請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙 | zh_TW |
| dc.contributor.advisor | Shu-Huei Hung | en |
| dc.contributor.author | 吳皓哲 | zh_TW |
| dc.contributor.author | Hao-Che Wu | en |
| dc.date.accessioned | 2023-05-18T16:42:58Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-05-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-17 | - |
| dc.identifier.citation | Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of geophysical research, 74(2), 615-631. https://doi.org/10.1029/JB074i002p00615
Aki, K., & Chouet, B. (1975). Origin of coda waves: source, attenuation, and scattering effects. Journal of geophysical research, 80(23), 3322-3342. https://doi.org/10.1029/JB080i023p03322 Aki, K. (1980). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11), 6496-6504. https://doi.org/10.1029/JB085iB11p06496 Azguet, R., Bouskri, G., Timoulali, Y., Harnafi, M., & Fellah, Y. E. (2019). Attenuation of coda waves in the SW of High-Atlas area, Morocco. Geodesy and Geodynamics, 10(4), 297-306. https://doi.org/10.1016/j.geog.2019.05.001 Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical journal international, 169(3), 1239-1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x Bromirski, P. D., & Duennebier, F. K. (2002). The near‐coastal microseism spectrum: Spatial and temporal wave climate relationships. Journal of Geophysical Research:solid Earth, 107(B8), ESE-5. https://doi.org/10.1029/2001JB000265 Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005). Mid‐ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4). https://doi.org/10.1029/2004GC000768 Bromirski, P. D., Stephen, R. A., & Gerstoft, P. (2013). Are deep‐ocean‐generated surface-wave microseisms observed on land?. Journal of Geophysical Research: Solid Earth, 118(7), 3610-3629. https://doi.org/10.1002/jgrb.50268 Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of geophysical research, 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997 Calvet, M., & Margerin, L. (2013). Lapse‐time dependence of coda Q: Anisotropic multiple‐scattering models and application to the Pyrenees. Bulletin of the Seismological Society of America, 103(3), 1993-2010. https://doi.org/10.1785/0120120239 Calvet, M., Sylvander, M., Margerin, L., & Villaseñor, A. (2013). Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis. Tectonophysics, 608, 428-439. https://doi.org/10.1016/j.tecto.2013.08.045 Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549. https://doi.org/10.1126/science.1078551 Carcolé, E., & Sato, H. (2010). Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophysical Journal International, 180(1), 268-290. https://doi.org/10.1111/j.1365-246X.2009.04394.x Cessaro, R. K. (1994). Sources of primary and secondary microseisms. Bulletin of the Seismological Society of America, 84(1), 142-148. https://doi.org/10.1785/BSSA0840010142 Chen, Y. N., Gung, Y., You, S. H., Hung, S. H., Chiao, L. Y., Huang, T. Y., ... & Jan, S. (2011). Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM. Geophysical Research Letters, 38(4). http://dx.doi.org/10.1029/2010GL046290 Clements, T., & Denolle, M. A. (2018). Tracking groundwater levels using the ambient seismic field. Geophysical Research Letters, 45(13), 6459-6465. https://doi.org/10.1029/2018GL077706 Crowder, E., Rawlinson, N., Cornwell, D. G., Sammarco, C., Galetti, E., & Curtis, A. (2021). New insights into North Sea deep crustal structure and extension from transdimensional ambient noise tomography. Geophysical