Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87286
標題: 使用多模型特徵進行駕駛員異常行為檢測
Distracted Driver Detection Using Multi-model Features
作者: 周思佳
Si-Jia Zhou
指導教授: 莊永裕
Yung-Yu Chuang
關鍵字: 駕駛員異常行為檢測,特徵融合,ViT 模型,多模型特徵,
Distracted Driver Detection,Feature Fusion,Vision Transformer,Multi- model Features,
出版年 : 2023
學位: 碩士
摘要: 近年來,道路交通事故的風險正在迅速上升。異常駕駛仍然是交通事故的主 要原因之一。駕駛員異常行為檢測是一個重要的計算機視覺問題,可以在提高交 通安全和減少交通事故方面發揮至關重要的作用。基於卷積神經網絡(CNN)的 廣泛方法已被應用於駕駛員異常駕駛的檢測。在卷積神經網絡 (CNN) 中,卷積運 算擅長提取局部特徵,但難以捕獲全局表示。為解決這一問題,我們提出了一種 新的駕駛員異常行為的檢測方法,該方法將不同的 CNN 模型以及 ViT 模型相結 合來捕獲局部和全局特徵。此外,特徵融合的過程可以大大增強局部特徵的全局 感知能力和全局表示的局部細節。在 StateFarm 數據集上進行的大量實驗表明,我們提出的方法表現出最佳性能。
The risk of road accidents has been rising rapidly in recent years. Abnormal driving is still one of the main causes of traffic accidents. Driver abnormal behavior detection is an important computer vision problem that can play a crucial role in improving traffic safety and reducing traffic accidents. A wide range of methods based on convolutional neural networks (CNNs) have been applied to the detection of abnormal driving by drivers. In convolutional neural networks (CNNs), convolution operations are good at extracting local features, but struggle to capture global representations. To address this problem , we propose a novel driver abnormal behavior detection method that combines different CNN models and ViT models to capture local and global features. In addition, the process of feature fusion can greatly enhance the global awareness of local features and the local details of the global representation. Extensive experiments on the StateFarm dataset show that our proposed method exhibits the best performance.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87286
DOI: 10.6342/NTU202300564
全文授權: 未授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
6 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved