hi or CD127lo TEM and TEMRA cells for their Vβ-CDR3 repertoire and gene expression profiles to validate our hypothesis. The CD127hi subsets exhibited higher TCR diversity coupled with lower frequency of clonal expansion compared to CD127lo populations within either TEM or TEMRA. Both TEM and TEMRA CD127lo populations showed higher gene expression associated with activated functionality, including perforin, granzyme B, granzyme H, and pan-inhibitory killer immunoglobulin-like receptors, exhibited lower phenotype plasticity upon TCR activation and cytokine-driven proliferation, when compared to their CD127hi counterparts. TCR repertoire sharing is significantly higher between CD127hi and CD127lo than between TEM and TEMRA populations, and CD127lo cells can be induced from CD127hi cells upon in vitro homeostatic cytokines stimulation, suggesting differentiation from CD127hi into CD127lo CD8+ T cell. Similar repertoire sharing with pronounced clonal expansion is also preserved in the tumor infiltrated CD8+ T cell. These results suggested that the functionality of human memory CD8+ T cell, similar to mouse, can be uniquely distinguished based on CD127 alone, and homeostasis mediated through IL-7R between CD127 high and low subsets is maintained within either TEM or TEMRA CD8+ memory T cell peripheral or local microenvironment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:04:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T17:04:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract IV 目錄 .V 圖目錄 VII Chapter 1. Introduction 1 1.1. Surface expression of human peripheral blood CD8+ T cells 1 1.2. Tissue-resident or regional memory CD8+ T cells 1 1.3. Expression of IL-7R (CD127) in human T cell differentiation 2 Chapter 2. Purposes and Aims 4 Chapter 3. Materials and Methods 5 3.1. Human Subjects 5 3.2. Peripheral or tumor-infiltrating CD8+ T cells isolation and proliferation assay 5 3.3. T cell receptor CDR3 sequencing and repertoire similarity or diversity analyses 7 3.4. Microarray analysis 8 3.5. Gene set enrichment analysis (GSEA) 9 3.6. Pathway enrichment analysis 9 3.7. Statistical analysis 10 Chapter 4. Result 11 4.1. CD127hi memory CD8+ T subsets are of higher TCR repertoire diversity compared with CD127lo T cells 11 4.2. CD127hi memory CD8+ T subsets sharing TCR repertoire with CD127lo in either TEM or TEMRA 12 4.3. Transcriptomic analyses reveal distinct functional specializations of CD127-defined memory CD8+ T cell subsets 16 4.4. CD127lo cells are more differentiated than CD127hi cells in both TEM and TEMRA subsets 21 4.5. Discriminated proliferation potentials of CD127hi and CD127lo T cell subsets in response to cytokines 21 4.6. TCR repertoire sharing between TIL and PBMC 23 Chapter 5. Discussion 25 Chapter 6. Reference 31 Chapter 7. Figures 36 Chapter 8. Supplementary data 48 | - |
| dc.language.iso | en | - |
| dc.subject | CD8記憶型T細胞 | zh_TW |
| dc.subject | 介白素七號受體 | zh_TW |
| dc.subject | T細胞受體庫 | zh_TW |
| dc.subject | IL-7 receptor | en |
| dc.subject | CD8 memory T cell | en |
| dc.subject | TCR repertoire | en |
| dc.title | 人類CD8+CD127hi及CD127lo的TEM與TEMRA次群 T細胞受體庫分析與特異性基因表現 | zh_TW |
| dc.title | CD127-expression identifies human CD8+ TEM and TEMRA revealed by TCR repertoire and gene expression | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顧家綺;俞松良 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chi Ku;Sung-Liang Yu | en |
| dc.subject.keyword | 介白素七號受體,CD8記憶型T細胞,T細胞受體庫, | zh_TW |
| dc.subject.keyword | IL-7 receptor,CD8 memory T cell,TCR repertoire, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202300042 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-01-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2027-12-12 | - |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-1.pdf Restricted Access | 8.79 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