Journal International, 224(2), 1197-1210. https://doi.org/10.1093/gji/ggaa475 Dahlen, F. A., & Zhou, Y. (2006). Surface-wave group-delay and attenuation kernels. Geophysical Journal International, 165(2), 545-554. https://doi.org/10.1111/j.1365-246X.2006.02913.x Denolle, M. A., & Nissen-Meyer, T. (2020). Quiet Anthropocene, quiet Earth. Science, 369(6509), 1299-1300. https://doi.org/10.1126/science.abd8358 Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297-356. https://doi.org/10.1016/0031-9201(81)90046-7 Furukawa, Y. (2009). Temperature-and fluid-controlled seismicity in the Beppu graben, Kyushu, Japan. Journal of volcanology and geothermal research, 181(1-2), 61-66. https://doi.org/10.1016/j.jvolgeores.2008.12.011 Gerstoft, P., Shearer, P. M., Harmon, N., & Zhang, J. (2008). Global P, PP, and PKP wave microseisms observed from distant storms. Geophysical Research Letters, 35(23). https://doi.org/10.1029/2008GL036111 Gusev, A. A. (1995). Vertical profile of turbidity and coda Q. Geophysical Journal International, 123(3), 665-672. https://doi.org/10.1111/j.1365-246X.1995.tb06882.x Hasselmann, K. (1963). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177-210. https://doi.org/10.1029/RG001i002p00177 Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58-61. https://doi.org/10.1126/science.aat4723 Hendriyana, A., & Tsuji, T. (2019). Migration of very long period seismicity at Aso volcano, Japan, associated with the 2016 Kumamoto earthquake. Geophysical Research Letters, 46(15), 8763-8771. https://doi.org/10.1029/2019GL082645 Hoshizumi, H., Uto, K., & Watanabe, K. (1999). Geology and eruptive history of Unzen volcano, Shimabara peninsula, Kyushu, SW Japan. Journal of Volcanology and Geothermal Research, 89(1-4), 81-94. https://doi.org/10.1016/S0377-0273(98)00125-5 Jian, P. R., Hung, S. H., Meng, L., & Sun, D. (2017). Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms. Geophysical Research Letters, 44(8), 3545-3553. https://doi.org/10.1002/2017GL072552 Jin, A., & Aki, K. (2005). High-resolution maps of Coda Q in Japan and their interpretation by the brittle-ductile interaction hypothesis. Earth, planets and space, 57(5), 403-409. http://doi.org/10.1186/BF03351825 Kedar, S., & Webb, F. H. (2005). The ocean's seismic hum. Science, 307(5710), 682-683. https://doi.org/10.1126/science.1108380 Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091), 777-793. https://doi.org/10.1098/rspa.2007.0277 Ko, Y. T., Kuo, B. Y., & Hung, S. H. (2012). Robust determination of earthquake source parameters and mantle attenuation. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008759 Komatsu, M., Takenaka, H., & Oda, H. (2017). Three-dimensional P-and S-wave attenuation structures around the source region of the 2016 Kumamoto earthquakes. Earth, Planets and Space, 69(1), 1-9. https://doi.org/10.1186/s40623-017-0683-6 Landès, M., Hubans, F., Shapiro, N. M., Paul, A., & Campillo, M. (2010). Origin of deep ocean microseisms by using teleseismic body waves. Journal of Geophysical Research: Solid Earth, 115(B5). https://doi.org/10.1029/2009JB006918 Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise. Seismological Research Letters, 85(3), 715-726. https://doi.org/10.1785/0220130073 Lin, F. C., Tsai, V. C., & Ritzwoller, M. H. (2012). The local amplification of surface waves: A new observable to constrain elastic velocities, density, and anelastic attenuation. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2012JB009208 Liu, C. N., Lin, F. C., Huang, H. H., Wang, Y., Berg, E. M., & Lin, C. H. (2021). High‐Resolution 3‐D Shear Wave Velocity Model of Northern Taiwan via Bayesian Joint Inversion of Rayleigh Wave Ellipticity and Phase Velocity With Formosa Array. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021610. https://doi.org/10.1029/2020JB021610 Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. The Journal of the Acoustical Society of America, 110(6), 3011-3017. https://doi.org/10.1121/1.1417528 Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1-35. https://doi.org/10.1098/rsta.1950.0012 Malagnini, L., Dreger, D. S., Bürgmann, R., Munafò, I., & Sebastiani, G. (2019). Modulation of seismic attenuation at Parkfield, before and after the 2004 M6 earthquake. Journal of Geophysical Research: Solid Earth, 124(6), 5836-5853. https://doi.org/10.1029/2019JB017372 Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophysical Journal International, 204(1), 650-666. https://doi.org/10.1093/gji/ggv470 Mayor, J., Margerin, L., & Calvet, M. (2014). Sensitivity of coda waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples. Geophysical Journal International, 197(2), 1117-1137. https://doi.org/10.1093/gji/ggu046 Mayor, J., Calvet, M., Margerin, L., Vanderhaeghe, O., & Traversa, P. (2016). Crustal structure of the Alps as seen by attenuation tomography. Earth and Planetary Science Letters, 439, 71-80. https://doi.org/10.1016/j.epsl.2016.01.025 Miyakawa, A., Sumita, T., Okubo, Y., Okuwaki, R., Otsubo, M., Uesawa, S., & Yagi, Y. (2016). Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture. Earth, planets and space, 68(1), 1-9. https://doi.org/10.1186/s40623-016-0582-2 Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., & Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science advances, 2(5), e1501538. https://doi.org/10.1126/sciadv.1501538 Mukunoki, T., Suetsugu, D., Sako, K., Murakami, S., Fukubayashi, Y., Ishikura, R., … & Koyama, A. (2021). Reconnaissance report on geotechnical damage caused by a localized torrential downpour with emergency warning level in Kyushu, Japan. Soils and Foundations, 61(2), 600-620. https://doi.org/10.1016/j.sandf.2021.01.008 Nakata, T., & Imaizumi, T. (2002). Digital active fault map of Japan. Nakata, N., Gualtieri, L., & Fichtner, A. (Eds.). (2019). Seismic ambient noise. Cambridge University Press. Neale, J., Harmon, N., & Srokosz, M. (2015). Source regions and reflection of infragravity waves offshore of the US s Pacific Northwest. Journal of Geophysical Research: Oceans, 120(9), 6474-6491. https://doi.org/10.1002/2015JC010891 Nimiya, H., Ikeda, T., & Tsuji, T. (2017). Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Science advances, 3(11), e1700813. https://doi.org/10.1126/sciadv.1700813 Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., & Yamamoto, A. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net—. Earth, Planets and Space, 56(8), xv-xxviii. https://doi.org/10.1186/BF03353076 Ozawa, T., Fujita, E., & Ueda, H. (2016). Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano. Earth, Planets and Space, 68(1), 1-15. https://doi.org/10.1186/s40623-016-0563-5 Sarker, G., & Abers, G. A. (1998). Deep structures along the boundary of a collisional belt: attenuation tomography of P and S waves in the Greater Caucasus. Geophysical Journal International, 133(2), 326-340. https://doi.org/10.1046/j.1365-246X.1998.00506.x Seats, K. J., Lawrence, J. F., & Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch’ s method. Geophysical Journal International, 188(2), 513-523. https://doi.org/10.1111/j.1365-246X.2011.05263.x Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7). https://doi.org/10.1029/2004GL019491 Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618. https://doi.org/10.1126/science.1108339 Shibata, T., Yoshikawa, M., Itoh, J. I., Ujike, O., Miyoshi, M., & Takemura, K. (2014). Along-arc geochemical variations in Quaternary magmas of northern Kyushu Island, Japan. Geological Society, London, Special Publications, 385(1), 15-29. https://doi.org/10.1144/SP385.13 Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., ... & Miyakawa, A. (2016). Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets and Space, 68(1), 1-12. https://doi.org/10.1186/s40623-016-0559-1 Shito, A., Matsumoto, S., Ohkura, T., Shimizu, H., Sakai, S., Iio, Y., ... & Asano, Y. (2020). 3‐D intrinsic and scattering seismic attenuation structures beneath Kyushu,Japan. Journal of Geophysical Research: Solid Earth, 125(8), 2019JB018742. https://doi.org/10.1029/2019JB018742 Snieder, R., & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44-49. http://dx.doi.org/10.1063/1.3490500 Soergel, D., Pedersen, H. A., Stehly, L., Margerin, L., Paul, A., & AlpArray Working Group. (2020). Coda-Q in the 2.5–20 s period band from seismic noise: application to the greater Alpine area. Geophysical Journal International, 220(1), 202-217. https://doi.org/10.1093/gji/ggz443 Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10). https://doi.org/10.1029/2005JB004237 Stehly, L., Campillo, M., Froment, B., & Weaver, R. L. (2008). Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise. Journal of Geophysical Research: Solid Earth, 113(B11). https://doi.org/10.1029/2008JB005693 Stehly, L., Cupillard, P., & Romanowicz, B. (2011). Towards improving ambient noise tomography using simultaneously curvelet denoising filters and SEM simulations of seismic ambient noise. Comptes Rendus Geoscience, 343(8-9), 591-599. https://doi.org/10.1016/j.crte.2011.03.005 Stehly, L., & Boué, P. (2017). On the interpretation of the amplitude decay of noise correlations computed along a line of receivers. Geophysical Journal International, 209(1), 358-372. https://doi.org/10.1093/gji/ggx021 Tian, D. (2020). HinetPy: A Python package to request and process seismic waveform data from Hi-net. Tian, Y., & Ritzwoller, M. H. (2015). Directionality of ambient noise on the Juan de Fuca plate: Implications for source locations of the primary and secondary microseisms. Geophysical Journal International, 201(1), 429-443. https://doi.org/10.1093/gji/ggv024 Tsai, V. C. (2010). The relationship between noise correlation and the Green's function in the presence of degeneracy and the absence of equipartition. Geophysical Journal International, 182(3), 1509-1514. https://doi.org/10.1111/j.1365-246X.2010.04693.x Wang, X. L., & Swail, V. R. (2001). Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. Journal of Climate, 14(10), 2204-2221. https://doi.org/10.1175/1520-0442(2001)014%3C2204:COEWHI%3E2.0.CO;2 Wang, Z., Zhao, D., Liu, X., & Li, X. (2017). Seismic attenuation tomography of the source zone of the 2016 Kumamoto earthquake (M 7.3). Journal of Geophysical Research: Solid Earth, 122(4), 2988-3007. https://doi.org/10.1002/2016JB013704 Wapenaar, K. (2004). Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical review letters, 93(25), 254301. https://doi.org/10.1103/PhysRevLett.93.254301 Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010). Tutorial on seismic interferometry: Part 1—Basic principles and applications. Geophysics, 75(5), 75A195-75A209. https://doi.org/10.1190/1.3457445 Watanabe, Y. (2005). Late Cenozoic evolution of epithermal gold metallogenic provinces in Kyushu, Japan. Mineralium Deposita, 40(3), 307-323. https://doi.org/10.1007/s00126-005-0025-7 Yagi, Y., Okuwaki, R., Enescu, B., Kasahara, A., Miyakawa, A., & Otsubo, M. (2016). Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth, Planets and Space, 68(1), 1-6. https://doi.org/10.1186/s40623-016-0492-3 Yamamoto, A., Tanabe, K., & Isozaki, Y. (2009). Lower Cretaceous fresh-water stromatolites from northern Kyushu, Japan. Paleontological research, 13(2), 139-149. https://doi.org/10.2517/1342-8144-13.2.139 Yoshida, S. (2016). Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake. Earth, Planets and Space, 68(1), 1-13. https://doi.org/10.1186/s40623-016-0552-8 Yu, T. C., & Hung, S. H. (2012). Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc‐continent collision suture zone. Geophysical research letters, 39(12). https://doi.org/10.1029/2012GL051970 Zeng, X., & Ni, S. (2010). A persistent localized microseismic source near the Kyushu Island, Japan. Geophysical Research Letters, 37(24). https://doi.org/10.1029/2010GL045774 Zeng, X., & Ni, S. (2011). Correction to A persistent localized microseismic source near the Kyushu Island, Japan. Geophysical Research Letters, 38(16). https://doi.org/10.1029/2011GL048822 Zhan, Z., Ni, S., Helmberger, D. V., & Clayton, R. W. (2010). Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise. Geophysical Journal International, 182(1), 408-420. https://doi.org/10.1111/j.1365-246X.2010.04625.x Zhao, D., Yanada, T., Hasegawa, A., Umino, N., & Wei, W. (2012). Imaging the subducting slabs and mantle upwelling under the Japan Islands. Geophysical Journal International, 190(2), 816-828. https://doi.org/10.1111/j.1365-246X.2012.05550.x Zhao, L. F., Xie, X. B., He, J. K., Tian, X., & Yao, Z. X. (2013). Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth and Planetary Science Letters, 383, 113-122. https://doi.org/10.1016/j.epsl.2013.09.038 Zhao, D., & Liu, X. (2016). Crack mystery of the damaging Kumamoto earthquakes. Science Bulletin, 61, 868-870. https://doi.org/10.1007/s11434-016-1100-4 Zhao, D., Yamashita, K., & Toyokuni, G. (2018). Tomography of the 2016 Kumamoto earthquake area and the Beppu-Shimabara graben. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-33805-0 Zhao, D., Wang, J., Huang, Z., & Liu, X. (2021). Seismic structure and subduction dynamics of the western Japan arc. Tectonophysics, 802, 228743. https://doi.org/10.1016/j.tecto.2021.228743 Zheng, Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., & Ritzwoller, M. H. (2011). Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011JB008637 Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619-627. https://doi.org/10.1046/j.1365-246X.2002.01610.x Wang, Z., & Zhao, D. (2006). Vp and Vs tomography of Kyushu, Japan: New insight into arc magmatism and forearc seismotectonics. Physics of the Earth and Planetary Interiors, 157(3-4), 269-285. https://doi.org/10.1016/j.pepi.2006.04.008 戴汶珮,2018,利用尾波干涉法分析地震及應變資料探討2013瑞穗地震前後地殼變化,國立台灣大學地質科學研究所碩士論文,共94頁。 汪靜瑤,2019,利用周遭噪訊交互相關函數尾波成像台灣地殼衰減性質的側向變化,國立台灣大學地質科學研究所碩士論文,共76頁。 蔡宗霖,2022,從海洋噪訊中重建水體特徵函數,國立台灣大學海洋研究所碩士論文,共78頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87264 | - |
| dc.description.abstract | 噪訊地震學是利用連續周遭噪訊的互相關函數來重建類似震波於地球內部傳遞所產生的表面波體波訊號。其用於解析測站下方詳細的速度構造,已成為近20年來最熱門的研究領域之一。日本九州島位於菲律賓海板塊隱沒至歐亞板塊的火山前緣上,島內地震與火山活動頻繁。2016年規模6.5與7.3的熊本前震和主震於兩天內先後襲擊熊本市,並觸發鄰近震央位置的阿蘇火山於兩周內發生兩次小規模的噴發,同年十月再發生一次大規模的噴發。受益於噪訊的連續性,其互相關函數隨時間的演變能直接反映地下介質受到周遭環境因子或地體構造活動事件擾動的影響,故本研究將提取噪訊互相關的尾波能量來探討九州地區地殼衰減特徵以及地震前後衰減性質的變化,並同時分析周遭潛在噪訊源分佈和可能成因以及隨季節的演變。
首先利用日本防災科學技術研究所布放在九州地區內2014年至2017年的Hi-net與F-net地震觀測網垂直分量資料建立超過5000個測站對穩定的噪訊互相關函數,透過謹慎的測試選取表面波之後適當的尾波時窗,進行以2、4、8、15秒為中心週期的窄頻濾波後量測穩定可信的尾波衰減值,並將各週期量測到的衰減值均勻分佈於測站對之間的路徑以建立九州地區地殼衰減性質的側向變化,同時利用反投影和波束成形法對九州地區內部和外圍的潛在噪訊源進行定位與成因分析。衰減成像顯示九州上部地殼構造在側向與垂直向上都具備強烈的異質性(heterogeneity),主要是受到區域內大量的活動斷層與火山裂隙存在液體或岩漿導致。另外我們也比較2016熊本地震前、後10個月噪訊互相關函數的平均疊加所建立的衰減構造特徵,發現在地震發生的斷層破裂帶與火山噴發位置附近在事件後的衰減有轉趨較強的傾向。而噪訊源定位結果指出九州地區全年次微震訊號主要來自北太平洋中心,但位置方向和強度會隨季節產生明顯變化,主微震訊號則來自九州西側的東海陸棚,除此之外,另有一獨立訊號源定位在阿蘇火山附近,其噪訊能量極有可能與當地發現長週期火山顫動活動有關。 | zh_TW |
| dc.description.abstract | Since ballistic waves (P, S, surface waves) extracted from cross correlation function of continuous ambient noise recorded at two stations have been proved equivalent to earthquake-generated signals, ambient noise seismology has become one of the most popular research disciplines in the last two decades. Kyushu island of Japan is located on the volcanic front where the Philippine Sea Plate subducts beneath the Eurasian Plate causing frequent earthquakes and volcanic activities on the island. In April of 2016, the Kumamoto foreshock and mainshock with magnitudes of 6.5 and 7.3 hit Kumamoto city successively within two days, triggering nearby Mount Aso Volcano erupted twice within two weeks, followed by a major eruption in October of the same year. Benefiting from the continuity of the noise, the evolution of its cross-correlation function over time can directly reflect the change of the subsurface structures being disturbed by environmental factors or tectonic events. In this study, we thus attempt to estimate the decay of coda energy from the interstation noise cross-correlation function (NCF) to investigate the frequency-dependent attenuation properties of the crust in the Kyushu area and their potential changes impacted by the quake damage and volcanic eruption. We also explore the distribution and possible physical causes of noise sources in and around Kyushu and their seasonal changes.
Using the vertical-component records of the Hi-net and F-net seismic networks in Kyushu from 2014 to 2017 provided by the Japan Institute of Disaster Prevention Science and Technology, we construct daily NCFs of more than 5,000 station pairs. Selecting appropriate coda window following direct surface waves through thorough and careful evaluation, we measure the lapse-time decay of the selected coda energy after narrow-band filtering with the central periods of 2, 4, 8, and 15 s to obtain reliable and stable coda Q (Q_c) value for individual station pairs. The resulting Q_c values at each period are uniformly distributed on the 0.1ox0.1o cells intercepted by the great-circle ray paths between their respective paired stations. The lateral variations of attenuation properties in the crust are mapped by averaging all the Q_c values assigned within the cells. In addition, the back-projection and beamforming methods are employed to locate and analyze the potential noise sources inside and outside the Kyushu area. Results indicate that the attenuation property in upper crust of Kyushu exhibits strong lateral and vertical heterogeneity, which may attribute to the presence of fluids or magma in a large number of faulting cracks, fractures, and volcanic fissures in the region. The coda extracted from the stacks of the daily NCFs over 10-month period before and after Kumamoto mainshock are utilized to characterize the Q_c variations impacted by the earthquake, indicating that the attenuation tends to become stronger after the quake near the fault rupture zone and volcanic eruption site. The backprojection and beamforming results show that the dominant noise in the secondary microseism band (2-5 s) in the Kyushu area throughout the year originates from the center of the North Pacific Ocean, but the location, direction and intensity will change significantly with the seasons. In contrast, the relatively weaker noise in the primary microseism band comes from the East China Sea Shelf on the west side of Kyushu. Moreover, an additional noise source is located near the Aso Volcano, consistent with unusual large-amplitude signals with a negative time-lag moveout of about -3 km/s persistent over the period of the long-period volcanic tremor activities found there. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:42:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T16:42:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v 目錄 vii 圖表目錄 ix 第一章 緒論 1 1.1 引言 1 1.2 環境噪訊 2 1.2.1 噪訊互相關函數與格林函數 3 1.2.2 環境噪訊成因 6 1.3 地球內部衰減 8 1.4 九州地區地質背景與地殼構造概述 11 1.5 動機與目標 19 第二章 研究方法 20 2.1 噪訊互相關與格林函數 20 2.2 尾波衰減 23 2.3 噪訊來源與方向 25 2.3.1 波束成形法 (Beamforming) 26 2.3.2 反投影法 (Backprojection) 27 第三章 資料處理與分析 29 3.1 資料來源 29 3.1.1 噪訊互相關函數計算 30 3.2 資料處理流程 31 3.2.1 資料前處理與建立互相關函數 31 3.2.2 尾波時間窗定義 37 3.2.3 Coda Q量測 39 3.3 Coda Q與t0、Lw間相依性檢測 40 3.4 Coda Q成像 44 3.5噪訊源方向及定位 45 3.5.1 波束成形法定位噪訊來源 45 3.5.2 反投影法定位噪訊來源 46 第四章 結果與討論 48 4.1 九州地區淺部地殼側向衰減變化 48 4.2 淺部地殼衰減構造解析 53 4.2.1 九州北部地區 53 4.2.2 九州中部地區 55 4.2.3 九州南部地區 59 4.3 熊本地震震前震後淺部地殼衰減變化 60 4.4 九州地區噪訊方向與來源 64 4.5 九州地區噪訊源的可能成因 66 4.5.1次微震訊號來源 66 4.5.2主微震訊號來源 67 4.5.3在地常駐噪訊來源 68 4.6 次微震能量隨時間上之變化 69 第五章 結論 74 參考資料 76 附錄 A 90 附錄 B 92 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 火山長震顫 | zh_TW |
| dc.subject | 噪訊源 | zh_TW |
| dc.subject | 地殼衰減 | zh_TW |
| dc.subject | 周遭噪訊 | zh_TW |
| dc.subject | 尾波 | zh_TW |
| dc.subject | 互相關函數 | zh_TW |
| dc.subject | 微震 | zh_TW |
| dc.subject | 品質因子 | zh_TW |
| dc.subject | ambient noise | en |
| dc.subject | volcanic tremor | en |
| dc.subject | noise source | en |
| dc.subject | crustal attenuation | en |
| dc.subject | quality factor Q | en |
| dc.subject | coda | en |
| dc.subject | cross correlation function | en |
| dc.subject | microseism | en |
| dc.title | 利用周遭噪訊互相關函數探討日本九州地區淺部地殼之尾波衰減變化與潛在噪訊源 | zh_TW |
| dc.title | Coda-Q of the Crust and Potential Noise Sources in the Kyushu Region of Japan from Cross Correlation of Seismic Ambient Noise | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 柯彥廷 | zh_TW |
| dc.contributor.coadvisor | Yen-Ting Ko | en |
| dc.contributor.oralexamcommittee | 郭本垣;陳映年;楊欣穎 | zh_TW |
| dc.contributor.oralexamcommittee | Ban-Yuan Kuo;Ying-Nien Chen;Hsin-Ying Yang | en |
| dc.subject.keyword | 周遭噪訊,微震,互相關函數,尾波,品質因子,地殼衰減,噪訊源,火山長震顫, | zh_TW |
| dc.subject.keyword | ambient noise,microseism,cross correlation function,coda,quality factor Q,crustal attenuation,noise source,volcanic tremor, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202300563 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2026-02-14 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 7.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
