Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87255
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 呂聖元 | zh_TW |
dc.contributor.advisor | Sheng-Yuan Liu | en |
dc.contributor.author | 王耀德 | zh_TW |
dc.contributor.author | Yao-Te Wang | en |
dc.date.accessioned | 2023-05-18T16:39:36Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-05-11 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-17 | - |
dc.identifier.citation | André, P., Men’shchikov, A., Bontemps, S. et al. From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey. A&A, 518:L102, July 2010.
Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M. et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. AJ, 156(3):123, Sept. 2018. Astropy Collaboration, Robitaille, T.P., Tollerud, E.J. et al. Astropy: A community Python package for astronomy. A&A, 558:A33, Oct. 2013. Audard, M., Ábrahám, P., Dunham, M.M. et al. Episodic Accretion in Young Stars. In Beuther, H., Klessen, R.S., Dullemond, C.P. et al, editors, Protostars and Planets VI, page 387, Jan. 2014. Berry, D.S. FellWalker-A clump identification algorithm. Astronomy and Computing, 10:22–31, Apr. 2015. Bieging, J.H., Peters, W.L., Vila Vilaro, B. et al. Sequential Star Formation in the Sh 254-258 Molecular Cloud: Heinrich Hertz Telescope Maps of CO J = 2-1 and 3-2 Emission. AJ, 138(3):975–985, Sept. 2009. Brogan, C.L., Hunter, T.R., Cyganowski, C.J. et al. The Massive Protostellar Cluster NGC 6334I at 220 au Resolution: Discovery of Further Multiplicity, Diversity, and a Hot Multi-core. ApJ, 832(2):187, Dec. 2016. Burns, R.A., Handa, T., Nagayama, T. et al. H 2 O masers in a jet-driven bow shock: episodic ejection from a massive young stellar object. MNRAS, 460(1):283–290, July 2016. Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R. et al. Disk-mediated accretion burst in a high-mass young stellar object. Nature Physics, 13(3):276–279, Mar. 2017. Carroll, B.W. and Ostlie, D.A. An introduction to modern astrophysics. Cambridge University Press, 2017. Cesaroni, R., Moscadelli, L., Neri, R. et al. Radio outburst from a massive (proto)star. When accretion turns into ejection. A&A, 612:A103, May 2018. Chapin, E.L., Berry, D.S., Gibb, A.G. et al. SCUBA-2: iterative map-making with the Sub-Millimetre User Reduction Facility. MNRAS, 430(4):2545–2573, Apr. 2013. Chavarría, L.A., Allen, L.E., Hora, J.L. et al. Spitzer Observations of the Massive Star-forming Complex S254-S258: Structure and Evolution. ApJ, 682(1):445–462, July 2008. Contreras Peña, C., Johnstone, D., Baek, G. et al. The relationship between mid-infrared and sub-millimetre variability of deeply embedded protostars. MNRAS, 495(4):3614–3635, July 2020. Currie, M.J., Berry, D.S., Jenness, T. et al. Starlink Software in 2013. In Manset, N. and Forshay, P., editors, Astronomical Data Analysis Software and Systems XXIII, volume 485 of Astronomical Society of the Pacific Conference Series, page 391, May 2014. Cyganowski, C.J., Brogan, C.L. and Hunter, T.R. Evidence for a Massive Protocluster in S255N. AJ, 134(1):346–358, July 2007. Dempsey, J.T., Friberg, P., Jenness, T. et al. SCUBA-2: on-sky calibration using submillimetre standard sources. MNRAS, 430(4):2534–2544, Apr. 2013. Draine, B.T. Physics of the Interstellar and Intergalactic Medium. Princeton University Press, 2011. Dunham, M.M., Stutz, A.M., Allen, L.E. et al. The Evolution of Protostars: Insights from Ten Years of Infrared Surveys with Spitzer and Herschel. In Beuther, H., Klessen, R.S., Dullemond, C.P. et al, editors, Protostars and Planets VI, page 195, Jan. 2014. East Asian Observatory. 350 GHz band: HARP. https://www.eaobservatory.org/jcmt/instrumentation/heterodyne/harp/ [Accessed: 27 September 2022]. East Asian Observatory. About the JCMT –James Clerk Maxwell Telescope. https://www.eaobservatory.org/jcmt/about-jcmt/ [Accessed: 27 September 2022]. East Asian Observatory. EAO/JCMT Images. https://www.eaobservatory.org/jcmt/public/gallery/images/ [Accessed: 28 September 2022]. East Asian Observatory. POL-2 Observing. https://www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2/pol-2/ [Accessed: 27 September 2022]. Enoch, M.L., Evans, Neal J., I., Sargent, A.I. et al. Properties of the Youngest Protostars in Perseus, Serpens, and Ophiuchus. ApJ, 692(2):973–997, Feb. 2009. Evans, Neal J., I., Dunham, M.M., Jørgensen, J.K. et al. The Spitzer c2d Legacy Results: Star-Formation Rates and Efficiencies; Evolution and Lifetimes. ApJS, 181(2):321–350, Apr. 2009. Fiorellino, E., Elia, D., André, P. et al. The census of dense cores in the Serpens region from the Herschel Gould Belt Survey. MNRAS, 500(4):4257–4276, Feb. 2021. Fischer, W.J., Megeath, S.T., Furlan, E. et al. The Herschel Orion Protostar Survey: Luminosity and Envelope Evolution. ApJ, 840(2):69, May 2017. Furlan, E., Fischer, W.J., Ali, B. et al. The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models. ApJS, 224(1):5, May 2016. Greene, T. Protostars. American Scientist, 89(4):316, Aug. 2001. Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020. Herczeg, G.J., Johnstone, D., Mairs, S. et al. How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. ApJ, 849(1):43, Nov. 2017. Hirota, T., Cesaroni, R., Moscadelli, L. et al. Water maser variability in a high-mass YSO outburst. VERA and ALMA observations of S255 NIRS 3. A&A, 647:A23, Mar. 2021. Holland, W.S., Bintley, D., Chapin, E.L. et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. MNRAS, 430(4):2513–2533, Apr. 2013. Hunter, J.D. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007. Hunter, T.R., Brogan, C.L., MacLeod, G. et al. An Extraordinary Outburst in the Massive Protostellar System NGC6334I-MM1: Quadrupling of the Millimeter Continuum. ApJ, 837(2):L29, Mar. 2017. Johnstone, D., Hendricks, B., Herczeg, G.J. et al. Continuum Variability of Deeply Embedded Protostars as a Probe of Envelope Structure. ApJ, 765(2):133, Mar. 2013. Johnstone, D., Herczeg, G.J., Mairs, S. et al. The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. ApJ, 854(1):31, Feb. 2018. Kauffmann, J., Bertoldi, F., Bourke, T.L. et al. MAMBO mapping of Spitzer c2d small clouds and cores. A&A, 487(3):993–1017, Sept. 2008. Kenyon, S.J., Hartmann, L.W., Strom, K.M. et al. An IRAS Survey of the Taurus-Auriga Molecular Cloud. AJ, 99:869, Mar. 1990. Kohno, M., Omodaka, T., Handa, T. et al. Ammonia mapping observations toward the Galactic massive star-forming region Sh 2-255 and Sh 2-257. PASJ, 74(3):545–556, June 2022. Könyves, V., André, P., Arzoumanian, D. et al. Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey. A&A, 635:A34, Mar. 2020. Könyves, V., André, P., Men’shchikov, A. et al. A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. A&A, 584:A91, Dec. 2015. Ladeyschikov, D.A., Kirsanova, M.S., Sobolev, A.M. et al. The link between gas and stars in the S254-S258 star-forming region. MNRAS, 506(3):4447–4464, Sept. 2021. Ladjelate, B., André, P., Könyves, V. et al. The Herschel view of the dense core population in the Ophiuchus molecular cloud. A&A, 638:A74, June 2020. Larson, R.B. Numerical calculations of the dynamics of collapsing proto-star. MNRAS, 145:271, Jan. 1969. Larson, R.B. The physics of star formation. Reports on Progress in Physics, 66(10): 1651–1697, Oct. 2003. Lee, Y.H., Johnstone, D., Lee, J.E. et al. The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars. ApJ, 920(2): 119, Oct. 2021. Liu, S.Y., Su, Y.N., Zinchenko, I. et al. A Submillimeter Burst of S255IR SMA1: The Rise and Fall of Its Luminosity. ApJ, 863(1):L12, Aug. 2018. MacFarlane, B., Stamatellos, D., Johnstone, D. et al. Observational signatures of outbursting protostars - I: From hydrodynamic simulations to observations. MNRAS, 487(4):5106–5117, Aug. 2019. MacFarlane, B., Stamatellos, D., Johnstone, D. et al. Observational signatures of outbursting protostars - II. Exploring a wide range of eruptive protostars. MNRAS, 487(4):4465–4472, Aug. 2019. Mairs, S., Dempsey, J.T., Bell, G.S. et al. A Decade of SCUBA-2: A Comprehensive Guide to Calibrating 450 µm and 850 µm Continuum Data at the JCMT. AJ, 162(5): 191, Nov. 2021. Mairs, S., Johnstone, D., Kirk, H. et al. The JCMT Gould Belt Survey: a first look at Southern Orion A with SCUBA-2. MNRAS, 461(4):4022–4048, Oct. 2016. Mairs, S., Johnstone, D., Kirk, H. et al. The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations. ApJ, 849(2):107, Nov. 2017. Mairs, S., Lane, J., Johnstone, D. et al. The JCMT Transient Survey: Data Reduction and Calibration Methods. ApJ, 843(1):55, July 2017. McKee, C.F. and Ostriker, E.C. Theory of Star Formation. ARA&A, 45(1):565–687, Sept. 2007. Morales-Calderón, M., Stauffer, J.R., Hillenbrand, L.A. et al. Ysovar: The First Sensitive, Wide-area, Mid-infrared Photometric Monitoring of the Orion Nebula Cluster. ApJ, 733(1):50, May 2011. Moscadelli, L., Sanna, A., Goddi, C. et al. Extended CH 3 OH maser flare excited by a bursting massive YSO. A&A, 600:L8, Apr. 2017. Obonyo, W.O., Lumsden, S.L., Hoare, M.G. et al. A multi-epoch study of radio continuum emission from massive protostars. MNRAS, 501(4):5197–5211, Mar. 2021. Park, W., Lee, J.E., Contreras Peña, C. et al. Quantifying Variability of Young Stellar Objects in the Mid-infrared Over 6 Years with the Near-Earth Object Wide-field Infrared Survey Explorer. ApJ, 920(2):132, Oct. 2021. Peng, H.H. 國 立 臺 灣 大 學 碩 博 士 論 文 模 板 NTU Thesis LaTeX Template. https://github.com/Hsins/NTU-Thesis-LaTeX-Template [Accessed: 16 March 2022]. Penston, M.V. Dynamics of self-gravitating gaseous spheres-III. Analytical results in the free-fall of isothermal cases. MNRAS, 144:425, Jan. 1969. Pezzuto, S., Benedettini, M., Di Francesco, J. et al. Physical properties of the ambient medium and of dense cores in the Perseus star-forming region derived from Herschel Gould Belt Survey observations. A&A, 645:A55, Jan. 2021. Pismis, P. and Hasse, I. Study of a Triple Emission Nebula in Orion. Ap&SS, 45(1): 79–85, Nov. 1976. Reback, J., jbrockmendel, McKinney, W. et al. pandas-dev/pandas: Pandas 1.3.2, Aug. 2021. Rebull, L.M., Cody, A.M., Covey, K.R. et al. Young Stellar Object VARiability (YSOVAR): Long Timescale Variations in the Mid-infrared. AJ, 148(5):92, Nov. 2014. Ryabukhina, O.L., Zinchenko, I.I., Samal, M.R. et al. Study of the filamentary infrared dark cloud G192.76+00.10 in the S254-S258 OB complex. Research in Astronomy and Astrophysics, 18(8):095, Aug. 2018. Rygl, K.L.J., Brunthaler, A., Reid, M.J. et al. Trigonometric parallaxes of 6.7 GHz methanol masers. A&A, 511:A2, Feb. 2010. Safron, E.J., Fischer, W.J., Megeath, S.T. et al. Hops 383: an Outbursting Class 0 Protostar in Orion. ApJ, 800(1):L5, Feb. 2015. Samal, M.R., Ojha, D.K., Jose, J. et al. Star formation in the filament of S254-S258 OB complex: a cluster in the process of being created. A&A, 581:A5, Sept. 2015. Shu, F.H. Self-similar collapse of isothermal spheres and star formation. ApJ, 214:488–497, June 1977. Simpson, J.P., Burton, M.G., Colgan, S.W.J. et al. Hubble Space Telescope NICMOS Polarization Observations of Three Edge-on Massive Young Stellar Objects. ApJ, 700(2):1488–1501, Aug. 2009. Szymczak, M., Olech, M., Wolak, P. et al. Giant burst of methanol maser in S255IR-NIRS3. A&A, 617:A80, Sept. 2018. Tobin, J.J., Sheehan, P.D., Megeath, S.T. et al. The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks. ApJ, 890(2):130, Feb. 2020. Uchiyama, M., Yamashita, T., Sugiyama, K. et al. Near-infrared monitoring of the accretion outburst in the massive young stellar object S255-NIRS3. PASJ, 72(1):4, Feb. 2020. Virtanen, P., Gommers, R., Oliphant, T.E. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. Wang, Y., Beuther, H., Bik, A. et al. Different evolutionary stages in the massive star-forming region S255 complex. A&A, 527:A32, Mar. 2011. Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 – 61, 2010. Zinchenko, I.I., Liu, S.Y., Su, Y.N. et al. Dense Cores, Filaments, and Outflows in the S255IR Region of High-mass Star Formation. ApJ, 889(1):43, Jan. 2020. Zucker, C., Speagle, J.S., Schlafly, E.F. et al. A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition. ApJ, 879(2):125, July 2019. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87255 | - |
dc.description.abstract | 恆星的形成與演化,在天文物理學上是一個重要的課題。為此我們投注心力,期待能夠了解氣體如何聚集並壓縮、進而形成原恆星,爾後演化至主序帶的整體過程。透過可見光以及紅外光波段的觀測,目前學術界已經架構出一套相對完整的模型,用於描述原恆星演化進入主序帶的過程。然而,針對恆星形成過程裡更初期的階段,卻仍然留有許多未定論。這是因為原恆星在其初形成時期,深處於厚重的雲氣與塵埃之中,無法直接利用可見光及紅外光等波段進行觀測。因此,透過觀測波段的選擇,如果是使用次毫米波段來進行觀測,因為此波段的輻射不會受到塵埃與氣體的遮擋 (消光),我們便能夠更直接地觀測處於初生階段的原恆星。
JCMT Transient Survey 是一個使用次毫米波段觀測的長期監測計畫,此計畫的研究目標是探尋原恆星天體在其新生階段的「光變現象」。年輕恆星體如果在短時間內 (大約是月至年的時間長度) 變亮,此光變現象即是恆星形成假說裡「間歇性質量吸積」這類模型的有力證據。從 2020 年 2 月份開始,記錄至 2022 年 3 月為止,透過每月一次的固定量測,我們總共累積了 15 期針對 S255 天區的觀測資料。其中單次的觀測是以影像的方式記錄;透過影像分析,我們擷取影像中輻射強度的峰值位置,來代表原恆星天體。依照 Johnstone et al. (2018) 的分析方法來檢測 S255 天區,在 850 微米波段的觀測影像中,我們挑選出 51 個亮度超過 5 個觀測標準差的「次毫米天體」;經分析,並未找到單次隨機性的光強爆發現象,又或者是長週期性的亮度變化趨勢。為了解釋 S255 天區的監測結果:不同於計畫中其他鄰近的恆星形成區域 (古爾德帶),在其設計之觀測視野內並未發現任何明顯的光變現象;為此我們設計了影像模擬實驗:將同計畫的其他天區放遠至與 S255 相當的距離。模擬的結果顯示,如果絕大多數的天體維持相等的光變幅度,將其置於更遠的距離下,觀測到的亮度變化量會減弱至同單次的觀測誤差相近之程度,以至於無法辦別天體是否真存有光變現象;而另一個次要的因素則是多個天體會因為解析度不足而混在一起,如各天體皆具有不同的光變幅度,此效應將加劇量化分析的難度。而針對大質量原恆星,如 S255-IR 及 S255-N 這類天體,因為於其他天區中並未有相似質量的天體,故無法與之前的研究結果直接相比較。於文獻中,S255-IR 是位於 S255天區的觀測視野內,已知具有明確亮度變化的天體;但單就目前現有的兩年監測結果,我們並未在這類大質量原恆星之中,觀察到任何明確的光變現象。 本碩士論文的架構將分為三部分,於第一章介紹恆星形成的概觀及研究動機。第二章呈現 JCMT Transient Survey 的實驗設計與結果分析。最末章則總結整體研究計畫並提出未來可行之延伸目標。 | zh_TW |
dc.description.abstract | How do stars form? In addition, how human beings use their entire life as a snapshot to understand an almost eternity, the whole life of a star? It is a thrilling topic for me and the very beginning of this time-domain study.
Observations from the well-developed optical/IR bands have already established a clear paradigm of how young protostars get into the main sequence. However, how the protostar formation begins and how they evolve in the early stages of star formation still remain puzzling. As young protostars are enshrouded in their natal molecular cloud environment, the dusty surroundings just besiege most of the optical/IR emission. On the contrary, the submillimeter & millimeter observations are able to dive deep to disclose the baby stars in the protostellar stage. The JCMT Transient Survey routinely monitors a sample of star-forming regions, including the S255 region. Toward S255, 15 epochs of 850-µm observations have been conducted since February 2020 till March 2022. Following the same analysis methodology introduced by Johnstone et al. (2018), we carried out the clump identification and searched for flux variability toward candidate protostellar clumps. We found no evident variable in either the secular or the stochastic type toward 51 clumps brighter than 60 mJy/beam, i.e. 5-sigma detection, in the 850-µm band. To help interpret the result, we designed an image simulation by making use of the Herschel Gould Belt Survey (HGBS) images of the nearby low-mass star-forming regions and mimicking the SCUBA-2 observations of these regions but at farther distances of S255. We demonstrated that the types of variables with 10-50% fractional variation seen in the nearby star-forming regions would not be recognized if they all are shifted to the distance of S255. This is primarily because their variation amplitudes get buried beneath the single-epoch noise. Source merging then just exacerbates our detection limit of variability. On the other hand, these new observations toward S255 sample massive OB-type protostars (e.g. S255-IR & S255-N) and high column density cloud patches that have no correspondence in the nearby low-mass Gould Belt regions. In spite of the submillimeter variability of S255-IR reported by Liu et al. (2018), we find no evidence of variation either in the clumps at high-mass end in our Transient data. The contents of the thesis are organized as the following. In Chapter 1, an introductory review and the research motivation are presented. I describe the JCMT Transient Survey and my analysis and interpretation of the survey data toward S255 in Chapter 2. In the last chapter, a summary is given accompanied by the future perspectives of this research. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:39:36Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-18T16:39:36Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii Contents ix List of Figures xii List of Tables xiv Denotation xv Chapter 1 Introduction to Submillimeter Variability in Star Formation 1 1.1 Theory of the Star Formation 1 1.2 Transient Activity 3 1.3 Monitoring Campaigns 3 Chapter 2 JCMT Transient Survey: A Long-term Monitoring Program Toward Star-forming Regions 5 2.1 Design of the Transient Survey 6 2.1.1 Telescope & detectors 6 2.1.2 Observational strategy 12 2.2 Four-year Achievements in the Phase I Program 15 2.3 Data Reduction & Pipeline 19 2.3.1 MAKEMAP: the image processing of raw JCMT observations 19 2.3.2 FellWalker algorithm: the clump-find method for the source extraction 21 2.3.3 Cross-correlation alignment: an astrometric improvement 21 2.3.4 Weighted flux calibration: an alternative method for relative flux calibration 22 2.3.5 sourceinfo catalogue: a pipeline-automated table containing the photometric information about submillimeter clumps 22 2.4 Midterm Report of S255 in the Phase II Program 24 2.4.1 Regional review: The S255 Region 24 2.4.2 S255’s measurements in the JCMT Transient Survey 29 2.4.3 Detection of the S255’s submillimeter clumps 36 2.5 Standard Light Curve Analysis 43 2.5.1 Methodology 1: Fiducial Standard Deviation Test 43 2.5.2 Methodology 2: Linear Varying Test 45 2.5.3 Methodology 3: Single-epoch Flare Test 47 2.6 Image Simulation to Evaluate the Detectability of Variables 50 2.6.1 Data preparation 51 2.6.2 Zoom-out simulation: the distance effect 57 2.6.3 Resemblances with the S255 region 61 2.6.4 Detectability of secular variables in the JCMT Transient Survey 65 Chapter 3 Summary 67 References 69 Appendix A — Some useful physical estimates in star formation 77 Appendix B — The star formation scenario and the classification of the YSOs 79 Appendix C — Code examples of the Starlink software 81 | - |
dc.language.iso | en | - |
dc.title | 次毫米波段之原恆星光變性質分析 | zh_TW |
dc.title | Protostellar Variability in Submillimeter Wavelengths | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 朱有花 | zh_TW |
dc.contributor.coadvisor | You-Hua Chu | en |
dc.contributor.oralexamcommittee | 陳文屏;陳惠茹 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Ping Chen;Huei-Ru Chen | en |
dc.subject.keyword | 年輕恆星體,光變現象,天體錯誤識別,詹姆斯·克拉克·馬克士威望遠鏡,觀測天區 (S255),觀測天區 (古爾德帶), | zh_TW |
dc.subject.keyword | young stellar objects,photometric variability,source confusion,JCMT,Target field (S255),Target fields (Gould Belt), | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202300173 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-02-18 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 天文物理研究所 | - |
Appears in Collections: | 天文物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-1.pdf Access limited in NTU ip range | 26.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.