Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87268
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳縕儂zh_TW
dc.contributor.advisorYun-Nung Chenen
dc.contributor.author黃千芝zh_TW
dc.contributor.authorChien-Chi Huangen
dc.date.accessioned2023-05-18T16:44:23Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-11-
dc.date.issued2023-
dc.date.submitted2023-02-18-
dc.identifier.citation[1] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettle- moyer. Quac: Question answering in context. arXiv preprint arXiv:1808.07036, 2018.
[2] M. Del Tredici, G. Barlacchi, X. Shen, W. Cheng, and A. de Gispert. Ques- tion rewriting for open-domain conversational qa: Best practices and limitations. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 2974–2978, 2021.
[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[4] A. Elgohary, D. Peskov, and J. Boyd-Graber. Can you unpack that? learning to rewrite questions-in-context. Can You Unpack That? Learning to Rewrite Questions-in-Context, 2019.
[5] M. Grbovic, N. Djuric, V. Radosavljevic, F. Silvestri, and N. Bhamidipati. Context- and content-aware embeddings for query rewriting in sponsored search. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pages 383–392, 2015.
[6] J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism in sequence-to- sequence learning. arXiv preprint arXiv:1603.06393, 2016.
[7] M. Huang, F. Li, W. Zou, and W. Zhang. Sarg: A novel semi autoregressive gen- erator for multi-turn incomplete utterance restoration. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13055–13063, 2021.
[8] Y. Ju, F. Zhao, S. Chen, B. Zheng, X. Yang, and Y. Liu. Technical report on conver- sational question answering. arXiv preprint arXiv:1909.10772, 2019.
[9] Q. Liu, B. Chen, J.-G. Lou, B. Zhou, and D. Zhang. Incomplete utterance rewriting as semantic segmentation. arXiv preprint arXiv:2009.13166, 2020.
[10] Y. Ohsugi, I. Saito, K. Nishida, H. Asano, and J. Tomita. A simple but effective method to incorporate multi-turn context with bert for conversational machine com- prehension. arXiv preprint arXiv:1905.12848, 2019.
[11] Y.PapakonstantinouandV.Vassalos.Queryrewritingforsemistructureddata.ACM SIGMOD Record, 28(2):455–466, 1999.
[12] M.Qiu,X.Huang,C.Chen,F.Ji,C.Qu,W.Wei,J.Huang,andY.Zhang.Reinforced history backtracking for conversational question answering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13718–13726, 2021.
[13] C. Qu, L. Yang, C. Chen, M. Qiu, W. B. Croft, and M. Iyyer. Open-retrieval conver- sational question answering. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, pages 539–548, 2020.
[14] C. Qu, L. Yang, M. Qiu, Y. Zhang, C. Chen, W. B. Croft, and M. Iyyer. Attentivehistory selection for conversational question answering. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 1391–1400, 2019.
[15] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.
[17] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting tech- niques for fine-grained access control. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 551–562, 2004.
[18] R. S. Roy. 3.9 conversational question answering over knowledge graphs. Conversational Search, page 45.
[19] H. Su, X. Shen, R. Zhang, F. Sun, P. Hu, C. Niu, and J. Zhou. Improving multi-turn dialogue modelling with utterance rewriter. arXiv preprint arXiv:1906.07004, 2019.
[20] S. Vakulenko, S. Longpre, Z. Tu, and R. Anantha. Question rewriting for conversa- tional question answering. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pages 355–363, 2021.
[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
[22] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,R. Louf, M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.
[23] S.Yu,Z.Liu,C.Xiong,T.Feng,andZ.Liu.Few-shotconversationaldenseretrieval. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 829–838, 2021.
[24] Y. Zhang, Z. Li, J. Wang, N. Cheng, and J. Xiao. Self-attention for incomplete utter- ance rewriting. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8047–8051. IEEE, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87268-
dc.description.abstract智慧助理越來越普及的環境下,人類與機器的對話互動更趨近人與人之間的口說關係,因此,人類的對話習慣中,省略主詞或使用代名詞使得語意不完整的現象,對機器理解是一項重大的挑戰。機器必須從歷史紀錄中抽取對話中被省略的資訊,將使用者的問題重新組織成完整的問句,再依完整問句來搜尋回答。
本篇論文分析不同模型在對話式問答的問題重寫上的表現,以及在不同的資料集和不同資料特性上的表現與泛化能力等差異。並且提出一種在訓練過程中,利用知識蒸餾的技術加強模型的能力的方法,以提高改寫後的問題品質。
zh_TW
dc.description.abstractThe dialogue between humans and machines is more similar to the oral language with the increasing popularity of intelligent assistants. Therefore, the task of incomplete utterance rewriting (IUR) in multi-turns conversations is a major challenge for machines to understand. To answer user's questions, the machines will extract the omitted information form historical records , reconstruct user's utterances into complete questions and response to the questions. This paper analyzes the performance of different models on incomplete utterance rewriting tasks and compare the differences on generalization ability, data features and data domains. In addition, we propose a knowledge distillation techniques to strengthen the performance of the models, and improve the performance of rewritten questions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:44:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:44:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Main Contribution 2
1.3 Thesis Structure 3
Chapter 2 Background 5
2.1 DeepLearning Models 5
2.1.1 Transformer 5
2.1.2 GPT2 6
2.1.3 BERT 7
2.2 Question Answering 8
2.2.1 Question Answering 8
2.2.2 ConversationalQuestionAnswering 9
Chapter 3 Related Work 11
3.1 Approaches to Conversational Question Answering 11
3.1.1 Pipeline Approach 11
3.1.2 End-to-End Approach 12
3.2 Incomplete Utterance Rewriting 13
Chapter 4 Preliminary Study 15
4.1 Datasets 15
4.2 Input Format and Sample Strategy 16
4.3 Analysis of Generalization Capability 18
4.4 Analysis of Question Features 18
Chapter 5 Proposed Method 21
5.1 Overview 21
5.2 Pre-training Stage 22
5.2.1 Teacher Model Training 22
5.2.2 Extract Ratio and Region 23
5.3 Knowledge Distillation 23
5.3.1 Encoder Knowledge Distillation Loss 24
5.3.2 Decoder Knowledge Distillation Loss 25
Chapter 6 Experiments 27
6.1 Datasets 27
6.2 Baseline Models 27
6.3Evaluation Metrics 28
6.4 Training Details 28
6.4.1 Hyperparameters 30
6.5 MainResults 30
Chapter 7 Discussion 33
7.1 Hyperparameter Grid Search 33
7.2 Ablation Study 34
7.3 Analysis of QA and Retrieval Results 35
7.4 Case Study 36
Chapter 8 Conclusion 39
References 41
-
dc.language.isoen-
dc.subject不完整語句改寫zh_TW
dc.subject對話式問答zh_TW
dc.subject知識蒸餾zh_TW
dc.subjectConversational Question Answeringen
dc.subjectIncomplete Utterance Rewritingen
dc.subjectKnowledge Distillationen
dc.title利用知識蒸餾於前後文相關之問題改寫以提升對話式問答zh_TW
dc.titleContextual Question Rewriting with Knowledge Distillation for Improving Conversational Question Answeringen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曹昱;李宏毅;蔡宗翰zh_TW
dc.contributor.oralexamcommitteeYu Tsao;Hung-yi Lee;Tzong-Han Tsaien
dc.subject.keyword對話式問答,不完整語句改寫,知識蒸餾,zh_TW
dc.subject.keywordConversational Question Answering,Incomplete Utterance Rewriting,Knowledge Distillation,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202300619-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-1.pdf
Access limited in NTU ip range
561.99 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved