Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉zh_TW
dc.contributor.advisorFu-Shan Jawen
dc.contributor.author李芳瑜zh_TW
dc.contributor.authorFang-Yu Leeen
dc.date.accessioned2023-05-18T17:02:50Z-
dc.date.available2023-11-10-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-08-
dc.identifier.citation[1] 體育署統計全國規律運動人口和7333規律運動的定義 [Online]. Available: https://www.sa.gov.tw/News/NewsDetail?Type=3&id=3510&n=92.[Accessed: 02-Dec-2022].
[2] W. H. Meeuwisse, “Assessing causation in sport injury: A multifactorial model,” Clin. J. Sport Med., vol. 4, no. 3, pp. 166–170, 1994.
[3] W. van Mechelen, H. Hlobil, and H. C. G. Kemper, “Incidence, severity, aetiology and prevention of sports injuries: A review of concepts,” Sports Med., vol. 14, no. 2, pp. 82–99, 1992.
[4] T. M. Willems, R. De Ridder, and P. Roosen, “The effect of a long-distance run on plantar pressure distribution during running,” Gait Posture, vol. 35, no. 3, pp. 405–409, 2012.
[5] F. Fourchet, L. Kelly, C. Horobeanu, H. Loepelt, R. Taiar, and G. P. Millet, “Comparison of plantar pressure distribution in adolescent runners at low vs. high running velocity,” Gait Posture, vol. 35, no. 4, pp. 685–687, 2012.
[6] S. Studenski et al., “Gait speed and survival in older adults,” JAMA, vol. 305, no. 1, pp. 50–58, 2011.
[7] H. Stolze et al., “Prevalence of gait disorders in hospitalized neurological patients: Gait Disorders in Neurological in Patients,” Mov. Disord., vol. 20, no. 1, pp. 89–94, 2005.
[8] A. Marcante et al., “Foot pressure wearable sensors for freezing of gait detection in Parkinson’s Disease,” Sensors (Basel), vol. 21, no. 1, p. 128, 2020.
[9] M. Son et al., “The effect of levodopa on bilateral coordination and gait asymmetry in Parkinson’s disease using inertial sensor,” NPJ Parkinsons Dis., vol. 7, no. 1, p. 42, 2021.
[10] S. Vigneshwaran and G. Murali, “Foot plantar pressure measurement system for static and dynamic condition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 993, no. 1, p. 012106, 2020.
[11] L. Wafai, A. Zayegh, J. Woulfe, S. M. Aziz, and R. Begg, “Identification of foot pathologies based on plantar pressure asymmetry,” Sensors (Basel), vol. 15, no. 8, pp. 20392–20408, 2015.
[12] P. Aqueveque, E. Germany, R. Osorio, and F. Pastene, “Gait segmentation method using a plantar pressure measurement system with custom-made capacitive sensors,” Sensors (Basel), vol. 20, no. 3, p. 656, 2020.
[13] A. De Cock, D. De Clercq, T. Willems, and E. Witvrouw, “Temporal characteristics of foot roll-over during barefoot jogging: reference data for young adults,” Gait Posture, vol. 21, no. 4, pp. 432–439, 2005.
[14] I.-J. Ho, Y.-Y. Hou, C.-H. Yang, W.-L. Wu, S.-K. Chen, and L.-Y. Guo, “Comparison of plantar pressure distribution between different speed and incline during treadmill jogging,” J. Sports Sci. Med., vol. 9, no. 1, pp. 154–160, 2010.
[15] “FlexiForce A201 datasheet,” Tekscan.com. [Online]. Available: https://www.tekscan.com/resources/datasheets-guides/flexiforce-a201-datasheet. [Accessed: 16-Jan-2023].
[16] D. B. Wibowo, A. Suprihanto, W. Caesarendra, S. Khoeron, A. Glowacz, and M. Irfan, “A simple foot plantar pressure measurement platform system using force-sensing resistors,” Appl. Syst. Innov., vol. 3, no. 3, p. 33, 2020.
[17] C. Nüesch, J.-A. Overberg, H. Schwameder, G. Pagenstert, and A. Mündermann, “Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running,” Gait Posture, vol. 62, pp. 117–123, 2018.
[18] N. Ghani Zadeh Hesar et al., “A prospective study on gait-related intrinsic risk factors for lower leg overuse injuries,” Br. J. Sports Med., vol. 43, no. 13, pp. 1057–1061, 2009.
[19] “NodeMCU-32S安信可科技,” Ai-thinker.com. [Online]. Available:
https://docs.ai-thinker.com/esp32/boards/nodemcu_32s. [Accessed: 13-Dec-2022].
[20] A. Drăgulinescu, A.-M. Drăgulinescu, G. Zincă, D. Bucur, V. Feieș, and D.-M. Neagu, “Smart socks and in-shoe systems: State-of-the-art for two popular technologies for foot motion analysis, sports, and medical applications,” Sensors (Basel), vol. 20, no. 15, p. 4316, 2020.
[21] “F-scan system,” Tekscan.com. [Online]. Available:https://www.tekscan.com/products-solutions/systems/f-scan-system.[Accessed: 15-Jan-2023].
[22] “Footwear pressure distribution measurement- pedar,” novel.de, 31-Jan-2019.[Online]. Available: https://www.novel.de/products/pedar/[Accessed: 15-Jan-2023].
[23] C. Lou et al., “A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis,” Materials (Basel), vol. 10, no. 9, p. 1068, 2017.
[24] M. Saito et al., “An in-shoe device to measure plantar pressure during daily human activity,” Med. Eng. Phys., vol. 33, no. 5, pp. 638–645, 2011.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87320-
dc.description.abstract隨著社會生活型態改變,健康問題成為備受矚目的焦點,運動也逐漸成為趨勢,規律且適量的活動可以為健康帶來助益,然而不當運動卻可能使身體產生疲勞,甚至傷害。人體進行自主活動時,足底承受整個身體所造成的負載,因此透過足底壓力變化,便可以觀察是否出現異常的壓力分佈和局部高壓。此外,隨著人口急遽老化,年長者及許多神經疾病患者經常出現步態障礙的病症,容易造成跌倒且降低日常生活活動的能力。為了預防運動傷害、觀察老化和神經疾病所帶來的步態問題,日常監測足底壓力成為步態分析之重要條件,因此本研究針對日常活動監測開發一多通道足底壓力穿戴式無線記錄系統,在日常活動中顯示不同位置之足底壓力變化。電路設計使用多工器切換多通道之壓力訊號,縮減整體電路硬體之尺寸大小和功耗,並且使用解多工器得到多通道之壓力訊號,其中使用緩衝電路調整直流電壓準位與控制靜態電流,利用運算放大器設計放大器和低通濾波器,同時,各部分電路配置、元件選擇、足壓量測位置點和感測器數量皆為本論文設計之考量。此外,為提供穿戴式使用,系統設計以輕量和省電為主要考 量,因此採用單電源對系統供電,並設置基線之參考地電位、利用電晶體控制整體系統之靜態電流,使系統可以同時降低重量和功耗,並透過開發板之藍牙實現無線傳輸,在電腦端以 MATLAB 設計簡易使用者介面,提供足底壓力之視覺回饋,為日常活動監測足底壓力和後續分析立下基礎。期望本系統能夠達到日常監測之成效,降低運動傷害的風險,透過進一步進行步態分析後,可以為臨床所用,成為跌倒預測、診斷步態障礙患者病程進展、藥物反應之量化依據,降低老年人和神經疾病患者受傷和就醫的機率,使其維持具有日常生活活動的能力。zh_TW
dc.description.abstractWith the change in social types, health issues have become the focus of attention, and exercise has become a trend. Regular and moderate activities can bring benefits to health, but improper exercise may cause fatigue and even injury to the body. When the human body performs dailylife activities, the plantar of the feet bear the load of the body weight. Through the pressure changes of the plantar, it is possible to observe whether occurs abnormal pressure distribution or regional high pressure. In addition, with the rapid aging of the population, the elderly and many patients with neurological diseases often suffer from gait disorder, which is prone to falls and reduces the ability to do activities of daily living. To prevent exercise injuries and to observe gait problems caused by aging and neurological diseases, daily monitoring of plantar pressure becomes important for pressure detection and gait analysis. Therefore, this study develops a multi-channel plantar pressure monitoring system for daily activities. A wearable wireless recording system displays the changes in plantar pressure at different positions of the plantar during daily activities. The system uses a multiplexer to input multi-channel pressure signals, and thus reduces the weight of the hardware circuit and power consumption of the amplifier circuit. Subsequently, multi-channel pressure signals were obtained by using a demultiplexer. Among them, the buffer circuit is used to adjust the DC offset voltage and to control the quiescent current, and adequate operational amplifiers were selected to design the amplifier and low-pass filter. Circuit configuration, component selection, measurement location of plantar pressure, and numbers of the pressure sensors are carefully considered during the design phase and are described in detail in this thesis. For wearable purpose, the system design takes lightweight and power saving into consideration. The system is powered by a single battery power, the reference potential is set to around a half of the battery potential, and the quiescent current of the overall system is determined by using discrete transistors. Therefore, the characteristics of lightweight and power saving can be achieved simultaneously. Furthermore, wireless transmission is realized through the Bluetooth of the microcontroller module, and a simple user interface is designed in the MATLAB environment on the computer end to provide visual feedback of the plantar pressures. Then, laying the foundation for daily activity monitoring and subsequent analysis of plantar pressure. It is expected that the developed multi-channel plantar pressure portable wireless transmission system can be used for daily monitoring and reduce the risk of exercise injuries. After further gait analysis, it can be used in clinical applications as a quantitative tool for diagnosing the progression of gait disorders, drug reactions, and even predicting falls. Reducing the chances of injury and medical treatment in the elderly and those with neurological diseases, and maintaining the ability to perform activities of daily living.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:02:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T17:02:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員審定書................................................................................................................i
致謝.................................................................................................................................. ii
中文摘要......................................................................................................................... iii
ABSTRACT .....................................................................................................................iv
目錄..................................................................................................................................vi
圖目錄..............................................................................................................................ix
表目錄..............................................................................................................................xi
第一章、緒論...................................................................................................................1
1.1 研究背景 ........................................................................................................1
1.2 研究動機及目的 ............................................................................................5
第二章、研究方法與系統設計.......................................................................................6
2.1 系統架構 ........................................................................................................6
2.2 設計考量 ........................................................................................................7
2.2.1 系統類型與感測器之選擇...................................................................8
2.2.2 感測器數量與擺放位置之考量...........................................................9
2.2.3 參考地電位設置之考量.....................................................................11
2.2.4 多通道設置之考量.............................................................................11
2.2.5 緩衝與放大電路之設計考量.............................................................11
2.2.6 濾波器之設計考量.............................................................................12
2.3 元件與儀器之選擇考量 ..............................................................................12
2.3.1 NPN 電晶體與穩壓器........................................................................12
2.3.2 計時器(Timer).....................................................................................12
2.3.3 計數器(Counter) .................................................................................13
2.3.4 多工器(Multiplexer)與解多工器(Demultiplexer) .............................13
2.3.5 運算放大器.........................................................................................13
2.3.6 開發板.................................................................................................14
2.3.7 電腦使用者介面:MATLAB ............................................................15
第三章、研究結果.........................................................................................................16
3.1 足底壓力之能量分佈分析 ..........................................................................16
3.2 系統之電路與介面設計 ..............................................................................17
3.2.1 參考地電位電路.................................................................................18
3.2.2 電晶體供電與穩壓電路.....................................................................19
3.2.3 計時器.................................................................................................20
3.2.4 計數器.................................................................................................20
3.2.5 多工器.................................................................................................21
3.2.6 緩衝電路與放大電路.........................................................................22
3.2.7 解多工器.............................................................................................22
3.2.8 濾波器.................................................................................................23
3.2.9 NodeMCU-32S 開發板 ......................................................................24
3.2.10 使用者介面設計.................................................................................24
3.3 系統外觀 ......................................................................................................26
3.4 實際量測結果 ..............................................................................................27
第四章、討論.................................................................................................................31
4.1 足底壓力量測鞋墊系統功能比較 ..............................................................31
4.2 選擇適當參考地電位之重要性 ..................................................................34
4.3 電路設計對於靜態電流影響 ......................................................................36
4.4 濾波器之設置 ..............................................................................................37
4.5 足底壓力訊號之應用 ..................................................................................40
第五章、結論.................................................................................................................42
參考文獻.........................................................................................................................43
-
dc.language.isozh_TW-
dc.subject多通道zh_TW
dc.subject無線傳輸zh_TW
dc.subject足底壓力量測zh_TW
dc.subject穿戴式zh_TW
dc.subject步態zh_TW
dc.subjectPlantar Pressure Measurementen
dc.subjectWireless Transmissionen
dc.subjectWearableen
dc.subjectMulti-channelen
dc.subjectGaitingen
dc.title多通道足底壓力穿戴式無線記錄系統zh_TW
dc.titleWearable Wireless Recording System for Multi-channel Plantar Pressureen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高瑀絜;曾乙立;陳光萱zh_TW
dc.contributor.oralexamcommitteeYu-Chieh Jill Kao;Yi-Li Tseng;Kuang-Hsuan Chenen
dc.subject.keyword多通道,足底壓力量測,無線傳輸,穿戴式,步態,zh_TW
dc.subject.keywordMulti-channel,Plantar Pressure Measurement,Wireless Transmission,Wearable,Gaiting,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202300357-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2026-01-22-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved