Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜宜zh_TW
dc.contributor.advisorChing-Yi Chenen
dc.contributor.author洪靖崎zh_TW
dc.contributor.authorChing-Chi Hungen
dc.date.accessioned2023-05-18T16:38:11Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-11-
dc.date.issued2023-
dc.date.submitted2023-02-16-
dc.identifier.citationAlava, P., G. Du Laing, F. Tack, and T. Van De Wiele. 2012. Effect of diet on bio accessibility and biotransformation of arsenic. Understanding the Geological and Medical Interface of Arsenic-As 2012: Proceedings of the 4th International Congress on Arsenic in the Environment, 22-27 July 2012, Cairns, Australia. CRC Press, UK.
Alava, P., L. Gijs Du, T. Filip, R. Tine De, and W. Tom Van De. 2015. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere. 119:757-762.
Almela, C., M. Jesús Clemente, D. Vélez, and R. Montoro. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food Chem. Toxicol. 44(11):1901-1908.
Amaral, C. D. B., A. G. G. Dionísio, M. C. Santos, G. L. Donati, J. A. Nóbrega, and A. R. A. Nogueira. 2013. Evaluation of sample preparation procedures and krypton as an interference standard probe for arsenic speciation by HPLC-ICP-QMS. J. Anal. At. Spectrom. 28(8):1303.
Angkanaporn, K., K. Daengprom, and C. Kiratisehwe. 2008. Effects of the dietary inclusion of fish meal, rock phosphate and roxarsone on arsenic residues in tissues of broilers. Thai J. Vet. Med. 38(4):57-64.
Antonelli, R., J. T. David, C. John, S. Kan, and S. Reeder. 2014. AS3MT, GSTO, and PNP polymorphisms: Impact on arsenic methylation and implications for disease susceptibility. Environ. Res. 132:156-167.
AOAC. 2005. Official methods of analysis of AOAC International, 16th ed. AOAC Official Method 990.08. AOAC International, Gaithersburg, Maryland, US.
AOAC. 2019. Appendix K: Guidelines for dietary supplements and Botanicals. in AOAC Official Methods of Analysis. AOAC International, Gaithersburg, Maryland, US.
Araujo-Barbosa, U., S. Ana Maria Pinto dos, P. ƒ. ł.-V. Elena, B.-A. Maria Carmen, B.-B. Pilar, and F. Sergio Luis Costa. 2017. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta 170:523-529.
Arnich, N., V. Sirot, G. Rivière, J. Jean, L. Noël, T. Guérin, and J. C. Leblanc. 2012. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 50(7):2432-2449.
ATSDR. 2007. Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry. Division of Toxicology and Environmental Medicine, Atlanta, GA.
Ballatori, N., C. L. Hammond, J. B. Cunningham, S. M. Krance, and R. Marchan. 2005. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol. Appl. Pharmacol. 204(3):238-255.
Barlow, S., A. Renwick, J. Kleiner, J. W. Bridges, L. Busk, E. Dybing, L. Edler, G. Eisenbrand, J. Fink-Gremmels, and A. Knaap. 2006. Risk assessment of substances that are both genotoxic and carcinogenic: Report of an International Conference organized by EFSA and WHO with support of ILSI Europe. Food Chem. Toxicol. 44(10):1636-1650.
Benford, D., P. M. Bolger, P. Carthew, M. Coulet, M. DiNovi, J. C. Leblanc, A. G. Renwick, W. Setzer, J. Schlatter, B. Smith, W. Slob, G. Williams, and T. Wildemann. 2010. Application of the Margin of Exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food Chem. Toxicol. 48 Suppl 1:S2-24.
Brandon, E. F. A., P. J. C. M. Janssen, and L. de Wit-Bos. 2014. Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 31(12):1993-2003.
Brown, R. M., D. Newton, C. J. Pickford, and J. C. Sherlock. 1990. Human metabolism of arsenobetaine ingested with fish. Hum. Exp. Toxicol. 9(1):41-46.
Buchet, J. P., R. Lauwerys, and H. Roels. 1981. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int. Arch. Occup. Environ. Health. 48(1):71-79.
Calatayud, M., J. A. Barrios, D. Vélez, and V. Devesa. 2012a. In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem. Res. Toxicol. 25(2):446-453.
Calatayud, M., J. Gimeno, D. Vélez, V. Devesa, and R. Montoro. 2010. Characterization of the Intestinal Absorption of Arsenate, Monomethylarsonic Acid, and Dimethylarsinic Acid Using the Caco-2 Cell Line. Chem. Res. Toxicol. 23(3):547-556.
Calatayud, M., D. Velez, and V. Devesa. 2012b. Metabolism of inorganic arsenic in intestinal epithelial cell lines. Chem. Res. Toxicol. 25(11):2402-2411.
Caumette, G., I. Koch, and K. J. Reimer. 2012. Arsenobetaine formation in plankton: A review of studies at the base of the aquatic food chain. J. Environ. Monit. 14(11):2841-2853.
Challenger, F. 1947. Biological methylation. Sci. Prog. 35(139):396-416.
Chang, C. H., C. F. Chiang, J. W. Liao, G. C. Yen, Y. C. Huang, S. P. Ni, C. C. Chang, and H. T. Lin. 2021. Dietary exposure assessment of methylmercury and polyunsaturated fatty acids in saltwater fish and processed foods among Taiwanese women of child-bearing age and children: A novel core food-matching approach. Chemosphere. 262:128249.
Chen, C. C., C. L. Tsai, C. C. Chang, S. P. Ni, Y. T. Chen, and C. F. Chiang. 2017. Sampling design by the core-food approach for the Taiwan total diet study on veterinary drugs. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 34(6):939-949.
Chen, Z. S. 1991. Cadmium and lead contamination of soils near plastic stabilizing materials producing plants in northern Taiwan. Water Air Soil Pollut. 57-58:745-754.
Chiang, C. F., K. C. Hsu, C. C. Hung, D. J. Yang, and C. C. Chen. 2018. Core food model of the Taiwan food supply for total diet study. Food Addit. Contam. Part A Chem. Anal Control Expo. Risk Assess. 35(11):2088-2098.
Choi, B. S., S. J. Choi, D. W. Kim, M. Huang, N. Y. Kim, K. S. Park, C. Y. Kim, H. M. Lee, Y. N. Yum, E. S. Han, T. S. Kang, I. J. Yu, and J. D. Park. 2010. Effects of Repeated Seafood Consumption on Urinary Excretion of Arsenic Species by Volunteers. Arch. Environ. Contam. Toxicol. 58(1):222-229.
Cole, S. P. and R. G. Deeley. 2006. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci. 27(8):438-446.
Csanaky, I. and Z. Gregus. 2001. Effect of phosphate transporter and methylation inhibitor drugs on the disposition of arsenate and arsenite in rats. Toxicol. Sci. 63(1):29-36.
Delgado-Andrade, C., M. Navarro, H. López, and M. C. López. 2003. Determination of total arsenic levels by hydride generation atomic absorption spectrometry in foods from south-east Spain: estimation of daily dietary intake. Food Addit. Contam. 20(10):923-932.
Doménech, E. and S. Martorell. 2021. Formulation and application of the probability of exceedance metric for risk characterization of non-threshold chemical hazards in food. Food Control. 124:107910.
Dopp, E., U. Von Recklinghausen, R. Diaz-Bone, A. Hirner, and A. Rettenmeier. 2010. Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ. Res. 110(5):435-442.
Dowdy, D. L. 1995. Prediction of chemical biotransfer of organic chemicals from cattle diet Into beef and milk using the molecular connectivity index. University of California, Davis.
Drobna, Z., H. Naranmandura, K. M. Kubachka, B. C. Edwards, K. Herbin-Davis, M. Styblo, X. C. Le, J. T. Creed, N. Maeda, M. F. Hughes, and D. J. Thomas. 2009. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem. Res. Toxicol. 22(10):1713-1720.
Drobná, Z., F. S. Walton, A. W. Harmon, D. J. Thomas, and M. Stýblo. 2010. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes. Toxicol. Appl. Pharmacol. 245(1):47-56.
ECHA. 2013. Services to support the assessment of remaining cancer risks related to the use of chromium- and arsenic-containing substances in Applications for Authorisation. European Chemicals Agency (EChA).
EFSA. 2005. Opinion of the scientific committee on a request from EFSA related to A harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA Journal. 3(10):282.
EFSA. 2009. Scientific opinion on arsenic in food: Panel on contaminants in the food chain (CONTAM) EFSA Journal. 7(10).
EFSA. 2012. Statement on the applicability of the margin of exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA Journal. 10(3):2578.
EFSA. 2014. Dietary exposure to inorganic arsenic in the European population. EFSA Journal. 12(3):3597-3597.
EFSA/FAO. 2011. Towards a harmonised total diet study approach: a guidance document. EFSA Journal. 9(11):2450.
EPA. 1995. Arsenic, Inorganic. in CASRN 7440-38-2. Vol. CASRN 7440-38-2. E. P. Agency, ed. Environmental Protection Agency, USA.
EU. 2019. Amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan and Ambrosia seeds. Office for Official Publications of the European Communities, Luxembourg. Lanham, Md.
FAO. 2018. The state of world fisheries and aquaculture 2018: meeting the sustainable development goals. in The state of world fisheries and aquaculture 2018: meeting the sustainable development goals. Food and Agriculture Organization of the United Nations (FAO), Rome; Italy.
FAO/WHO. 2011a. Evaluation of certain contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy, 16-25 February 2010. in WHO Technical Report Series. FAO (Food and Agriculture Organization)/WHO (World Health Organization), Geneva; Switzerland.
FAO/WHO. 2011b. Safety evaluation of certain food additives and contaminants: prepared by the seventy-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). in WHO Food Additives Series. FAO (Food and Agriculture Organization)/WHO (World Health FAO (Food and Agriculture Organization), Geneva; Switzerland.
FDA. 2011. Final report on study 275.30. provide data on various arsenic species present in broilers treated with roxarsone: comparison with untreated birds. Food and Drug Administration, US.
FDA. 2012. Elemental analysis manual: Section 4.11: Arsenic speciation in rice and rice products using high performance liquid chromatography-inductively coupled plasma-mass spectrometric determination. Food and Drug Administration, USA.
Fodor, P. 2001. Arsenic speciation in the environment. in Trace element speciation for environment, food and health. L. Ebdon, L. Pitts, R. Cornelis, H. Crews, O. F. X. Donard, and P. Quevauviller, ed. Royal Society of Chemistry, Cambridge; UK.
Francesconi, K. A. 2010. Arsenic species in seafood: Origin and human health implications. Pure Appl. Chem. 82(2):373-381.
Francesconi, K. A., R. Tanggaar, C. McKenzie, and W. Goessler. 2002. Arsenic Metabolites in Human Urine after Ingestion of an Arsenosugar. Clin. Chem. 48:92-101.
Freeman, H. C., J. F. Uthe, R. B. Fleming, P. H. Odense, R. G. Ackman, G. Landry, and C. Musial. 1979. Clearance of arsenic ingested by man from arsenic contaminated fish. Bull. Environ. Contam. Toxicol. 22(1-2):224-229.
Gao, G., A. S. Clare, E. Chatzidimitriou, C. Rose, and G. Caldwell. 2018. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem. 258:71-78.
Geubel, A. P., M. C. Mairlot, J. P. Buchet, C. Dive, and R. Lauwerys. 1988. Abnormal methylation capacity in human liver cirrhosis. Int. J. Clin. Pharmacol. Res. 8(2):117-122.
Gonzalez, M. J., M. V. Aguilar, and M. C. Martinez Para. 1995. Gastrointestinal absorption of inorganic arsenic (V): The effect of concentration and interactions with phosphate and dichromate. Vet. hum. toxicol. 37(2):131-136.
Hall, M. N. and M. V. Gamble. 2012. Nutritional Manipulation of One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. J. Toxicol. 2012:595307.
Hayakawa, T., Y. Kobayashi, X. Cui, and S. Hirano. 2005. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 79(4):183-191.
Healy, S. M., E. A. Casarez, F. Ayala-Fierro, and H. Aposhian. 1998. Enzymatic methylation of arsenic compounds. V. Arsenite methyltransferase activity in tissues of mice. Toxicol. Appl. Pharmacol. 148(1):65-70.
Heinrich-Ramm, R., S. Mindt-Prüfert, and D. Szadkowski. 2002. Arsenic species excretion after controlled seafood consumption. J. Chromatogr. B. 778(1):263-273.
Heitkemper, D. T., N. P. Vela, K. R. Stewart, and C. S. Westphal. 2001. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 16(4):299-306.
Heitland, P. and H. D. Köster. 2008. Fast determination of arsenic species and total arsenic in urine by HPLC-ICP-MS: concentration ranges for unexposed german inhabitants and clinical case studies. J. Anal. Toxicol. 32(4):308-314.
Hirano, S., X. Cui, S. Li, S. Kanno, Y. Kobayashi, T. Hayakawa, and A. Shraim. 2003. Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Arch. Toxicol. 77(6):305-312.
Hu, Y., H. Cheng, S. Tao, and J. L. Schnoor. 2019. China's Ban on Phenylarsonic Feed Additives, A Major Step toward Reducing the Human and Ecosystem Health Risk from Arsenic. Environ. Sci. Technol. 53(21):12177-12187.
Hughes, M. F., V. Devesa, B. M. Adair, M. Styblo, E. M. Kenyon, and D. J. Thomas. 2005. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicol. Appl. Pharmacol. 208(2):186-197.
Hung, C. C., B. J. Chen, J. W. Liao, Y. P. Tai, and C. Y. Chen. 2021. The effect of Ulva lactuca and Sargassum hemiphyllum var. chinense on arsenic metabolites and enzymes in broilers. Food Chem. 342:128346.
Huynh, T. G., S. T. Yeh, Y. C. Lin, J. F. Shyu, L. L. Chen, and J. C. Chen. 2011. White shrimp Litopenaeus vannamei immersed in seawater containing Sargassum hemiphyllum var. chinense powder and its extract showed increased immunity and resistance against Vibrio alginolyticus and white spot syndrome virus. Fish Shellfish Immunol. 31(2):286-293.
IARC. 2012a. Arsenic, metals, fibres, and dusts. IARC monographs on The evaluation of carcinogenic risks to humans. Vol. 100C. International Agency for Research on Cancer, France.
IARC. 2012b. IARC monographs on the identification of carcinogenic hazards to humans-List of Classifications. France.
Islam, S., M. M. Rahman, M. A. Rahman, and R. Naidu. 2017. Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control. 82:196-202.
JECFA. 2011a. Safet evaluations of the joint FAO/WHO expert committee on food additives - arsenic. Joint FAO/WHO Expert Committee on Food Additives, Rome/Geneva, Italy/Switzerland.
JECFA. 2011b. Safety evaluation of certain contaminants in food publication WHO food additives series No. 63/FAO JECFA monographs 8. in Joint FAO/WHO Expert Committee on Food Additives, Rome/Geneva, Italy/Switzerland.
Juhasz, A. L., E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, and R. Naidu. 2006. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Perspect. 114(12):1826-1831.
Kala, S. V., M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, and M. W. Lieberman. 2000. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J. Biol. Chem. 275(43):33404-33408.
Kalia, K. and D. B. Khambholja. 2015. Arsenic Contents and Its Biotransformation in the Marine Environment. Pages 675-700 in Handbook of Arsenic Toxicology. S. J. S. Flora, ed. Academic Press, Oxford.
Kapp, R. W. 2014. Encyclopedia of toxicology. Pages 308-312 in Encyclopedia of toxicology.Third Edition. P. Wexler, ed. Academic Press, MD, USA.
Kennedy, W. E., Jr. and D. L. Strenge. 1992. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual total effective dose equivalent. Page 356. USA.
Kenyon, E. M., L. M. Del Razo, and M. F. Hughes. 2005. Tissue Distribution and Urinary Excretion of Inorganic Arsenic and Its Methylated Metabolites in Mice Following Acute Oral Administration of Arsenate. Toxicol. Sci. 85(1):468-475.
Kenyon, E. M., M. F. Hughes, B. M. Adair, J. H. Highfill, E. A. Crecelius, H. J. Clewell, and J. W. Yager. 2008. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water. Toxicol. Appl. Pharmacol. 232(3):448-455.
Khairul, I., Q. Q. Wang, Y. H. Jiang, C. Wang, and H. Naranmandura. 2017. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. 8(14):23905-23926.
Kharbanda, K. K. 2007. Role of transmethylation reactions in alcoholic liver disease. World J. Gastroenterol. 13(37):4947.
Komorowicz, I. and D. Barałkiewicz. 2016. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. Environ.l Monit. Assess. 188(9):504.
Kumarathilaka, P., S. Seneweera, Y. S. Ok, A. Meharg, and J. Bundschuh. 2019. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environ. Int. 127:584-591.
Kwong, Y.-L. 2004. Arsenic trioxide in the treatment of haematological malignancies. Expert Opin. Drug Saf. 3(6):589-597.
Le, X. C. 2002. Arsenic speciation in the environment and humans. in Environmental chemistry of arsenic. W. T. Frankenberger, Jr., ed. Marcel Dekker, Inc., New York; USA.
Le, X. C., W. R. Cullen, and K. J. Reimer. 1994. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin. Chem. 40(4):617-624.
Leslie, E. M., A. Haimeur, and M. P. Waalkes. 2004. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J. Biol. Chem. 279(31):32700-32708.
Leung, J., A. Pang, W.-H. Yuen, Y.-L. Kwong, and E. W. Tse. 2007. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 109(2):740-746.
Li, G., G.-X. Sun, P. N. Williams, L. Nunes, and Y.-G. Zhu. 2011. Inorganic arsenic in Chinese food and its cancer risk. Environ. Int. 37(7):1219-1225.
Lin, S., W. R. Cullen, and D. J. Thomas. 1999. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem. Res. Toxicol. 12(10):924-930.
Liu, Q., H. Peng, X. Lu, and X. C. Le. 2015. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal. Chim. Acta. 888:1-9.
Liu, Q., H. Peng, X. Lu, M. J. Zuidhof, X.-F. Li, and X. C. Le. 2016. Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations. Environ. Health Perspect. 124(8):1174-1181.
Liu, X., W. Zhang, Y. Hu, and H. Cheng. 2013. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchem. J. 108:38-45.
Luo, L., B. Wang, J. Jiang, M. Fitzgerald, Q. Huang, Z. Yu, H. Li, J. Zhang, J. Wei, C. Yang, H. Zhang, L. Dong, and S. Chen. 2021. Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments, and solutions. Front Pharmacol. 11:595335.
Lynch, H. N., G. I. Greenberg, M. C. Pollock, and A. S. Lewis. 2014. A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci. Total Environ. 496(Supplement C):299-313.
Makkar, H. P. S., G. Tran, V. Heuzé, S. Giger-Reverdin, M. Lessire, F. Lebas, and P. Ankers. 2016. Seaweeds for livestock diets: a review. Anim. Feed Sci. Technol. 212:1-17.
Mass, M. J., A. Tennant, B. C. Roop, W. R. Cullen, M. Styblo, D. J. Thomas, and A. D. Kligerman. 2001. Methylated trivalent arsenic species are genotoxic. Chem. Res. Toxicol. 14(4):355-361.
Molin, M., S. M. Ulven, L. Dahl, W. Goessler, D. Fliegel, M. Holck, J. J. Sloth, A. Oshaug, J. Alexander, H. M. Meltzer, and T. A. Ydersbond. 2014. Urinary excretion of arsenicals following daily intake of various seafoods during a two weeks intervention. Food Chem. Toxicol. 66:76-88.
Molin, M., S. M. Ulven, L. Dahl, V. H. Telle-Hansen, M. Holck, G. Skjegstad, O. Ledsaak, J. J. Sloth, W. Goessler, A. Oshaug, J. Alexander, D. Fliegel, T. A. Ydersbond, and H. M. Meltzer. 2012. Humans seem to produce arsenobetaine and dimethylarsinate after a bolus dose of seafood. Environ. Res. 112:28-39.
Molin, M., S. M. Ulven, H. M. Meltzer, and J. Alexander. 2015. Arsenic in the human food chain, biotransformation and toxicology – Review focusing on seafood arsenic. J. Trace Elem. Med. Biol. 31:249-259.
Monagail, M. M., E. Cummins, R. Bermejo, E. Daly, D. Costello, and L. Morrison. 2018. Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed. Environ. Int. 118:314-324.
Muñoz, O., P. Zamorano, O. Garcia, and J. M. Bastías. 2017. Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem. Toxicol. 109(Pt 2):1125-1134.
Németi, B., I. Csanaky, and Z. Gregus. 2003. Arsenate Reduction in Human Erythrocytes and Rats—Testing the Role of Purine Nucleoside Phosphorylase. Toxicol. Sci. 74(1):22-31.
Nachman, K. E., P. A. Baron, G. Raber, K. A. Francesconi, A. Navas-Acien, and D. C. Love. 2013. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample. Environ. Health Perspect. 121(7):818-824.
Nachman, K. E., G. Raber, K. A. Francesconi, A. Navas-Acien, and D. C. Love. 2012. Arsenic species in poultry feather meal. Sci. Total Environ. 417-418:183-188.
Napier, B. A., R. A. Peloquin, D. L. Strenge, and J. V. Ramsdell. 1988. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation. Page 204. US.
Naranmandura, H., N. Suzuki, and K. T. Suzuki. 2006. Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 19(8):1010-1018.
Narukawa, T., K. Inagaki, T. Kuroiwa, and K. Chiba. 2008. The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 77(1):427-432.
Navas-Acien, A., K. A. Francesconi, E. K. Silbergeld, and E. Guallar. 2011. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ. Res. 111(1):110-118.
Newcombe, C., A. Raab, P. N. Williams, C. Deacon, P. I. Haris, A. A. Meharg, and J. Feldmann. 2010. Accumulation or production of arsenobetaine in humans? J. Environ. Monit. 12(4):832-837.
NHFPC/CFDA. 2022. the Standard for Maximum Levels of Contaminants in Foods. Vol. GB2762—202. the National Health and Family Planning Commission/the National Health Commission) and the China Food and Drug Administration, China.
NRC. 1994. Nutrient Requirements of Poultry. 9th Revised Edition. National Academy Press, Washington, DC. US.
OEHHA. 2012. Air Toxics Hot Spots Program Risk Assessment Guidelines: Appendix K: Meat, Milk, and Egg Transfer coefficients (Table K.2 on page k-4), Technical Support Document for Exposure Assessment and Stochastic Analysis. Oakland, California.US, Environmental Protection Agency.
Overby, L. R. and D. V. Frost. 1962. Nonretention by the chicken of the arsenic in tissues of swine fed arsanilic acid. Toxicol. Appl. Pharmacol. 4(6):745-751.
Perelló, G., R. Martí-Cid, J. M. Llobet, and J. L. Domingo. 2008. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric. Food Chem. 56(23):11262-11269.
Pergantis, S. A., W. Winnik, and D. Betowski. 1997. Determination of Ten Organoarsenic Compounds Using MicroboreHigh-performance Liquid Chromatography Coupled With Electrospray MassSpectrometry–Mass Spectrometry. J. Anal. At. Spectrom. 12(5):531-536.
Petrick, J. S., B. Jagadish, E. A. Mash, and H. V. Aposhian. 2001. Monomethylarsonous Acid (MMAIII) and Arsenite:  LD50 in Hamsters and In Vitro Inhibition of Pyruvate Dehydrogenase. Chem. Res. Toxicol. 14(6):651-656.
Pizarro, I., M. M. Gómez, P. Fodor, M. A. Palacios, and C. Cámara. 2004. Distribution and biotransformation of arsenic species in chicken cardiac and muscle tissues. Biol Trace Elem. Res. 99(1-3):129-143.
Quiroz, W., H. Arias, M. Bravo, M. Pinto, M. G. Lobos, and M. Cortés. 2011. Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem. J. 97(1):78-84.
Raber, G., N. Stock, P. Hanel, M. Murko, J. Navratilova, and K. A. Francesconi. 2012. An improved HPLC–ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chem. 134(1):524-532.
Raml, R., W. Goessler, P. Traar, T. Ochi, and K. A. Francesconi. 2005. Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2 ‘, 3 ‘-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-β-d-riboside. Chem. Res. Toxicol. 18(9):1444-1450.
Roleda, M. Y., H. Marfaing, N. Desnica, R. Jónsdóttir, J. Skjermo, C. Rebours, and U. Nitschke. 2019. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: health risk assessment and implication for food applications. Food Control. 95:121-134.
Rosas, I., R. Belmont, A. Armienta, and A. Baez. 1999. Arsenic concentrations in water, soil, milk and forage in comarca lagunera, Mexico. Water, Air, Soil Pollut. 112(1):133-149.
Sadee, B., M. E. Foulkes, and S. J. Hill. 2015. Coupled techniques for arsenic speciation in food and drinking water: a review. J. Anal. At. Spectrom. 30(1):102-118.
Saito, Y., T. Furukawa, T. Obata, and T. Saga. 2013. Molecular imaging of aquaglycero-aquaporins: its potential for cancer characterization. Biol. Pharm. Bull. 36(8):1292-1298.
Sakurai, T. 2003. Biomethylation of arsenic is essentially detoxicating event. J. Health Sci. 49(3):171-178.
Sanz, E., R. Muñoz-Olivas, and C. Cámara. 2005. A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe. Anal. Chim. Acta. 535(1–2):227-235.
Schmeisser, E., W. Goessler, and K. A. Francesconi. 2006. Human metabolism of arsenolipids present in cod liver. Anal. Bioanal. Chem. 385(2):367-376.
Shackelford, C., G. Long, J. Wolf, C. Okerberg, and R. Herbert. 2002. Qualitative and Quantitative Analysis of Nonneoplastic Lesions in Toxicology Studies. Toxicol. Pathol. 30(1):93-96.
SHC. 2015. Arsenic and other elements in algae and dietary supplements based on algae. Vol. No. 9149 Superior Health Council Belgium.
Sigrist, M., N. Hilbe, L. Brusa, D. Campagnoli, and H. Beldoménico. 2016. Total arsenic in selected food samples from Argentina: Estimation of their contribution to inorganic arsenic dietary intake. Food Chem. 210 (Supplement C):96-101.
Šlejkovec, Z., Z. Bajc, and D. Z. Doganoc. 2004. Arsenic speciation patterns in freshwater fish. Talanta 62(5):931-936.
SNFA. 2015. Inorganic arsenic in rice and rice products on the Swedish market 2015. Part 2 - risk assessment. Swedish National Food Agency, Swedish.
Staven, L. H., B. A. Napier, K. Rhoads, and D. L. Strenge. 2003. A compendium of transfer factors for agricultural and animal products (PNNL-13421). Pacific Northwest National Lab (PNNL), Department of Energy, Richland, WA, US.
Styblo, M., L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, and D. J. Thomas. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 74(6):289-299.
Styblo, M., M. F. Hughes, and D. J. Thomas. 1996. Liberation and analysis of protein-bound arsenicals. J. Chromatogr. B Biomed. Appl. 677(1):161-166.
Styblo, M. and D. J. Thomas. 1997. Binding of arsenicals to proteins in anin vitromethylation system. Toxicol. Appl. Pharmacol. 147(1):1-8.
Taylor, V. F. and B. P. Jackson. 2016. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere. 163:6-13.
Thomas, D. J., J. Li, S. B. Waters, W. Xing, B. M. Adair, Z. Drobna, V. Devesa, and M. Styblo. 2007. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp. Bio. Med. 232(1):3-13.
Tseng, C. H. 2009. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharmacol. 235(3):338-350.
Tu, S. H., C. Chen, Y. T. Hsieh, H. Y. Chang, C. J. Yeh, Y. C. Lin, and W. H. Pan. 2011. Design and sample characteristics of the 2005-2008 Nutrition and Health Survey in Taiwan. Asia Pac. J. Clin. Nutr. 20(2):225-237.
Tukai, R., W. A. Maher, I. J. McNaught, M. J. Ellwood, and M. Coleman. 2002. Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshw. Res. 53(6):971-980.
Vahter, M. 1999. Variation in Human Metabolism of Arsenic. Pages 267-279 in Arsenic Exposure and Health Effects III. W. R. Chappell, C. O. Abernathy, and R. L. Calderon, ed. Elsevier Science Ltd, Oxford.
Vahter, M. 2002. Mechanisms of arsenic biotransformation. Toxicology. 181-182:211-217.
Vahter, M. 2009. Effects of arsenic on maternal and fetal health. Annu. Rev. Nutr. 29:381-399.
Van de Wiele, T., G. D. Laing, and M. Calatayud. 2015. Arsenic from food: biotransformations and risk assessment. Curr. Opin. Food Sci. 6 (Supplement C):1-6.
Van Doan, H., S. H. Hoseinifar, M. Á. Esteban, M. Dadar, and T. T. N. Thu. 2019. Chapter 2 - Mushrooms, seaweed, and their derivatives as functional feed additives for aquaculture: an updated view. Pages 41-90 in Studies in Natural Products Chemistry. Vol. 62. R. Atta ur, ed. Elsevier, Middlesex, MA, US.
Velez, D. and R. Montoro. 1998. Arsenic speciation in manufactured seafood products. J. Food Prot. 61(9):1240-1245.
Velez, D., N. Ybáñez, and R. Montoro. 1996. Monomethylarsonic and dimethylarsinic acid contents in seafood products. J. Agric. Food Chem. 44(3):859-864.
Wallinga, D. 2006. Playing Chicken: Avoiding Arsenic in Your Meat. Institute for Agriculture and Trade Policy (IATP), Minneapolis, Minnesota, US.
Wanibuchi, H., S. Yamamoto, H. Chen, K. Yoshida, G. Endo, T. Hori, and S. Fukushima. 1996. Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis. 17(11):2435-2439.
Wiele, T. v. d., C. M. Gallawa, K. M. Kubachka, J. T. Creed, N. Basta, E. A. Dayton, S. Whitacre, G. d. Laing, and K. Bradham. 2010. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ. Health Perspect. 118(7):1004-1009.
Wong, W. W., S. W. Chung, B. T. Chan, Y. Y. Ho, and Y. Xiao. 2013. Dietary exposure to inorganic arsenic of the Hong Kong population: results of the first Hong Kong total diet study. Food Chem. Toxicol. 51:379-385.
