Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87216
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基zh_TW
dc.contributor.advisorPen-Chi Chiangen
dc.contributor.author黃靖宇zh_TW
dc.contributor.authorJing-Yu Huangen
dc.date.accessioned2023-05-18T16:25:35Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-11-
dc.date.issued2023-
dc.date.submitted2023-02-16-
dc.identifier.citation1. Al-Mamoori, Ahmed, Anirudh Krishnamurthy, Ali A. Rownaghi, Fateme Rezaei, 2017, Carbon Capture and Utilization Update, Energy Technology, Vol. 5, pp.834-849.
2. Araújo, Ofélia de Queiroz Fernandes, José Luizde Medeiros, 2017, Carbon capture and storage technologies: present scenario and drivers of innovation, Current Opinion in Chemical Engineering, Vol.17, pp.22-34.
3. Arun, Jayaseelan, Kannappan Panchamoorthy Gopinath, Ramachandran Sivaramakrishnan, Panneer Selvam Sundar Rajan, Rajagopal Malolan, Arivalagan Pugazhendhi, 2021, Technical insights into the production of green fuel from CO2 sequestered algal biomass: A conceptual review on green energy, Science of The Total Environment, Vol.755, 142636.
4. Azarkamand, Sahar, Chris Wooldridge, R. M. Darbra, 2020, Review of Initiatives and Methodologies to Reduce CO2 Emissions and Climate Change Effects in Ports, International Journal of Environmental Research and Public Health, Vol.17(11), 3858.
5. Baena-Moreno, Francisco M., Mónica Rodríguez-Galán, Fernando Vega, Bernabé Alonso-Fariñas, Luis F. Vilches Arenas, Benito Navarrete, 2019, Carbon capture and utilization technologies: a literature review and recent advances, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol.41(12), pp.1403-1433.
6. Bellamy, Rob, Javier Lezaun, James Palmer, 2019, Perceptions of bioenergy with carbon capture and storage in different policy scenarios, Nature Communications, Vol.10, 743.
7. Brunner, Paul H., and Helmut Rechberger, 2004, Practical Handbook of Material Flow Analysis. USA: Lewis Publishers.
8. Bobicki, Erin R., Qingxia Liu, Zhenghe Xu, Hongbo Zeng, 2012, Carbon capture and storage using alkaline industrial wastes, Progress in Energy and Combustion Science, Vol. 38, pp.302-320.
9. Borwankar, Dhananjai. S., Anderson, William. A., Fowler, Michael, 2012, A Technology Assessment Tool for Evaluation of VOC Abatement Technologies from Solvent Based Industrial Coating Operations. In Gustavo Lopez Badilla, Benjamin Valdez, Michael Schorr (Eds.), Air Quality - New Perspective. IntechOpen. https://doi.org/10.5772/45745
10. Brunner, Paul H., and Helmut Rechberger, 2004, Practical Handbook of Material Flow Analysis. USA: Lewis Publishers.
11. Bui, Mai, Indra Gunawan, Vincent Verheyen, Paul Feron, Erik Meuleman, Sam Adeloju, 2014, Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants—A review, Computers & Chemical Engineering, Vol. 61, pp.245-265.
12. Bureau of Energy, Ministry of Economic Affairs, 2021a, Monthly Energy Statistical Report. Published online by Bureau of Energy, Ministry of Economic Affairs, R.O.C.(Taiwan). Retrieved from: https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142#A.
13. Bureau of Energy, Ministry of Economic Affairs, 2021b, Database Query: Energy Statistic Section. Published online by Bureau of Energy, Ministry of Economic Affairs, R.O.C.(Taiwan). Retrieved from: https://www.esist.org.tw/Database/Search?PageId=3.
14. Bureau of Energy, Ministry of Economic Affairs, 2021c, CO2 discharge coefficient in 2011. Published online by Bureau of Energy, Ministry of Economic Affairs, R.O.C.(Taiwan). Retrieved from: https://www.moeaboe.gov.tw/ECW/populace/news/Board.aspx?kind=3&menu_id=57&news_id=20933.
15. Burt, Stephanie, Andrew Baxter, Larry Baxter, 2009, Cryogenic CO2 Capture to Control Climate Change Emissions.
16. Chang, E.-E., Shu-Yuan Pan, Yi-Hung Chen, Hsiao-Wen Chu, Chu-Fang Wang, Pen-Chi Chiang, 2011, CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor, Journal of Hazardous Materials, Vol.195, pp.107-114.
17. Chen, Tse-Lun, Yi-Hung Chen, Pen-Chi Chiang, 2020a, Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification, Chemical Engineering Journal, Vol.393, 124678.
18. Chen, Tse-Lun, Si-Lu Pei, Shu-Yuan Pan, Chia-Yii Yu, Chen-Lu Chang, Pen-Chi Chiang, 2020b, An engineering-environmental-economic-energy assessment for integrated air pollutants reduction, CO2 capture and utilization exemplified by the high-gravity process, Journal of Environmental Management, Vol.255(1), 109870.
19. Cheng, Ju-Hsin, Scott C. Bartos, Wei Ming Lee, Shou-Nan Li, Joey (Ching-Hui) Lu, 2013, SF6 usage and emission trends in the TFT-LCD industry, International Journal of Greenhouse Gas Control, Vol.17, pp.106-110.
20. Chiang, Pen-Chi, and Shu-Yuan Pan, 2017, Analytical Methods for Carbonation Material. In Pen-Chi Chiang, Shu-Yuan Pan, Carbon Dioxide Mineralization and Utilization, pp.97-126. Singapore: Springer.
21. Cuéllar-Franca, Rosa M., Adisa Azapagic, 2015, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts, Journal of CO2 Utilization, Vol.9, pp.82-102.
22. Dai, Ming-Yan, 2019, Extraction and Carbonation of MSWI Fly Ash for Stabilization and Utilization via a Rotating Packed Bed. Master Thesis, Graduate Institute of Environmental Engineering, National Taiwan University.
23. Darby, Megan, Isabelle Gerretsen, 2019, Which countries have a net zero carbon goal?, Climate Home News: UK. Retrieved from https://www.climatechangenews.com/2019/06/14/countries-net-zero-climate-goal/.
24. Energy Education Resource Center, 2022, Average CO2 discharge per kilowatt-hour of electricity throughout the entire life cycle. Retrieved from: https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=472.
25. EnergyNow Media, 2022, Introduction to Carbon Capture and Storage (CCS) Technology, EnergyNow.ca: Breakiing News, Data & Events. Retrieved from https://energynow.ca/2022/02/introduction-to-carbon-capture-and-storage-ccs-technology/.
26. Energy & Climate Intelligence Unit, 2022, Net zero emission race. Retrieved from https://eciu.net/netzerotracker.
27. ESIA, 2022, PFC Gases. Retrieved from https://www.eusemiconductors.eu/esia/public-policy/sustainability-esh/pfc-gases0
28. European Parliament, United Nation, 2020, Infographic: timeline of climate change negotiations, Retrieved from https://www.europarl.europa.eu/news/en/headlines/society/20180404STO00910/infographic-timeline-of-climate-change-negotiations.
29. Fawzy, Samer, Ahmed I. Osman, John Doran, David W. Rooney, 2020, Strategies for mitigation of climate change: a review, Environmental Chemistry Letters, Vol.18, pp.2069-2094.
30. Finkbeiner, Matthias, Atsushi Inaba, Reginald B.H. Tan, Kim Christiansen, Hans-Jürgen Klüppel, 2006, The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044, The International Journal of Life Cycle Assessment, Vol. 11, pp.80-85.
31. Garcia-Garcia, Guillermo, Marta Cruz Fernandez, Katy Armstrong, Steven Woolass, Peter Styring, 2021, Analytical Review of Life‐Cycle Environmental Impacts of Carbon Capture and Utilization Technologies, ChemSusChem, Vol.14(4), pp.995-1015.
32. Gaurina-Međimurec, Nediljka, Karolina Novak-Mavar, Matej Majić, 2018, Carbon Capture and Storage (CCS): Technology, Projects and Monitoring Review, The Mining-Geology-Petroleum Engineering Bulletin. DOI: 10.17794/rgn.2018.2.1
33. Greenhouse Gas Protocol, 2020, Technical Guidance for Calculating Scope 3 Emissions (version 1.0): Supplement to the Corporate Value Chain (Scope 3) Accounting & Reporting Standard.
34. Guinée, Jeroen B., Reinout Heijungs, Gjalt Huppes, Alessandra Zamagni, Paolo Masoni, Roberto Buonamici, Tomas Ekvall, Tomas Rydberg, 2011, Life Cycle Assessment: Past, Present, and Future, Environmental Science & Technology, Vol. 45(1), pp.90-96.
35. Han, Sang-Jun, Miran Yoo, Dong-Woo Kim, Jung-Ho Wee, 2011, Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent, Energy & Fuels, Vol. 25(8), pp.3825-3834.
36. Haque, F., R.M. Santos, Y.W. Chiang, 2019, Using nondestructive techniques in mineral carbonation for understanding reaction fundamentals, Powder Technology, Vol.357, pp.134-148.
37. Hilal, S.H., Ayyampalayam, S.N., and Carreira, L.A.: Air-liquid partition coefficient for a diverse set of organic compounds: Henry's law constant in water and hexadecane, Environ. Sci. Technol., 42, 9231-9236, doi:10.1021/ES8005783, 2008.
38. Ho, Hsing-Jung, Atsushi Iizuka, Etsuro Shibata, 2019, Carbon Capture and Utilization Technology without Carbon Dioxide Purification and Pressurization: A Review on Its Necessity and Available Technologies, Industrial & Engineering Chemistry Research, Vol. 58(21), pp.8941-8954.
39. Hu, Guoping, Kathryn H. Smith, Yue Wu, Sandra E. Kentish, Geoff W. Stevens, 2017, Screening Amino Acid Salts as Rate Promoters in Potassium Carbonate Solvent for Carbon Dioxide Absorption, Energy & Fuels, Vol.31(4), pp.4280-4286.
40. Huijbregts, M.A.J., Z.J.N Steinmann, P.M.F. Elshout, G. Stam, F. Verones, M.D.M. Vieira, A. Hollander, M. Zijp, R. van Zelm, 2016, ReCiPe 2016: A harmionized life cycle impact assessment method at midpoint and endpoint level, Report I: Characterization, RIVM Report 2016-0104, National Institute for Public Health and the Environment, The Netherlands.
41. Hussin, Farihahusnah, Mohamed Kheireddine Aroua, 2020, Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018), Journal of Cleaner Production, Vol. 253, 119707.
42. IEA, 2018, 2018 World Energy Outlook: Executive Summary.
43. IEA, 2020, Energy Technology Perspectives 2020, Report extract: Technology needs for net-zero emissions. Retrieved from https://www.iea.org/reports/energy-technology-perspectives-2020/technology-needs-for-net-zero-emissions#abstract.
44. Illuzzi, Francesca, and Harry Thewissen, 2010, Perfluorocompounds emission reduction by the semiconductor industry, Journal of Integrative Environmental Sciences, Vol.7, pp.201-210.
45. IPCC, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, Rajendra K. Pachauri, and Leo Meyer (Ed.), IPCC, Geneva, Switzerland.
46. Jo, Hwanju, So-Hee Park, Young Nam Jang, Soo Chun Chae, Pyeong-Koo Lee, Ho Young Jo, 2014, Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions, Chemical Engineering Journal, doi: http://dx.doi.org/10.1016/j.cej.2014.05.129.
47. Khasreen, Mohamad Monkiz, Phillip F. G. Banfill, Gillian F. Menzies, 2009, Life-Cycle Assessment and the Environmental Impact of Buildings: A Review, Sustainability, Vol.1(3), pp.674-701.
48. Kim, Y.-H. and Kim, K.-H.: Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: Application to the accurate determination of Henry's law constant, J. Chromatogr. A, 1342, 78-85, doi:10.1016/J.CHROMA.2014.03.040, 2014.
49. Kontoyannis, Christos G., and Nikos V. Vagenas, 2000, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, Vol.125, pp.251-255.
50. Koutsoukos, Peter G., and Christos G. Kontoyannis, 1984, Precipitation of calcium carbonate in aqueous solutions, Journal of the Chemical Society, Faraday Transactions 1, Vol.80, pp.1181-1192.
51. Laner, David, Helmut Rechberger, 2016, Material Flow Analysis. In: Finkbeiner M. (ed.) Special Types of Life Cycle Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht.
52. Lassen, Carsten, Erik Hansen, COWI, Consulting Engineers and Planners AS, 2000, Paradigm for substance flow analysis. Guide for SFAs carried out for the Danish EPA (Miljøprojekt) Environmental Project No. 577.
53. Leung, Dennis Y. C., Giorgio Caramanna, M. Mercedes Maroto-Valer, 2014, An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews, Vol.39, pp.426-443.
54. Li, Huan and Mei-Po Kwan, 2018, Advancing analytical methods for urban metabolism studies, Resources, Conservation and Recycling, Vol.132, pp.239-245.
55. Lim, Mihee, Gi-Chun Han, Ji-Whan Ahn, Kwang-Suk You, 2010, Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology, International Journal of Environmental Research and Public Health, Vol. 7(1), pp.203-228.
56. Liu, C.H., Sue J. Lin, C. Lewis, 2010, Life cycle assessment of DRAM in Taiwan's semiconductor industry, Journal of Cleaner Production, Vol.18(5), pp.419-425.
57. Liu, Hwai-Shen, Chia-Chang Lin, Sheng-Chi Wu, and Hsien-Wen Hsu, 1996, Characteristics of a Rotating Packed Bed, Industrial & Engineering Chemistry Research, Vol. 35(10), pp.3590-3596.
58. Liu, Mark, 2021, Taiwan and the foundry model, Nature Electronics, Vol.4, pp.318-320.
59. Lockwood, Toby, 2017, A Comparative Review of Next-generation Carbon Capture Technologies for Coal-fired Power Plant, Energy Procedia, Vol. 114, pp.2658-2670.
60. Lupton, R.C., J.M. Allwood, 2017, Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use, Resources, Conservation and Recycling, Vol.124, pp.141-151.
61. Lv, Yuting, Yuli Zhou, Wenlong Wang, Jing Sun, Zhanlong Song, Ke Wang, 2019, VOC degradation by microwave‑induced metal discharge and thermal destruction: a comparative study, Waste Disposal & Sustainable Energy, Vol.1, pp.261-270.
62. Magdziarz, Aneta, Sebastian Werle, 2014, Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS, Waste Management, Vol.34, pp.174-179.
63. Mikulčić, Hrvoje, Iva Ridjan Skov, Dominik Franjo Dominković, Sharifah Rafidah Wan Alwi, Zainuddin Abdul Manan, Raymond Tan, Neven Duić, Siti Nur Hidayah Mohamad, Xuebin Wang, 2019, Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2, Renewable and Sustainable Energy Reviews, Vol.114, 109338.
64. Mondal, Madhumanti, Shrayanti Goswami, Ashmita Ghosh, Gunapati Oinam, O. N. Tiwari, Papita Das, K. Gayen, M. K. Mandal, G. N. Halder, 2017, Production of biodiesel from microalgae through biological carbon capture: a review, 3 Biotech, Vol.7, 99.
65. Osman, Mogahid, Mohammed N. Khan, Abdelghafour Zaabout, Schalk Cloete, Shahriar Amini, 2021, Review of pressurized chemical looping processes for power generation and chemical production with integrated CO2 capture, Fuel Processing Technology, Vol. 214, 106684.
66. Pan, Shu-Yuan, E.E. Chang, Pen-Chi Chiang, 2012, CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications, Aerosol and Air Quality Research, Vol.12, pp.770-791.
67. Pan, Shu-Yuan, Ana Maria Lorente Lafuente, Pen-Chi Chiang, 2016a, Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization, Applied Energy, Vol.170, pp.269-277.
68. Pan, Shu-Yuan, E.-E. Chang, Hyunook Kim, Yi-Hung Chen, Pen-Chi Chiang, 2016b, Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications, Journal of Hazardous Materials, Vol.307, pp.253-262.
69. Pan, Shu-Yuan, Pengchen Wang, Qian Chen, Wenju Jiang, Ying-Hao Chu, Pen-Chi Chiang, 2017, Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications, Journal of Cleaner Production, Vol. 149, pp.540-556.
70. Pan, Shu-Yuan, Pen-Chi Chiang, Tse-lun Chen, Si-Lu Pei, 2018, CO2 Mineralization and Utilization by a High-Gravity Carbonation Process: Past, Present, and Future, Integrated and Sustainable Environmental Remediation, Chapter 5, pp.97-104.
71. Parthiban, Anupreetha, Avinash Ashwin Raj Gopal, Parthiban Siwayanan, Kit Wayne Chew, 2021, Disposal methods, health effects and emission regulations for sulfur hexafluoride and its by-products, Journal of Hazardous Materials, Vol.417, 126107.
72. Peters, G. P., R. M. Andrew, J. G. Canadell, P. Friedlingstein, R. B. Jackson, J. I. Korsbakken, C. Le Quéré, A. Peregon, 2020, Carbon dioxide emissions continue to grow amidst slowly emerging climate policies, Nature Climate Change, Vol.10, pp.3-6.
73. Ritchie, Hannah and Max Roser, 2020, CO₂ and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.
74. Rosenbaum, Ralph K., Michael Z. Hauschild, Anne-Marie Boulay, Peter Fantke, Alexis Laurent, Montserrat Núñez & Marisa Vieira, 2017, Life Cycle Impact Assessment. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds) Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-56475-3_10
75. SAIC, 2006, Life Cycle Assessment: Principles and Practice, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.
76. Sander, S.P., Abbatt, J., Barker, J.R., Burkholder, J.B., Friedl, R.R., Golden, D.M., Huie, R.E., Kolb, C.E., Kurylo, M.J., Moortgat, G.K., Orkin, V.L., and Wine, P.H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2011.
77. Saran R. K., Arora V., and Yadav S., 2018, CO2 sequestration by mineral carbonation: a review, Global NEST Journal, Vol 20(3), pp. 497-503.
78. Schmidt, Mario, 2008, The Sankey Diagram in Energy and Material Flow Management: Part II: Methodology and Current Applications, Journal of Industrial Ecology, Vol.12, pp.173-185.
79. Seifritz, W., 1990, CO2 Disposal by Means of Silicates, Nature, Vol.345,pp. 486–486.
80. SEMI, 2020, First-quarter 2020 global semiconductor equipment billings up 13 percent year-over-year. Retrieved from https://www.semi.org/en/news-resources/press/Q1-2020-wwsems.
81. Sevigné-Itoiz, Eva, Carles M. Gasol, Joan Rieradevall, Xavier Gabarrell, 2015, Methodology of supporting decision-making of waste management with material flow analysis (MFA) and consequential life cycle assessment (CLCA): case study of waste paper recycling, Journal of Cleaner Production, Vol.105, pp.253-262.
82. Shah, Kinjal J., Toyoko Imae, Atindra Shukla, 2015, Selective capture of CO2 by poly(amido amine) dendrimer-loaded organoclays, RSC Advances, Vol. 5, doi: 10.1039/C5RA04904K.
83. Shreyash, Nehil, Muskan Sonker, Sushant Bajpai, Saurabh Kr Tiwary, Mohd Ashhar Khan, Subham Raj, Tushar Sharma, Susham Biwas, The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization, Energies, Vol.14(16), 4978.
84. Silva, Diogo Aparecido Lopes, José Augusto de Oliveira, Yovana M. B. Saavedra, Aldo Roberto Ometto, Joan Rieradevall i Pons, Xavier Gabarrell Durany, 2015, Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus, Resources, Conservation and Recycling, Vol.94, pp.159-168.
85. Straver, E. J. M. and de Loos, T. W.: Determination of Henry's law constants and activity coefficients at infinite dilution of flavor compounds in water at 298 K with a gas-chromatographic method, J. Chem. Eng. Data, 50, 1171-1176, doi:10.1021/JE0495942, 2005.
86. Song, Chunfeng, Qingling Liu, Shuai Deng, Hailong Li, Yutaka Kitamura, 2019, Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges, Renewable and Sustainable Energy Reviews, Vol. 101, pp.265-278.
87. Song, Xiao, Chen Xiaoyu, Qi Lin, Liu Yanna, 2019, A Review of Mineral Carbonation from Industrial Waste, IOP Conference Series: Earth and Environmental Science, Vol.401, 012008.
88. Taiwan Power Company, 2022, Statistics Graphs, Information Disclosure: History of Net Power Generated and Purchased. Published online by Taiwan Power Company. Retrieved from: https://www.taipower.com.tw/en/news_noclassify_info.aspx?id=4191&chk=400496c6-2761-4751-9ff7-b827ba4718d6&mid=4440¶m=pn%3d1%26mid%3d4440%26key%3d.
89. Ukwattage, N. L., P. G. Ranjith, X. Li, 2017, Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation, Measurement, Vol. 97, pp.15-22.
90. United Nations Environment Programme, 2020, Emission Gap Report 2020, Nairobi.
91. Ünveren, Elif Erdal, Bahar Özmen Monkul, Şerife Sarıoğlan, Nesrin Karademir, Erdoğan Alper, 2017, Solid amine sorbents for CO2 capture by chemical adsorption: A review, Petroleum, Vol. 3, pp.37-50.
92. USEPA, 2020a, Scope 1 and Scope 2 Inventory Guidance, EPA Center for Corporate Climate Leadership. Retrieved from https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance.
93. USEPA, 2020b, Scope 3 Inventory Guidance, EPA Center for Corporate Climate Leadership. Retrieved from https://www.epa.gov/climateleadership/scope-3-inventory-guidance.
94. Vandenbroucke, Arne M., 2015, Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis, Ghent University.
95. Wang, Chi-Tai, and Chui-Sheng Chiu, 2014, Competitive strategies for Taiwan's semiconductor industry in a new world economy, Technology in Society, Vol. 36, pp.60-73.
96. Wang, Xiaoxing, and Chunshan Song, 2020, Carbon Capture from Flue Gas and the Atmosphere: A Perspective, Frontiers in Energy Research, Vol.15.
97. Wilberforce, Tabbi, Ahmad Baroutaji, Bassel Soudan, Abdul Hai Al-Alami, Abdul Ghani Olabi, 2019, Outlook of carbon capture technology and challenges, Science of The Total Environment, Vol.657, pp.56-72.
98. World Resources Institute, 2021, What is a Long-term Strategy? Retrieved from https://www.wri.org/climate/what-long-term-strategy.
99. Xing, Yi-Jia, Tse-Lun Chen, Meng-Yao Gao, Si-Lu Pei, Wei-Bin Pan, Pen-Chi Chiang, 2021, Comprehensive Performance Evaluation of Green Infrastructure Practices for Urban Watersheds Using an Engineering–Environmental–Economic (3E) Model, Sustainability, Vol.13(9), 4678.
100. Xu, Fu-Liu, Shan-Shan Zhao, Richard W. Dawson, Jun-Yi Hao, Ying Zhang, Shu Tao, 2006, A triangle model for evaluating the sustainability status and trends of economic development, Ecological Modelling, Vol.195, pp.327-337.
101. Xyla, Aglaia G., Efthimios K. Giannimaras, Petros G. Koutsoukos, 1991, The precipitation of calcium carbonate in aqueous solutions, Colloid and Surfaces, Vol.53(2), pp.241-255.
102. Zhang, Honghong, Lingyun Dai, Yuan Feng, Yuhan Xu, Yuxi Liu, Guangsheng Guo, Hongxing Dai, Chongchen Wang, Can Wang, Hsing-Cheng Hsi, Haibao Huang, Jiguang Deng, 2020, A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone Over Au/α-Fe2O3 nanosheets, Applied Catalysis B: Environmental, Vol.275(15), 119011.
103. Zhang, Jian, Guishan Yang, Lijie Pu, Buzhuo Peng, 2014, Trends and Spatial Distribution Characteristics of Sustainability in Eastern Anhui Province, China, Sustainability, Vol.6(12), pp.8398-8414.
104. Zhang, Y. X., Luo H. L., Wang C., 2021, Progress and trends of global carbon neutrality pledges, Journal of Climate Change Research, Vol.17(1), pp.88-97.
105. Zhu, Lingli, Dekui Shen, Kai Hong Luo, 2020, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, Journal of Hazardous Materials, Vol.389, 122102.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87216-
dc.description.abstract本研究於超重力旋轉填充床(Rotating Packed Bed, RPB)中,利用多股來自半導體業所排放之廢水進行二氧化碳捕捉實驗,並透過添加來自鋼鐵業之爐渣提高捕捉二氧化碳效能,以及藉由盤查半導體產業內二氧化碳排放源,建立半導體產業內揮發性有機物(Volatile Organic Compounds, VOCs)控制情境,並搭配不同操作條件下之二氧化碳捕捉表現進行生命週期評估(Life-cycle Assessment, LCA),以瞭解透過超重力旋轉填充床技術進行之二氧化碳捕捉程序之綜效表現。本研究中探討不同操作條件及不同操作流程對於碳酸化反應之影響,包含不同氣液比、轉速、水質及直接碳酸化或間接碳酸化對碳捕捉能力的影響。本研究發現當氣液比較低時會有較佳的碳捕捉表現;旋轉填充床轉速並非為影響碳捕捉表現之關鍵因素,惟當轉速越高時,其所需的能耗將會越高而增加對環境的影響;而在水質方面,鹼性及富含鈣離子的廢水是較為有利的,因此透過添加鋼鐵業之爐渣於廢水中,使爐渣所富含的大量鹼性物質於廢水中釋放,將明顯提升碳捕捉效能,至多可捕捉13.44g CO2/L,且每公克的爐渣可額外捕捉約0.17公克之二氧化碳。而有關碳捕捉各情境之綜效分析,爐渣的添加不僅提高了碳捕捉效能,也能避免較高的爐渣處理費用,於經濟觀點具有優勢,因此在旋轉填充床及蓄熱式焚化爐(Regenerative Thermal Oxidizer, RTO)系統對VOCs之控制情境下,搭配鹼性離子交換樹脂鹼性廢水添加爐渣進行碳捕捉會有最佳的表現。zh_TW
dc.description.abstractThis study aims to develop high-gravity rotating packed bed (RPB) technology for CO2 reduction by various streams of wastewater in the semi-conductor industry. To enhance the effectiveness of CO2 capture, the slag from steelmaking industry is introduced. The effects of different operating condition and modes such as different G/L ratio, rotating speed, water quality, and direct or indirect carbonation on carbonation process would also be investigated.
The research work shows that better performance for CO2 capture would be occurred when G/L ratio is lower. Besides, the rotating speed isn’t the key factor affecting CO2 capture performance. Nonetheless, the higher the rotating speed is, the more energy consumption and the environmental impacts would be. For water quality, alkaline and calcium ion-rich wastewater is more advantageous. Adding steelmaking slag to the wastewater, a large amount of alkaline substances would be released, which would significantly improve the CO2 capture performance. The most amount of CO2 capture is 13.44 g CO2/L, and an additional 0.17 grams of CO2 could be captured per gram of steelmaking slag.
In addition, the inventory of CO2 emission sources in semi-conductor industry is conducted to establish the systems of volatile organic compounds (VOCs) control. Life cycle assessment (LCA) is carried out with the performance of CO2 capture under different operating conditions to understand the performance of CO2 reduction via RPB. For comprehensive performance evaluation, adding steelmaking slag could improve the effectiveness of CO2 capture, avoid the expense of slag treatment, and be advantageous in economic aspect. As a result, with VOCs control via RPB and regenerative thermal oxidizer (RTO) system, wastewater A with slag addition has the best CO2 capture performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:25:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T16:25:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents VI
List of Figures VIII
List of Tables X
Comment for Oral Defense XII
Chapter 1 Introduction 1
1-1 Research Background 1
1-2 Carbon Neutrality and International Climate Actions 7
1-3 Research Objectives 12
Chapter 2 Literature Review 13
2-1 GHG in Semi-conductor Industry 13
2-1-1 GHG Sources in Semi-conductor Industry 13
2-1-2 VOCs Control Technologies 16
2-2 Carbon Capture, Storage, and Utilization (CCSU) Technologies 24
2-2-1 Carbon Capture Principles 25
2-2-2 Carbon Control Technologies 30
2-2-3 Carbon Storage and Utilization 35
2-3 Carbonation Process 37
2-3-1 Direct Mineral Carbonation 38
2-3-2 Indirect Mineral Carbonation 39
2-3-3 Accelerated Carbonation 43
2-4 Rotating Packed Bed (RPB) 45
2-5 Life Cycle Assessment (LCA) 48
2-6 3E Performance Evaluation 55
2-6-1 3E Triangle Model 55
2-6-2 Key Performance Indicators for 3E Triangle Model 57
Chapter 3 Material and Methods 60
3-1 Research Framework 60
3-2 Materials 61
3-2-1 Source of Agents 61
3-2-2 Equipment 62
3-3 Experimental Procedure 66
3-4 Life-cycle Assessment (LCA) 70
3-5 3E Performance Evaluation 73
Chapter 4 Results and Discussions 76
4-1 Performance of Carbonation Process via RPB 76
4-1-1 Inventory of CO2 Emissions in Semi-conductor Industry 76
4-1-2 Characteristics of Wastewater Composition 79
4-1-3 Effect of Wastewater and Operation Condition on Carbonation Process via RPB 83
4-1-4 Effect of Mixing Wastewater and Adding Steelmaking Slag on Carbonation Process via RPB 89
4-2 Performance Evaluation of VOCs Control for CO2 Reduction 98
4-2-1 Performance Evaluation for VOCs Control 98
4-2-2 VOCs Control Processes for CO2 Reduction 102
4-3 Life-cycle Assessment (LCA) of CO2 Capture Process 104
4-3-1 Description of Scope and System 104
4-3-2 Inventory Analysis 113
4-3-3 Impact Assessment 114
4-3-4 Integrated Interpretation 121
4-4 Comprehensive Performance Evaluation of CO2 Capture Process 124
4-4-1 Analysis on Engineering Aspect 124
4-4-2 Analysis on Environmental Aspect 128
4-4-3 Analysis on Economic Aspect 130
4-4-4 Operation Condition Optimization by 3E Triangle Model 133
Chapter 5 Conclusions and Recommendations 136
5-1 Conclusions 136
5-2 Recommendations 138
Reference 139
-
dc.language.isoen-
dc.title利用RPB技術進行二氧化碳減量之綜效分析—以半導體業為例zh_TW
dc.titleComprehensive Performance Evaluation of CO2 Reduction via the RPB Technology in the Semi-conductor Industryen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee顧洋;侯嘉洪;張章堂;潘述元zh_TW
dc.contributor.oralexamcommitteeYoung Ku;Chia-Hung Hou;Chang-Tang Chang;Shu-Yuan Panen
dc.subject.keyword半導體業,超重力技術,二氧化碳捕捉,生命週期評估,3E分析,zh_TW
dc.subject.keywordsemi-conductor industry,high-gravity technology,CO2 capture,life-cycle assessment,3E analysis,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202300187-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2026-01-17-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
6.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved