請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87322
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳韋仁 | zh_TW |
dc.contributor.advisor | Wei-Jen Chen | en |
dc.contributor.author | 江美雪 | zh_TW |
dc.contributor.author | Mei-Shuet Kong | en |
dc.date.accessioned | 2023-05-18T17:03:33Z | - |
dc.date.available | 2025-01-31 | - |
dc.date.copyright | 2023-06-14 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-08 | - |
dc.identifier.citation | Abdul-Rahman F, Tranchina D, Gresham D (2021) Fluctuating environments maintain genetic diversity through neutral fitness effects and balancing selection. Molecular Biology and Evolution 38:4362-4375. https://doi.org/10.1093/molbev/msab173
Andrew S (2010) FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 28 Oct 2022 Andrews KR, Good JM, Miller, MR, et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17:81-92. https://doi.org/10.1038/nrg.2015.28 Antaky CC, Young L, Ringma J, Price MR (2021) Dispersal under the seabird paradox: probability, life history, or spatial attributes? Marine Ornithology 49:1-8. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57:289-300. http://dx.doi.org/10.2307/2346101 Bertolero A, Oro D, Vilalta AM, López, MÀ (2005) Selection of foraging habitats by Little Terns Sterna albifrons at the Ebro Delta (NE Spain). Revista Catalana d’Ornitologia 21:37-42 Bicknell AWJ, Knight ME, Bilton D, et al (2012) Population genetic structure and long-distance dispersal among seabird populations: implications for colony persistence. Molecular Ecology 21:2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x BirdLife Australia (2022) Little Tern. https://birdlife.org.au/bird-profile/little-tern. Accessed 7 Oct 2022 BirdLife International (2022) Species factsheet: Sternula albifrons. http://www.birdlife.org. Accessed 7 Oct 2022 BirdLife International (2022) Species factsheet: Sternula antillarum. http://www.birdlife.org. Accessed 15 Dec 2022. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170 Boutilier ST, Taylor SA, Morris-Pocock JA et al (2014) Evidence for genetic differentiation among Caspian Tern (Hydroprogne caspia) populations in North America. Conservation Genetics 15:275-281. http://dx.doi.org/10.1007/s10592-013-0536-1 Byerly P, Chesser RT, Fleischer RC, et al (2022) Museum genomics provide evidence for persistent genetic differentiation in a threatened seabird species in the western Atlantic. Integrative and Comporative Biology 62:1838-1848. https://doi.org/10.1093/icb/icac107 Carlen E, Munshi-South J (2020) Widespread genetic connectivity of feral pigeons across the Northeastern megacity. Evolution Applications 14:150-162. https://doi.org/10.1111/eva.12972 Catry T, Ramos JA, Catry I, et al (2004) Are salinas a suitable alternative breeding habitat for Little Terns Sterna albifrons? Ibis 146:247–257. https://doi.org/10.1046/j.1474-919X.2004.00254.x Chang L-N, Hung C-H, Yuan H-W (2013) Preliminary analysis of exploring the migratory pathways of the breeding Little Terns (Sternula albifrons) in Taiwan based on geolocator data (in Chinese). Department of Forestry and Resource Conservation, National Taiwan University, Taiwan Cheng C-H (2007) Nest selection and reproductive ecology of terns in Huolong Beach and Xiaobaisha island, Penghu (in Chinese). Shagang Elementary School, Penghu County, Taiwan Chiu TS, Young SS, Chen CS (1997) Monthly variation of larval anchovy fishery in I-lan bay, NE Taiwan, with an evaluation for optimal fishing season. Journal of the Fisheries Society of Taiwan 24: 273-282. https://doi.org/10.29822/JFST.199712.0002 Clare M (2015) A Little Tern flagged in Taiwan visits Australia. https://www.10000birds.com/a-little-tern-flagged-in-taiwan-visits-australia.htm. Accessed 15 Dec 2022 Coulson JC (2016) A review of philopatry in seabirds and comparisons with other waterbird species. Waterbirds 39:229-240. https://doi.org/10.1675/063.039.0302 Crates R, Olah G, Adamski M, et al (2019) Genomic impact of severe population decline in a nomadic songbird. PLoS ONE 14:1-19 https://doi.org/10.1371/journal.pone.0223953 Dayton J, Ledwoń M, Paillisson J, et al (2017) Genetic diversity and population structure of the Eurasian Whiskered Tern (Clidonias hybrida hybrida), a species exhibiting range expansion. Waterbirds 40:105-117. https://doi.org/10.1675/063.040.0203 Draheim HM, Miller MP, Baird P, Haig SM (2010) Subspecific status and population genetic structure of Least Terns (Sternula anttilarum) inferred by mitochondrial DNA control-region sequences and microsatellite DNA. The Auk 127:807-819. https://doi.org/10.1525/auk.2010.09222 Draheim HM, Miller MP, Baird P, Haig SM (2012) Temporal analysis of mtDNA variation reveals decreased genetic diversity in Least Terns. The Condor 114:145-154. https://doi.org/10.1525/cond.2012.110007 Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22:1-20. https://doi.org/10.18637/jss.v022.i04. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11:2571–2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359-361. http://dx.doi.org/10.1007/s12686-011-9548-7 Eaton DAR, Overcast I (2020) Ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics, 36:2592-2594. https://doi.org/10.1093/bioinformatics/btz966 Eaton DAR, Ree RH (2013) Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology 62:689–706. https://doi.org/10.1093/sysbio/syt032 Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52:665–673. https://doi.org/10.1080/10635150390235485 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolution Bioinformatics Online 1:47-50. http://dx.doi.org/10.1177/117693430500100003 Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479-491. https://doi.org/10.1093/genetics/131.2.479 Fagan WF, Meir E, Predergast J, et al (2001) Characterizing population vulnerability for 758 species. Ecology Letters 4:132-138. https://doi.org/10.1046/j.1461-0248.2001.00206.x Farmer B (2007) The albatross still looking for love after 40 years on the wrong side of the world. Mail Online. https://www.dailymail.co.uk/news/article-453705/The-albertross-looking-love-40-years-wrong-world.html. Accessed on 15 December 2022 Faux P, Oliveira, JCP, Campos DP, et al (2020) Fast genomic analysis of aquatic bird populations from short single-end reads considering sex-related pitfalls. Ecological Informatics 56:101058. https://doi.org/10.1016/j.ecoinf.2020.101058 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x Fridolfsson AK, Ellergren H (1999) A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 30:116-121. https://doi.org/10.2307/3677252 Friesen VL (2015) Speciation in seabirds: why are there so many species and why aren’t there more? Journal of Ornithology 156:27-39 http://dx.doi.org/10.1007/s10336-015-1235-0 Fujii T, Kitamura W, Murofushi Y, et al (2014) Australia Asia Little Tern Sternula albifrons geolocator project. Ornithological Science 13:306 Fujita G, Totsu K, Shibata E, et al (2009) Habitat management of Little Terns in Japan’s highly developed landscape. Biological Conservation 142:1891–1898. https://doi.org/10.1016/j.biocon.2009.02.024 Gill F, Donsker D, Rasmussen P (eds) (2022) IOC World Bird List (v12.2). https://www.worldbirdnames.org/bow/gulls/ . Accessed 7 October 2022. 10.14344/IOC.ML.12.1. Gochfeld M, Burger J, Garcia EFJ (2020) Little Tern (Sternula albifrons), version 1.0. In Birds of the World (del Hoyo J, Elliott A, Sragatal J, Christie DA, de Juana E, Editors). Cornell Lab of Ornithology, Ithaca, New York, USA. https://doi.org/10.2173/bow.litter1.01 Gómez-Fernández A, Alcocer I, Matesanz S (2016) Does higher connectivity lead to higher genetic diversity? Effects of habitat fragmentation on genetic variation and population structure in a gypsophile. Conservation Genetics 17:631-641 https://doi.org/10.1007/s10592-016-0811-z Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22:1-19. https://doi.org/10.18637/jss.v022.i07 Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F‐statistics. Molecular Ecology Notes 5:184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28:1140-1162. https://doi.org/10.1016/S0003-3472(80)80103-5 Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annual Review of Ecology and Systematics 13:1-21 Hayakawa M, Suzuki-Matsubara M, Matsubara K, et al (2022) Population genetic structure of Little Tern (Sternula albifrons) in Japan inferred from nucleotide sequence diversities of the mitochondrial DNA control region. Ornithological Science 21:155-163. https://doi.org/10.2326/osj.21.155 Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biology, 2:e312. https://doi.org/10.1371/journal.pbio.0020312 Higgins PJ, Davies SJJF (eds) (1996) Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to Pigeons. Oxford University Press, Melbourne. ISBN 0-19-553070-5 Huang G (2015) Breeding habitat use of Little Tern along Enshunada Coast-Tenryu River continuum in relation to dam development. Journal of Environmental Protection 6:204-214. https://doi.org/10.4236/jep.2015.63021 Hudson J, Castilla JC, Teske PR, et al (2020) Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species. PNAS 118: e2022169118. https://doi.org/10.1073/pnas.2022169118 Hung C-H (2009) Factors affecting the hatching success of Little Terns in Lunwei Industrial Park (in Chinese). Unpublished master thesis, Department of Environmental Science and Engineering, Tunghai University, Taiwan Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801-1806. https://doi.org/10.1093/bioinformatics/btm233 JNCC (2021) Little Tern (Sternula albifrons). https://jncc.gov.uk/our-work/little-tern-sternula-albifrons/ . Accessed 7 Oct 2022 Jombart T, Kamvar ZN, Collins C, et al (2020) Adegenet: exploratory analysis of genetic and genomic data. Data collection. The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/adegenet/ Kamvar ZN, Tabima JF, Brooks JC (2018) Package ‘poppr’: genetic analysis of populations with mixed reproduction. https://cran.rproject.org/web/packages/poppr/poppr.pdf Kersten O, Star B, Leigh D, et al (2021) Complex population structure of the Atlantic puffin revealed by whole genome analyses. Communications Biology 4:922 https://doi.org/10.1038/s42003-021-02415-4 Kralj J, Martinovic M, Jurinovic L, et al (2020) Geolocator study reveals east African migration route of Central European Common Terns. Avian Research, 11:6 https://doi.org/10.1186/s40657-020-00191-z Kumar S, Stecher G, Li M, et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549. https://doi.org/10.1093/molbev/msy096 Lee SL (2021) Suspected wild dogs invade Qingluo Wetland causing the Little Tern left early (in Chinese). Penghu Times. https://www.penghutimes.com/Article/Detail/1013. Accessed 15 December 2022 Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6:1110-1116. https://doi.org/10.1111/2041-210X.12410 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187 Lin DL, Pursner S (eds.) (2020) State of Taiwan’s birds. Endemic Species Research Institute, Taiwan Wild Bird Federation, Taiwan Liu YQ (2021) Suspected wild dogs destroyed the nests and eggs of Little Terns causing an early end of breeding period in the important wetland in Penghu, Taiwan (in Chinese). Liberty Times Net. https://news.ltn.com.tw/news/life/breakingnews/3578207?fbclid=IwAR0EeRUyC56F5_OtqqoYu9Ap4iWYPXeQoYdkQuFshqAdd5uI7iQiHDF1ojA. Accessed 15 December 2022 Lois NA, Campagna L, Balza U, et al (2020) Metapopulation dynamics and foraging plasticity in a highly vagile seabird, the southern rockhopper penguin. Ecology and Evolution 10:3346-3355. https://doi.org/10.1002%2Fece3.6127 Lopes C, Ramos JA, Paiva VH (2015) Changes in vegetation cover explain shifts of colony sites of Little Terns (Sternula albifrons) in coastal Portugal. Waterbirds 38:260-268. https://doi.org/10.1675/063.038.0306 Lopez J, Nikolic N, Riethmuller M, et al (2020) High genetic diversity despite drastic bottleneck in a critically endangered, long-lived seabird, the Mascarene Petrel Pseudobulweria aterrima. Ibis 163:268-273. https://doi.org/10.1111/ibi.12864 Mancilla-Morales MD, Velarde E, Aguilar A, et al (2022) Strong philopatry, isolation by distance, and local habitat have promoted genetic structure in Heermann’s Gull. Diversity 14. https://doi.org/10.3390/d14020108 Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220 Marshall HD, Baker AJ 1997 Structural conservation and variation in the control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Molecular Biology and Evolution 14:173-184. https://doi.org/10.1093/oxfordjournals.molbev.a025750 Mostello CS, LaFlamme D, Szcyzs P (2016) Common Tern Sterna hirundo and Arctic Tern S. paradisaea hybridization produces fertile offspring. Seabird 29:39-65 Miller MR, Dunham JP, Amores A, et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17:240–248. http://www.genome.org/cgi/doi/10.1101/gr.5681207 Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. Evolutionary Processes and Theory. Academic Press, New York NTU Biodiversity Center (2020) Report of the ecological survey and data collection on Taiwan seabird population 2020 (in Chinese). Biodiversity Research Center, National Taiwan University, Taiwan Olsen MK, Larsson H (1995) Terns of Europe and North America. Christopher Helm, London Paleczny M, Hammill E, Karpouzi V, Pauly D (2015) Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE 10:e0129342. http://dx.doi.org/10.1371/journal.pone.0129342 Pembleton LW, Cogan NOI, Forster JW (2013) stAMPP: an R package for calculation of genetic differentiation and structure of mixed ploidy level populations. Molecular Ecology Resources 13:946–952. https://doi.org/10.1111/1755-0998.12129 Peng Y-W (2006) Population genetic structure of Steere’s Liocichla (Liocochla steerii) in Taiwan. Unpublished master thesis, Department of Forestry and Resource Conservation, National Taiwan University, Taiwan Perez GS, Goodenough KS, Horn MH, et al (2020) High connectivity among breeding populations of the Elegant Tern (Thalasseus elegans) in Mexico and southern California revealed through population genomic analysis. Waterbirds 43:17-27. https://doi.org/10.1675/063.043.0102 Peterson BK, Weber JN, Kay EH, et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species (Orlando L, ed.). PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/genetics/155.2.945 Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16:608-627. https://doi.org/10.1111/1755-0998.12512 Pyle P, Hoffman N, Casler B, McKee T (2001) Little and Least Tern breeding on Midway Atoll: identification, range extensions, and assortative breeding behavior. North American Birds 55:3-6. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Rajpar MN, Ozdemir I, Zakaria M, et al (2018) Seabirds as bioindicators of marine ecosystems. Seabirds, IntechOpen, London. http://dx.doi.org/10.5772/intechopen.75458 Rambaut A (2014) FigTree v1.4.2, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/ Ramírez O, Gomez-Díaz E, Olalde I, et al (2013) Population connectivity buffers genetic diversity loss in a seabird. Frontiers in Zoology 10:28. https://doi.org/10.1186/1742-9994-10-28 Renken RB, Smith JW (1995) Interior Least Tern site fidelity and dispersal. Colonial Waterbirds 18:193-198. https://doi.org/10.2307/1521480 Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure Molecular Ecology Notes 4:137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228. https://doi.org/10.1093/genetics/145.4.1219 Safina C, Burger J, Gochfeld M, Wagner RH (1988) Evidence for prey limitation of Common and Roseate Tern reproduction. The Condor 90:852-859. https://doi.org/10.2307/1368842 Sandercock BK (2003) Estimation of survival rates for wader populations: a review of mark-recapture methods. Wader Study Group Bulletin 100:163-174 Sauve D, Patirana A, Chardine JW, Friesen VL (2019) Mitochondrial DNA reveals population genetic structure within Atlantic but not Pacific populations of a holarctic seabird, the Black-legged Kittiwake Rissa tridactyla. Marine Ornithology 47:199-208. http://dx.doi.org/10.1111/j.1365-294X.2008.03977.x Seward A, Ratcliffe N, Newton S, et al (2018) Metapopulation dynamics of roseate terns: sources, sinks and implications for conservation management decisions. The Journal of Animal Ecology 88:138-153. https://doi.org/10.1111/1365-2656.12904 Silvestro D, Michalak I (2012). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12:335-337. https://doi.org/10.1007/s13127-011-0056-0 Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313 http://dx.doi.org/10.1093/bioinformatics/btu033 Steiner UK, Gaston AJ (2005) Reproductive consequences of natal dispersal in a highly philopatric seabird. Behavioral Ecology 16:634-639. https://doi.org/10.1093/beheco/ari035 Suchan T, Espíndola A, Rutschmann S, et al (2017) Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: the fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study. Molecular Phylogenetics and Evolution 114:189–198. https://doi.org/10.1016/j.ympev.2017.06.012 Sunde J, Yıldırım Y, Tibblin P, Forsman A (2020) Comparing the performance of microsatellites and RADseq in population genetic studies: analysis of data for pike (Esox lucius) and a synthesis of previous studies. Frontiers in Genetics 11:218. https://doi.org/10.3389/fgene.2020.00218 Szczys P, Lamothe, KA, Druzyaka A, et al (2017) Range-wide patterns of population differentiation of Eurasian Black Terns (Chlidonias niger niger) related to use of discrete post-nuptial staging sites. Journal of Ornithology 158:365-378. https://doi.org/10.1007/s10336-016-1408-5 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673 Thrasher DJ, Butcher BG, Campagna L, et al (2018) Double-digest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: a proof of concept in a highly promiscuous bird. Molecular Ecology Resources 18:953-965. https://doi.org/10.1111/1755-0998.12771 Walters AD, Schwartz MK, Rajora OP (eds), Holenlohe PA (eds) (2020) Population genomics for the management of wild vertebrate populations. Population genomics: wildlife. Springer Nature Switzerland AG, Switzerland Wang, H-P (2022) First breeding record of the Little Terns in Qigu, Tainan (in Chinese). Liberty Times Net. https://news.ltn.com.tw/news/life/breakingnews/3958547 . Accessed 18 January 2023 Weiser EL, Grueber CE, Jamieson IG (2013) Simulating retention of rare alleles in small populations to assess management options for species with different life histories. Conservation Biology 27:335-344. https://doi.org/10.1111/cobi.12011 Wernham CV, Toms MP, Marchant JH, et al (2002). The migration atlas: movements of the birds of Britain and Ireland. T & AD Poyser, London Whittier JB, Leslie DM, Van Den Bussche RA (2006) Genetic variation among subspecies of Least Tern (Sterna antillarum): implications for conservation. Waterbirds 29:176-184 Wright S (1943) Isolation by distance. Genetics 28:114-138 Wright S (1978) Variability within and among natural populations. Evolution and the Genetics of Populations 4. University of Chicago Press, Chicago. Yang J, Chen G, Yuan L et al (2018) Genetic evidence of hybridization of the world’s most endangered tern, the Chinese Crested Tern Thalasseus bernsteini. Ibis 160:900-906. https://doi.org/10.1111/ibi.12616 Zimmerman SJ, Aldridge CL, Oyler-McCance SJ (2020) An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 21:382. https://doi.org/10.1186/s12864-020-06783-9 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87322 | - |
dc.description.abstract | 近幾十年來,由於棲息地喪失和人為的干擾,包括小燕鷗 (Sternula albifrons) 在內的海鳥族群數量一直在下降。小燕鷗目前被列為臺灣的二級保育類鳥種 (也就是,珍貴稀有物種),是鷗科中唯一在台灣本島有繁殖地的物種。海鳥的族群遺傳多樣性及結構之研究有助於規劃保育策略及相關的物種的保護單位,然而,這種對海鳥,特別是台灣小燕鷗的族群遺傳之相關資訊仍缺乏。因此,本研究利用長度為861-bp的粒線體DNA控制區及使用雙限制酶切位點標定法(ddRAD)篩選出的5113個單核苷酸多態性(SNPs)為資料進行臺灣小燕鷗的族群遺傳研究。本研究於四個已知的小燕鷗繁殖地,分別爲臺灣西側的澎湖和彰化以及臺灣東側的宜蘭和花蓮,採集共59個幼鳥羽毛樣本。由於海鳥族群之分化可能受其不同族群遷徙路線的影響,而經臺灣遷徙的海鳥也可能沿西側與沿東側海岸通過。因此,本研究將樣本亦再依採集地分為兩個地理組(即臺灣西部和東部)以進一步探討臺灣小燕鷗於臺灣西側與東側間的族群是否有差異及評估其在區域上的差異程度。在進行族群遺傳相關的分析前,本研究也利用粒線體細胞色素c氧化酶 I (COI)基因序列確認野外採集樣本的物種及臺灣小燕鷗的亞種名稱定義。本研究意外發現其中一個從宜蘭採集的樣本的COI基因序列與美洲小燕鷗(S. antillarum)極度相似,並在後續分析中確認。美洲小燕鷗與小燕鷗有相近的親緣關係,但因美洲小燕鷗只分佈於北美和南美,故此推斷為該美洲小燕鷗的親鳥可能因遷徙時遭遇不好的氣候條件,迷失原遷徙路缐而意外跟隨小燕鷗族群來到臺灣進行繁殖。本研究中利用粒線體DNA控制區序列進行的族群遺傳分析與ddRAD序列的分析結果相互支持對應。粒線體DNA控制區序列的單型網狀圖(haplotype network)及ddRAD序列的集群分析 (clustering analyses) 均無法根據採集地以區分臺灣西側及東側的樣本為兩群。此外,利用兩種序列進行的AMOVA分析和計算的各群間的遺傳分化指數(pairwise ΦST/FST)顯示臺灣西側與東側的小燕鷗族群處於近乎零的基因分化情形,顯示出西側與東側的小燕鷗族群間有著高度的連通性。另外,本研究也將臺灣小燕鷗的粒線體DNA控制區序列與日本小燕鷗的相同基因序列合併並加以分析以比較臺灣和日本小燕鷗的族群遺傳多樣性的差異及探討兩者之間的族群連通性。單型網狀圖無法區分臺灣和日本的樣本為不同的地理區群集,但圖中三個高頻率出現的共同單倍型(common haplotype)均各別多數出現來自臺灣、日本冲繩及日本本島的樣本。AMOVA和各群間的遺傳分化指數也顯示臺灣、日本冲繩及日本本島的小燕鷗處於中至強度的族群分化情形。小燕鷗在臺灣及日本的族群間具有距離隔離(isolation by distance, IBD)現象,也就是族群間的遺傳距離會與地理距離成顯著正相關。本研究亦針對小燕鷗在臺灣及在日本的族群之族群遺傳分析結果進行比較及討論,並依據研究經驗及結果提出未來小燕鷗在臺灣可供參考的保育策略。 | zh_TW |
dc.description.abstract | In recent decades, seabird populations including the Little Tern (Sternula albifrons) populations have been declining due to habitat loss and human disturbance. The Little Tern is currently listed as the class II species (rare and valuable species) under the Wildlife Conservation Act Republic of China (Taiwan) and it is the only species in the family Laridae who has breeding records in mainland Taiwan. Examining the genetic diversity and population structure of seabirds can help on managing the conservation units of the particular species. However, such kind of the population genetic analyses on seabirds, particularly the Little Tern in Taiwan remains poorly conducted. In this study, the Little Tern populations in Taiwan were examined based on two different types of data: the mitochondrial (mt) control region (D-loop) DNA sequences (861 bp) and double digest Restriction-site Associated DNA (ddRAD) sequencing data with 5113 single nucleotide polymorphisms (SNPs) generated. The feather samples were collected from 59 chicks of the Little Tern across four known breeding colonies located at western (Penghu and Zhanghua) and eastern (Yilan and Hualien) coasts of Taiwan. Since seabird populations can be shaped by their migratory routes and two main migrations along western and eastern coastal lines in Taiwan might be suspected, the studied populations were further grouped into two geographical groups (i.e., West and East of Taiwan) to determine the degree of population differentiation at regional scale. Before conducting the population genetic analyses, the mitochondrial Cytochrome c oxidase I (COI) gene (or DNA barcoding gene) sequence information of the samples were extracted and analysed to confirm the field identification and the subspecies status of the Little Tern in Taiwan. The phylogenetic analysis using COI sequences revealed that one individual collected from Yilan was highly matched to the Least Tern (Sternula antillarum), a congeneric species of the Little Tern which only breeds in the North and South America. The parents of this individual were believed to get lost due to bad weather while migrating to their breeding grounds in America and accidentally followed the Little Tern colonies to breed in Taiwan. As to the population genetic analyses, the results obtained based on D-loop sequences were consistent with the results obtained based on ddRAD sequencing data. The mtDNA haplotypes constructed based on D-loop sequences and the clustering analyses conducted based on ddRAD sequencing data did not cluster the samples into two geographical groups with respect to the West and East of Taiwan. Furthermore, the AMOVA analyses and pairwise ΦST /FST estimations based on both types of data revealed little to no population differentiation among populations and between regions. The findings of this study suggested a high population connectivity among the breeding colonies in Taiwan. Additionally, the obtained D-loop sequences of the Little Tern from Taiwan were compiled with those from Japan deposited in the NCBI GenBank to compare the genetic diversity and to examine the phylogeographic break that may shape the diversity of the Little Tern populations in eastern Asia. The resulting haplotype network did not clearly separate Taiwanese and Japanese populations but the three most common haplotypes were prevalent for mainland Japan, Okinawa and Taiwan samples, respectively. The Little Tern populations may be frequently connected but with some restrictions on their gene flow that caused moderate to great differentiation among the three populations, which further supported by the AMOVA analyses, pairwise ΦST estimations and the positive yet significant isolation by distance (IBD) pattern. The possible explanations leading to little evidence for genetic structure of the Little Tern populations in Taiwan and moderate to strong structure among Taiwan, Okinawa and mainland Japan populations were discussed. The concerns for the Little Tern protection in Taiwan were also discussed to recommend the conservation strategies of this species in Taiwan. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:03:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-18T17:03:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii Abstract iv Contents vii List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Materials and Methods 6 2.1 Sampling and DNA extraction 6 2.2 Sequencing analysis 7 2.2.1 COI sequences 7 2.2.2 mtDNA control region sequences 8 2.2.3 ddRAD sequencing data 9 2.2.4 Sex determination 10 2.3 Data analysis 10 2.3.1 COI sequences 10 2.3.2 mtDNA control region sequences 11 2.3.3 ddRAD sequencing data 13 Chapter 3 Results 17 3.1 COI sequences 17 3.1.1 Sequencing data 17 3.1.2 Phylogenetic analysis 17 3.2 mtDNA control region sequences 19 3.2.1 Sequencing data 19 3.2.2 Genetic diversity 19 3.2.3 Population structure 22 3.3 ddRAD sequencing data 24 3.3.1 Sequencing data 24 3.3.2 Genetic diversity 25 3.3.3 Population structure 26 3.3.4 Sex-biased artifact 29 Chapter 4 Discussion 31 4.1 Taxonomic status of the Little Terns in Taiwan 31 4.2 Genetic diversity 32 4.3 Population structure 36 4.4 Conservation implications 42 References 45 Appendices 53 | - |
dc.language.iso | en | - |
dc.title | 以粒線體DNA及雙限制酶切位點標定法探究臺灣小燕鷗的遺傳多樣性及族群結構 | zh_TW |
dc.title | Exploring genetic diversity and population structure of the Little Tern (Sternula albifrons) in Taiwan based on mtDNA and ddRAD sequencing data | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 丁宗蘇;袁孝維;林思民;許育誠 | zh_TW |
dc.contributor.oralexamcommittee | Tzung-Su Ding;Hsiao-Wei Yuan;Si-Min Lin;Yu-Cheng Hsu | en |
dc.subject.keyword | 小燕鷗,族群遺傳,粒缐體DNA控制區,雙限制酶切位點標定法,單核苷酸多態性,保育,臺灣, | zh_TW |
dc.subject.keyword | Little Tern,population genetics,mtDNA control region,ddRAD,SNP,conservation,Taiwan, | en |
dc.relation.page | 62 | - |
dc.identifier.doi | 10.6342/NTU202300368 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-02-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2025-01-31 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf | 2.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。