Wu, Y. S., C. Y. Tsai, K. H. Chang, and C. F. Chiang. 2021. Impact of air pollutants emitted by taichung power plant on atmospheric PM2.5 in central Taiwan. Aerosol. Air Qual. Res. 21(4):200358.
Xue, J., V. Zartarian, S. W. Wang, S. V. Liu, and P. Georgopoulos. 2010. Probabilistic Modeling of Dietary Arsenic Exposure and Dose and Evaluation with 2003-2004 NHANES Data. Environ. Health Perspect. 118(3):345-350.
Yamamoto, S., H. Wanibuchi, T. Hori, Y. Yano, I. Matsui-Yuasa, S. Otani, H. Chen, K. Yoshida, K. Kuroda, G. Endo, and S. Fukushima. 1997. Possible carcinogenic potential of dimethylarsinic acid as assessed in rat in vivo models: a review. Mutat. Res. 386(3):353-361.
Yokoi, K. and A. Konomi. 2012. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharm. 63(2):291-297.
Yuan, C.-g., G.-b. Jiang, and B. He. 2005. Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. J. Anal. At. Spectrom. 20(2):103-110.
Zheng, J. and H. Hintelmann. 2009. HPLC-ICP-MS for a comparative study on the extraction approaches for arsenic speciation in terrestrial plant, Ceratophyllum demersum. J. Radioanal. Nucl. Chem. 280(1):171-179.
Zmozinski, A. V., T. Llorente-Mirandes, J. F. López-Sánchez, and M. M. da Silva. 2015. Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS. Food Chem. 173:1073-1082.
Zuo, T. T., H. Y. Jin, L. Zhang, Y. L. Liu, J. Nie, B. l. Chen, C. f. Fang, J. Xue, X. Y. Bi, L. Zhou, M.R. Shen, S. M. Shi, and S. C. Ma. 2020. Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data. Pharmacol. Res. 159:104987.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87251-
dc.description.abstract砷 (arsenic, As) 生物毒性與其化學形式有關,無機砷 (Inorganic arsenic, iAs) 的毒性是有機砷的100倍以上,被國際癌症研究機構 (international agency for research on cancer, IARC) 列為第1類致癌物。海藻作為飼料原料可促進動物生長及免疫調節,但是海藻的砷累積能力是周圍海水濃度的100倍。本研究目的為建立雞肉中不同砷型態的檢驗方法,探討飼糧中添加石蓴及馬尾藻在雞肉的砷蓄積、型態及代謝模式,並評估消費者攝入含砷海藻飼料所生產的雞胸肉,無機砷的暴露風險。最後,建立砷從飼料到雞肉的生物轉移模式,並利用該模式評估商業飼料到雞肉的無機砷蓄積以及對人體砷暴露風險。
臺灣的雞肉消費量逐年增加,對雞肉中砷的形態及蓄積研究非常的少。我們建立了雞肉砷型態的分析方法,一次可檢驗雞肉中可能出現的9種形態的砷,包括無機砷 (arsenite, As(III) and arsenate, As(V))、甲基砷 (monomethylarsenic acid, MMA and dimethylarsenic acid, DMA)、有機砷 (arsenobetaine, AsB and arsenocholine, AsC) 及有機的含砷動物用藥及代謝物 (Roxarsone (Rox), p-arsanilic acid (p-ASA), and 4-hydroxyphenylarsonic acid (4-HPAA)。利用超聲處理與菠蘿蛋白酶 (bromelain) 輔助萃取,經由HPLC結合ICPMS檢測可於22分鐘內完成9種不同型態砷的分析。9種砷形態的方法定量極限 (LOQ) 為0.90 - 1.98g/kg,回收率為78.5%-109.4%,該分析方法可用於雞肉中砷形態的鑑定。
為了探討砷從飼料到雞肉的生物轉移、蓄積及代謝,將240隻一日齡肉雞分配到5個處理組,分別為基礎日糧 (對照組),2%和5%馬尾藻 (Sargassum hemiphyllum var. chinense, SHC) 添加組、2%和5%的石蓴 (Ulva lactuca, UL) 添加組。試驗為期35天,分析飼料和雞胸肉的砷形態以及砷代謝相關酵素。結果顯示餵飼5% UL及5% SHC飼料的總砷分別比對照基礎日糧組多1.4及78倍。SHC飼料中主要砷型態為砷酸鹽 (arsenate, As(V)),而餵飼SHC的飼料所生產的雞胸肉主要砷性型態為二甲基砷酸 (dimethylarsenic acid, DMA)。而UL飼料主要砷型態為砷酸鹽 (As(V)) 和砷甜菜鹼 (arsenobetaine, AsB),飼餵含UL飼料所生產的雞胸肉的主要代謝物為AsB。飼糧中添加SHC可增加肝臟S-腺苷甲硫氨酸 (S-adenosyl-methionine, SAM) 和砷甲基轉移酶 (arsenic methyltransferase, As3MT),而飼餵UL可提高腎臟中砷甲基轉移酶。飼糧中添加SHC和UL對雞隻砷代謝的調節模式不同,但餵飼SHC會增加雞胸肉無機砷的積累。
海藻是動物飼料中常見的營養添加物,但也可能是砷污染的來源。針對雞隻餵飼海藻飼料所生產的雞肉進行砷的暴露風險分析,評估成人和兒童攝食添加5% SHC和5% UL的飼料所生產的雞胸肉的砷暴露風險。利用蒙地卡羅模擬估算臺灣民眾每日攝食量 (estimated daily intake, EDI) 結果顯示,兒童食用5% SHC和5% UL飼料所生產的雞肉,每日攝入無機砷的含量分別比成人高1.8和1.7倍。當暴露限值 (margin of exposure, %MOE) 為100%時,攝入高砷SHC組雞胸肉之成年消費者每公斤體重的消費率 (CR/bw) 為0.4 g/kg day (第25個百分位數,P25),遠低於對照組及低砷UL組 (1.6 g/kg day,第85個百分位數,P85)。攝入餵養 5% SHC 飼料生產的雞胸肉的致癌風險高於餵養 5% UL 的雞胸肉,且兒童的暴露風險高於成人消費者。
生物轉移因子 (Biotransfer factor, BTF) 可評估飼料有害物質轉移到畜產品之含量。本試驗利用BTF建立砷從飼料到雞肉的生物轉移模式,BTF表示為雞肉總砷 (tAs) 或無機砷 (iAs) 含量 (g/kg) 與飼料中tAs的日攝入量 (µg/day) (tAs/tAs或iAs/tAs) 之比例。使用SHC和UL餵飼的雞飼料tAs的日攝入量及雞肉的tAs或iAs的濃度進行線性回歸分析,估算飼料tAs到全雞iAs (iAs/tAs) 的BTF為0.016 day/kg (R2 = 0.9886) 以及飼料tAs到全雞tAs (tAs/tAs) 的BTF為0.54 day/kg (R2 = 0.9939)。為了驗證BTF可以合理的估算從飼料tAs到雞肉的iAs含量,並開發用商業飼料估算對人類來自雞肉貢獻的砷暴露風險。我們進行商業飼料採樣並分析總砷含量 (n = 79),利用BTF估算雞肉中無機砷的濃度以及隨後的暴露風險。雙變量蒙特卡羅 (Bivariate Monte Carlo) 模擬結果顯示無機砷每日攝入量 (EDI) 的第95個百分位數 (P95) 為0.002 µg/kg bw/day,低於增加0.5%肺癌發生率之基準劑量下限 (Benchmark Dose Low, BMDL0.5) 3.0 µg/kg bw/day。
綜上所述,建立了一種高通量方法同時檢測可能出現在動物產品中的九種砷形態。應用該方法分析砷從海藻飼料到雞肉的轉移,SHC海藻作為飼料原料增加砷在雞胸肉中的積累,含有SHC和UL的飼料分別通過增加肝和腎As3MT甲基化,導致雞胸肉中As(V) 轉化為DMA。然而,因為無機砷可能會在雞胸肉中積累,並增加幼兒暴露無機砷的風險,所以家禽飼料應謹慎使用含SHC的產品。此外,建立了評估從商業飼料預測雞肉砷蓄積量及砷暴露風險評估方法,餵飼商業飼料所生產之雞肉產品,攝入其雞肉來源的砷對臺灣人群的健康影響較低。
zh_TW
dc.description.abstractThe chemical and biological toxicity of arsenic (As) dependents on its chemical forms, whereas inorganic arsenic (iAs) is more than 100 times more toxic than organic arsenic. The iAs is classified as group 1 carcinogen by the International Agency for Research on Cancer. Seaweed plays a potential role in livestock feed as an effector for immunomodulation and growth, and it may also be a potential source of As contamination. Chicken consumption in Taiwan increases yearly, and little is known about the speciation of arsenic in chicken. The purpose of this study is to develop a novel detection method for arsenic (As) species in chicken by high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICPMS). The effect of Ulva lactuca (UL) or Sargassum hemiphyllum var. chinense (SHC) supplementation on the accumulation and metabolites of As in broiler breasts were investigated by the method established in this study. Next, the potential health risks of iAs to consumers who ingested the breast of chicken fed with arsenic-containing seaweed were estimated. Finally, the arsenic accumulation from commercial feed to chicken meat and the arsenic exposure risk in humans was accessed by the biotransfer factor.
Part I: Chicken consumption in Taiwan increases yearly, and little is known about the speciation of arsenic in chicken. A novel method was established to detect arsenic species in animal products, including inorganic arsenic (iAs) (arsenite, As(III) and arsenate, As(V)), methyl arsenic (monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA)), organic arsenic (arsenobetaine (AsB) and arsenocholine (AsC)) and organic arsenic-containing animal medicines and metabolites (Roxarsone (Rox), p-arsanilic acid (p-ASA), and 4-hydroxyphenylarsonic acid (4-HPAA)). After ultrasonication combined with bromelain-assisted extraction, the analysis of nine arsenic species was completed within 22 min by HPLC combined with ICPMS. The limit of quantification of this method were in the range of 1.01 - 1.96 µg/kg and obtained recoveries were 78.5% - 109.4%. This analytical method was applied to the identification of arsenic species in chicken meats and the assessment of human arsenic exposure.
Part II: In order to investigate the transfer, accumulation, and metabolism of arsenic species from feed to chicken, a total of 240 day-old broilers were randomly allocated to five treatments groups including control the group (basal diet), 2%, and 5% Sargassum hemiphyllum var. chinense (SHC), 2% and 5% Ulva lactuca (UL) supplementation group, respectively. Arsenic species in feed and chicken breast and arsenic-related metabolic enzymes were analyzed. Broilers fed 5% UL or 5% SHC ingested 1.4- or 78- fold greater total As than birds fed the control diet. The majority of As species were As(V) in the SHC feed and DMA in the breasts of chicks fed the SHC-containing diet. AsB and As(V) were the dominant metabolites in the UL-containing feed, and AsB was the major metabolite in breasts of chicks fed the UL-containing diet. Feeding SHC enhanced hepatic S-adenosyl-methionine and arsenic methyltransferase, whereas feeding UL elevated renal arsenic methyltransferase. The regulatory pattern of As metabolism is different between SHC- and UL-containing feed; SHC-supplemented feed caused increased inorganic arsenic accumulation in the chicken.
Part III: This study evaluated a risk analysis that assessed the risk of arsenic exposure in adults and children consuming chicken breast produced from feed supplemented with seaweed. The Monte Carlo in the estimated daily intake (EDI) simulation results showed that the EDI of iAs was 1.8 and 1.7 times higher in children than that in adults who ate chicken supplemented with 5% SHC and 5% UL, respectively. When the margin of exposure (MOE) was 100%, the consumption rate per body weight (CR/bw) of adult consumers ingesting SHC-chicken breast was 0.4 g/kg day, which was much lower than that in the low-arsenic UL group (1.6 g/kg day). The MOE risk was generally higher in children than adults consumers, and the carcinogenic risk of ingesting chicken breast produced by feeding 5% SHC feed was higher than that feeding with 5% UL.
Part IV: This study developed a viable commercial-feed risk assessment method for iAs in chicken meat. The reliable biotransfer factor (BTF) was estimated as 0.016 day/kg, as iAs/tAs (R2 = 0.9886) or 0.54 day/kg as tAs/tAs (R2 = 0.9939) for whole chicken meat. Bivariate Monte Carlo simulations (n = 10,000) indicated that the 95th percentile of EDI for iAs was 0.002 μg/kg bw/day, which was below the benchmark dose lower limit of 3.0 μg/kg bw/day. The health impact of arsenic hazards on the Taiwanese population was low for chicken meat produced from commercial chicken feeds in this study.
In conclusion, A high-throughput method was developed to simultaneously detect nine arsenic species that may occur in animal products. Seaweed as a feed ingredient enhanced As accumulation in chicken breasts. The SHC-containing feed caused the conversion of As(V) to DMA in chicken breasts. However, the uses of SHC in poultry diets should be cautiously because of the potential accumulation of inorganic As species in chicken breast and the higher risk of exposure to iAs in young children. In addition, we developed a viable commercial-feed risk assessment method for iAs in chicken meat and found that Taiwanese commercial chicken feeds had low health concerns in the general Taiwanese population.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:38:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:38:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xiv
Full text and abbreviation table xvi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 The source and species of arsenic 3
2.2 Arsenic uptake and transport 9
2.3 Metabolic pathways of arsenic 13
2.3.1 Reductive/oxidative methylation pathway 13
2.3.2 Alternative schemes for arsenic methylation 14
2.3.3 One-Carbon Metabolism 17
2.4 Toxicity of arsenic species 19
2.5 International food or feed regulations 20
Chapter 3 Establishment of an analytical method for the detection of arsenic species in chicken breast by HPLC coupled ICPMS 24
3.1 Introduction 24
3.2 Materials and methods 26
3.2.1 Instrumentation 26
3.2.2 Chemicals and reagents 26
3.2.3 Standard reference materials 27
3.2.4 Samples preparation 27
3.2.5 Extraction of arsenic species 29
3.2.6 Determination of total arsenic and arsenic species 30
3.3 Results and Discussion 32
3.3.1 Optimization of separation condition 32
3.3.2 Analysis of As species 36
3.3.3 Conclusion 44
Chapter 4 The effect of arsenic-contained seaweed (Sargassum hemiphyllum var. chinense and Ulva Lactuca) on the As-related enzymes and metabolites in the chicken meat 45
4.1 Introduction 45
4.2 Materials and Methods 46
4.2.1 Animal management and sample collection 46
4.2.2 Blood biochemistry 49
4.2.3 Histopathological examination 49
4.2.4 Determination of total arsenic and arsenic species in chicken breasts 51
4.2.5 Arsenic metabolism-related enzyme assay 51
4.2.6 Statistical analysis 52
4.3 Results 52
4.3.1 Growth performance 52
4.3.2 Blood variables 54
4.3.3 Histopathological examination 56
4.3.4 Arsenic species of seaweed feed in broiler 58
4.3.5 Arsenic species in the chicken breasts 60
4.3.6 Correlation between arsenic species in feed and chicken breasts 62
4.3.7 Enzymes involved in arsenic metabolism 64
4.4 Discussion 66
4.4.1 The considerable variations in As species of seaweed 66
4.4.2 The potential fate of As(V) in SHC-fed chickens 66
4.4.3 Role of As3MT in As biomethylation 67
4.4.4 The potential sources of DMA in chicken breast 68
4.4.5 Possible biotransformation of AsB in broilers 69
4.4.6 Conclusion 69
4.4.7 Declaration 70
Chapter 5 Assessing the dietary probabilistic risk from inorganic arsenic in the meat from chickens provided seaweed-supplemented feeds in the diet of the Taiwanese population 71
5.1 Introduction 71
5.2 Materials and methods 73
5.2.1 Experimental design 73
5.2.2 Analyses of As species 74
5.2.3 Estimate of exposure dose 74
5.2.4 Risk analysis 77
5.3 Results and discussions 78
5.3.1 Exposure assessment of iAs 78
5.3.2 Carcinogenic risks and health benefits 81
5.3.3 Uncertainty analysis 84
5.4 Conclusion 85
Chapter 6 Estimating arsenic biotransfer factors from feed to chicken: a viable approach to animal feed risk assessment 86
6.1 Introduction 86
6.2 Materials and methods 87
6.2.1 Animal test and analytical method 87
6.2.2 Estimating the biotransfer factor 88
6.3 Prediction of As concentration in meat 90
6.3.1 Estimate of exposure dose 90
6.4 Results and discussion 91
6.4.1 Arsenic biotransfer factor 91
6.4.2 Exposure assessment of iAs and tAs 96
6.4.3 Factors affecting the assessment 102
6.4.4 Conclusion 103
6.4.5 Declaration 103
Chapter 7 Conclusion 104
Reference 105
-
dc.language.isoen-
dc.subject風險評估zh_TW
dc.subject雞zh_TW
dc.subject馬尾藻zh_TW
dc.subject石蓴zh_TW
dc.subject砷型態zh_TW
dc.subject砷甲基轉移酶zh_TW
dc.subject生物轉移因子zh_TW
dc.subjectSargassum hemiphyllumen
dc.subjectbiotransfer factoren
dc.subjectarsenic methyltransferaseen
dc.subjectarsenic speciesen
dc.subjectUlva Lactucaen
dc.subjectrisk assessmenten
dc.subjectchickenen
dc.title飼糧中添加石蓴和中國半葉馬尾藻對肉雞砷代謝物、生物轉移及砷暴露風險評估zh_TW
dc.titleThe study of Ulva lactuca and Sargassum hemiphyllum var. chinense on arsenic metabolites, biotransformation, and risk assessment of arsenic exposure in broilersen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳保基;徐濟泰;陳尊賢;林義福zh_TW
dc.contributor.oralexamcommitteeBao-Ji Chen;Jih-Tay Hsu;Zueng-Sang Chen;Yih-fwu Linen
dc.subject.keyword馬尾藻,石蓴,砷型態,砷甲基轉移酶,生物轉移因子,風險評估,雞,zh_TW
dc.subject.keywordSargassum hemiphyllum,Ulva Lactuca,arsenic species,arsenic methyltransferase,biotransfer factor,risk assessment,chicken,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202300480-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-17-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2028-02-14-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  此日期後於網路公開 2028-02-14
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved