請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87159
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志宏 | zh_TW |
dc.contributor.advisor | Jyh-Horng Chen | en |
dc.contributor.author | 黃昶縉 | zh_TW |
dc.contributor.author | Chang-Jin Huang | en |
dc.date.accessioned | 2023-05-18T16:05:11Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-05-10 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-16 | - |
dc.identifier.citation | [1] Ogawa S et al. 1990 Brain magnetic resonance imaging with contrast dependent on blood oxygenation Proc. Natl Acad. Sci. USA 87 9868–72
[2] Ogawa S et al. 1992 Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging Proc. Natl Acad. Sci. USA 89 5951–5 [3] L. Pauling and Charles D. Coryell, The magnetic properties and structure of hemoglobin and related substances. Science, 1936; 488-489. [4] P. Matthews, P. Jezzard, Functional magnetic resonance imaging. J. Neurol., Neurosurg. Psychiatry, 2004; 75 : 6-12 [5] Noam Harel . Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab. 2002 Aug;22(8):908-17. doi: 10.1097 [6] Sridhar S Kannurpatti . Negative functional response to sensory stimulation and its origins. J Cereb Blood Flow Metab. 2004 Jun;24(6):703-12. doi: 10.1097/01.WCB.0000121232.04853.46. [7] Bianciardi M, Fukunaga M, Van Gelderen P, De Zwart JA, Duyn JH. Negative BOLD-fMRI signals in large cerebral veins. J Cereb Blood Flow Metab 31: 401–412, 2011. [8] Ulrich Schridde . Negative BOLD with Large Increases in Neuronal Activity. Cerebral Cortex, Volume 18, Issue 8, August 2008, Pages 1814–1827, https://doi.org/10.1093/cercor/bhm208 [9] H. Lu, X. Golay, J.J. Pekar, P.C.M. van Zijl. Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J. Cereb. Blood Flow Metab., 24 (2004), pp. 764-770 [10] Tsukasa Nagaoka. Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition. J Cereb Blood Flow Metab. 2006 Aug;26(8):1043-51. doi: 10.1038/sj.jcbfm.9600251. Epub 2005 Dec 14. [11] Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577, doi:10.1038/nn1675 [12] Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN, Ulbert I, Boas DA, Kleinfeld D, Dale AM (2007) Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci 27:4452–4459 [13] B. Stefanovic, J.M. Warnking, G.B. Pike Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage, 22 (2) (2004), pp. 771-778 [14] Tomasi, Dardo, et al. "Common deactivation patterns during working memory and visual attention tasks: An intra‐subject fMRI study at 4 Tesla." Human brain mapping 27.8 (2006): 694-705. [15] Anticevic, Alan, et al. "The role of default network deactivation in cognition and disease." Trends in cognitive sciences 16.12 (2012): 584-592. [16] Gusnard, Debra A., and Marcus E. Raichle. "Searching for a baseline: functional imaging and the resting human brain." Nature reviews neuroscience 2.10 (2001): 685-694. [17] Raichle, Marcus E., et al. "A default mode of brain function." Proceedings of the national academy of sciences 98.2 (2001): 676-682. [18] Daselaar SM, et al. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. [19] Weissman DH, et al. The neural bases of momentary lapses in attention. Nat Neurosci. 2006;9:971–978. [20] Daselaar, Sander M., Steven E. Prince, and Roberto Cabeza. "When less means more: deactivations during encoding that predict subsequent memory." Neuroimage 23.3 (2004): 921-927. [21] Meltzer, Jed A., et al. "Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects." Clinical neurophysiology 118.11 (2007): 2419-2436. [22] Hayden B. Y., Smith D. V., Platt M. L. (2009). Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc. Natl. Acad. Sci. U.S.A. 106, 5948–5953 10.1073/pnas.0812035106 [23] Jerbi, Karim, et al. "Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG." Frontiers in systems neuroscience (2010): 27. [24] E Mark Haacke . Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015 Jan;33(1):1-25. [25] Andreas Deistung. Overview of quantitative susceptibility mapping. NMR Biomed.2017;30:e3569 [26] Close J. Acosta-Cabronero, A. Cardenas-Blanco, M.J. Betts, M. Butryn, J.P. Valdes-Herrera, I. Galazky, P.J. Nestor. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain, 140 (2017), pp. 118-131, 10.1093/brain/aww278 [27] Close J. Acosta-Cabronero, G.B. Williams, A. Cardenas-Blanco, R.J. Arnold, V. Lupson, P.J. Nestor. In vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's disease. PLoS ONE, 8 (2013), p. e81093, 10.1371/journal.pone.0081093 [28] Dávid Z Balla. Functional quantitative susceptibility mapping (fQSM). Neuroimage. 2014 Oct 15;100:112-24. doi: 10.1016 [29] Chia-Ming Shih. Functional quantitative susceptibility mapping (fQSM) of rat brain during flashing light stimulation. Neuroimage. 2021 Jun;233:117924. doi: 10.1016 [30] Lancione, Marta, et al. "Complementing canonical fMRI with functional Quantitative Susceptibility Mapping (fQSM) in modern neuroimaging research." NeuroImage 244 (2021): 118574. [31] Zhou L, Choi JK, Kee Y, Wang Y, Seo JK. Dipole incompatibility related artifacts in quantitative susceptibility mapping. arXiv preprint arXiv 2017:1701.05457. [32] Choi JK, Park HS, Wang S, Wang Y, Seo JK. Inverse problem in quantitative susceptibility mapping. SIAM J Imaging Sci 2014;7:1669–1689. [33] Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, et al.. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 2011; 66: 777–83. doi: 10.1002/mrm.22816 [34] Zhe Liu. MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med. 2018 May;79(5):2795-2803. doi: 10.1002 [35] Alexey V Dimov . Global cerebrospinal fluid as a zero-reference regularization for brain quantitative susceptibility mapping. J Neuroimaging. 2022 Jan;32(1):141-147. doi: 10.1111 [36] Matti Hämäläinen, R.H., Risto J. Ilmoniemi, Jukka Knuutila, and Olli V. Lounasmaa. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern physics, 1993. 65: p. 413-493. [37] Y H Lee, K.K.Y., H Kwon, J M Kim, K Kim, Y K Park, H C Yang, K L Chen, S Y Yang and HE Horng, A whole-head magnetoencephalography system with compact axial gradiometer structure. Superconductor Science and Technology, 2009. 22(4). [38] Lopes da Silva F. 2013. EEG and MEG: Relevance to neuroscience. Neuron 80: 1112– 1128. [39] TW. Wilson, E. Heinrichs-Graham, AL. Proskovec, TJ. McDermott. Neuroimaging with magnetoencephalography: a dynamic view of brain pathophysiology. Transl Res (2016) 175:17–36. [40] LM Ward. Synchronous neural oscillations and cognitive processes. Trends in cognitive sciences, 2003 [41] Pfurtscheller, Gert, and FH Lopes Da Silva. "Event-related EEG/MEG synchronization and desynchronization: basic principles." Clinical neurophysiology 110.11 (1999): 1842-1857. [42] Justin Riddle. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Curr Biol. 2020 May 4;30(9):1748-1754.e4. doi: 10.1016/j.cub.2020.02.065. Epub 2020 Apr 9. [43] Wolfgang Klimesch. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007 Jan;53(1):63-88. doi: 10.1016/j.brainresrev.2006.06.003. [44] S. Haegens, et al.α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking Proc. Natl. Acad. Sci. U.S.A., 108 (2011), pp. 19377-19382 [45] Nir, Yuval, et al. "Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations." Current biology 17.15 (2007): 1275-1285. [46] Shmuel, Amir, et al. "Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1." Nature neuroscience 9.4 (2006): 569-577. [47] Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225 [48] Hammond KE, Lupo JM, Xu D, Metcalf M, Kelley DA, Pelletier D, Chang SM, Mukherjee P, Vigneron DB, Nelson SJ. Development of a robust method for generating 7.0 T multi-channel phase images of the brain with application to normal volunteers and patients with neurological diseases. NeuroImage 2008; 39: 1682–1692. [49] Stephen M Smith. Fast robust automated brain extraction. Hum Brain Mapp. 2002 Nov;17(3):143-55. doi: 10.1002/hbm.10062. [50] Wei Li. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR Biomed. 2014 Feb; 27(2): 219–227. [51] Miguel Arevallilo Herráez. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics Vol. 41, Issue 35, pp. 7437-7444 (2002) [52] Bernstein MA, King KF. Handbook of MRI pulse sequences. Elsevier: Burlington, MA, 2004. [53] Li L, Leigh JS. High-precision mapping of the magnetic field utilizing the harmonic function mean value property. Journal of magnetic resonance. 2001;148(2):442–448. [54] Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage. 2011;54(4):2789–2807. [55] Özbay PS, Deistung A, Feng X. Nanz D. Reichenbach JR: Schweser F. A comprehensive numerical analysis of background phase correction with V-SHARP. NMR Biomed, 2016. DOI:10.1002/nbm.3550 [56] Wei H, Zhang Y, Gibbs E, Chen NK, Wang N, Liu C. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging. NMR Biomed 2017;30(4). doi: 10.1002/nbm.3501. [57] de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, et al.. Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010; 63: 194–206. doi: 10.1002/mrm.22187 [58] Hore, Alain, and Djemel Ziou. "Image quality metrics: PSNR vs. SSIM." 2010 20th international conference on pattern recognition. IEEE, 2010. [59] Gross, Joachim, et al. "Dynamic imaging of coherent sources: studying neural interactions in the human brain." Proceedings of the National Academy of Sciences 98.2 (2001): 694-699. [60] Haegens, Saskia, et al. "α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking." Proceedings of the National Academy of Sciences 108.48 (2011): 19377-19382. [61] Gusnard, Debra A., and Marcus E. Raichle. "Searching for a baseline: functional imaging and the resting human brain." Nature reviews neuroscience 2.10 (2001): 685-694 [62] Confais, Joachim, et al. "Is there an intrinsic relationship between LFP beta oscillation amplitude and firing rate of individual neurons in macaque motor cortex?." Cerebral Cortex Communications 1.1 (2020): tgaa017. [63] Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A (2013) The ups and downs of beta oscillations in sensorimotor cortex. Exp Neurol 245:15–26. doi:10.1016/j.expneurol.2012.09.014 pmid:23022918 [64] Jackson, A., et al. "Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation." The Journal of physiology 541.3 (2002): 685-699. [65] Kilner, James M., et al. "Hemodynamic correlates of EEG: a heuristic." Neuroimage 28.1 (2005): 280-286. [66] L-T. Hsieh, C. Ranganath. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage, 85 (2014), pp. 721-729 [67] P.B. Sederberg, M.J. Kahana, M.W. Howard, E.J. Donner, J.R. Madsen Theta and gamma oscillations during encoding predict subsequent recall J. Neurosci., 23 (2003), pp. 10809-10814 [68] O. Jensen, C.D. Tesche. Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15 (2002), pp. 1395-1399 [69] Mizuhara, H. & Yamaguchi, Y. (2007) Human cortical circuits for central executive function emerge by theta phase synchronization. NeuroImage, 36, 232–244. [70] M. Kawasaki, K. Kitajo, Y. Yamaguchi. Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory European Journal of Neuroscience, 31 (2010), pp. 1683-1689 [71] G. Pfurtscheller, F.H. Lopes da Silva (Eds.), Event-Related Desynchronization. Handbook Electroencephalography and Clinical Neurophysiology, Vol. 6, Elsevier (1999) [72] Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969–1974. [73] Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. (2014). Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 87, 356–362. [74] W. Klimesch. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16 (12) (2012), pp. 606-617, 10.1016/j.tics.2012.10.007 [75] Fukuda, K., Mance, I., & Vogel, E. K. (2015). α power modulation and event-related slow wave provide dissociable correlates of visual working memory. Journal of Neuroscience, 35(41), 14009–14016. [76] Engel, A. K., and Fries, P. (2010). Beta-band oscillations – signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165. [77] Jenkinson, N., and Brown, P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 34, 611–618. [78] Hanslmayr, S., Staudigl, T., and Fellner, M. C. (2012). Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis. Front. Hum. Neurosci. 6:74. doi:10.3389/fnhum.2012.00074 [79] J. Sarnthein, H. Petsche, P. Rappelsberger, G.L. Shaw, A. von Stein Synchronization between prefrontal and posterior association cortex during human working memory Proceedings of the National Academy of Sciences of the United States of America, 95 (1998), pp. 7092-7096 [80] Neuper, Christa, and Gert Pfurtscheller. "Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates." International journal of psychophysiology 43.1 (2001): 41-58 [81] Chadick, James Z., and Adam Gazzaley. "Differential coupling of visual cortex with default or frontal-parietal network based on goals." Nature neuroscience 14.7 (2011): 830-832. [82] Grady, Cheryl L., et al. "A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains." Cerebral cortex 20.6 (2010): 1432-1447. [83] Hillman, Elizabeth MC. "Coupling mechanism and significance of the BOLD signal: a status report." Annual review of neuroscience 37 (2014): 161-181. [84] Constable, R. Todd. "Challenges in fMRI and its limitations." Functional neuroradiology: principles and clinical applications (2012): 331-344. [85] Parrish, Todd B., et al. "Impact of signal‐to‐noise on functional MRI." Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 44.6 (2000): 925-932. [86] Sun, H., P. Seres, and A. H. Wilman. "Structural and functional quantitative susceptibility mapping from standard fMRI studies." NMR in Biomedicine 30.4 (2017): e3619. [87] Özbay, Pinar Senay, et al. "Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A group level comparison with BOLD fMRI and PET." Neuroimage 137 (2016): 52-60. [88] Borogovac, Ajna, and Iris Asllani. "Arterial spin labeling (ASL) fMRI: advantages, theoretical constrains and experimental challenges in neurosciences." International journal of biomedical imaging 2012 (2012). [89] Lu, Hanzhang, and Peter CM van Zijl. "A review of the development of Vascular-Space-Occupancy (VASO) fMRI." Neuroimage 62.2 (2012): 736-742. [90] Rodgers, Zachary B., John A. Detre, and Felix W. Wehrli. "MRI-based methods for quantification of the cerebral metabolic rate of oxygen." Journal of Cerebral Blood Flow & Metabolism 36.7 (2016): 1165-1185. [91] Calhoun, V.D., et al., Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage, 2006. 30(2): p. 544-553. [92] Kriegeskorte, Nikolaus, Marieke Mur, and Peter A. Bandettini. "Representational similarity analysis-connecting the branches of systems neuroscience." Frontiers in systems neuroscience (2008): 4. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87159 | - |
dc.description.abstract | 功能性磁振造影(functional MRI, fMRI)為一項非侵入性的神經影像技術,以血氧濃度相依對比機制(Blood Oxygenation Level Dependent, BOLD)為基礎,量測神經活動所引發的血氧濃度變化,能夠定位大腦功能區域,於神經科學領域中有著相當廣泛的應用。然而BOLD機制並不完整,目前科學家們使用神經血管耦合來解釋正活化血氧相依反應,但負活化血氧相依反應(Negative BOLD Response, NBR)的成因卻不清楚,主要原因在過去NBR假說無法一統多年來研究者觀測到的fMRI的現象,目前為止NBR有三種假說 : (1)血管性成因的血液竊取假說(2)神經血管混和性的神經血氧不同步假說(3)神經性成因的神經抑制假說。每個假說有各自的生理機制與證據支持,導致負活化血氧相依機制尚未有定論。本篇論文探討了複雜認知任務在預設模式網絡(Default mode network, DMN) 誘發之NBR,使用功能性定量磁化率影像(functional QSM, fQSM)技術定量血氧濃度變化之訊息,並使用腦磁圖(magnetoencephalography, MEG) 觀察負活化反應區域的神經活動現象,藉此來探討NBR背後的機制,尤其利用神經資訊來討論神經抑制假說。此外,fQSM靈敏度會受到磁化率影像計算過程中產生的假影及雜訊影響,本研究的另一目的在於提升fQSM偵測率,利用以腦脊隨液為零基準之正則化方法進行優化。
本研究收取18位受試者之功能性磁振影像,實驗採用2-back工作記憶任務誘發負活化血氧相依反應。時間序列相位影像進行相位展開、去除背景磁場以及腦脊隨液為零基準之正則優化磁化率影像分析流程,隨後進行功能性影像前處理及統計分析計算大腦活化區域。腦磁圖實驗採用相同任務,收集之腦磁訊號使用時頻分析及溯源分析觀察頻帶功率變化及活動源,利用頻帶功率變化具有神經興奮或抑制的特性來探討負血氧機制。為了連結fQSM與腦磁圖資料,以fQSM活化區域的峰值建立ROI,圈選18位受試者fQSM磁化率變化與MEG溯源分析之功率,進行皮爾森相關性分析,以及使用餘弦相似性計算fQSM活化圖譜與MEG功率圖譜的相似性。 優化後之fQSM於腦室及大腦邊界處減少陰影假影,降低時間序列QSM影像的變異性,使fQSM能夠偵測多出1.54倍的共同體素比例。fQSM與腦磁圖的相關性分析中,於DMN的楔前葉觀察到NBR 與Alpha功率成正相關(r=0.51,p=0.04),且與其他功率相比有最高的餘弦相似性,表明了此區域的NBR可能與神經抑制有關,並推測執行任務時DMN的負活化可能參與抑制非任務相關資訊,使大腦可以專注執行記憶任務。 綜上所述,藉由fQSM及腦磁圖技術,本研究在負活化血氧相依領域中,為神經抑制假說提出了初步的論證,此應用顯示優化後的fQSM將能發揮其定量及去除非局部效應之潛力,配合腦磁圖觀察神經活動,彰顯了神經與血氧技術應用於長期、介入性臨床研究的可能性,相信對神經科學領域之精準醫療有極大助益。 | zh_TW |
dc.description.abstract | Functional magnetic resonance imaging (fMRI) is a non-invasive MRI technique that utilizes the blood oxygenation-level dependent (BOLD) mechanism to measure the changes in blood oxygen concentration. It discovers the function of the brain and widely applies in neuroscience. Current researchers can explain the positive BOLD response (PBR) mechanism with the neurovascular coupling principle. However, the cause of the negative BOLD response (NBR) is still unclear because the fMRI phenomena regarding NBR observed in the past cannot be fully explained by the three hypotheses, which are (1) the vascular hypotheses “the blood stealing” (2) the mix hypotheses “mismatch of hemodynamic response function and neural activity” (3) the neural hypothesis “the neural inhibition.” All three hypotheses have their physiological basis and evidence, so the mechanism of NBR remains a mystery. This thesis explored the NBR by applying two quantitative techniques, functional quantitative susceptibility mapping (fQSM) and magnetoencephalography (MEG), to quantify the changes in blood oxygen concentration and nerves in the default mode network (DMN) region which is usually observed the negative BOLD response during complex cognitive tasks. Additionally, the sensitivity of fQSM suffers from QSM processing especially solving an ill-posed deconvolution. Another purpose of this study is to improve the detection rate of fQSM by using a regularization method with cerebrospinal fluid (CSF) as the zero reference.
18 healthy participants were recruited and they completed a 2-back working memory task during fMRI. Time-series fMRI phase images were calculated by QSM processing including phase unwrapping, background field removal and dipole inversion using cerebrospinal fluid regularization as a zero reference to generate susceptibility images. Then, images were computed by functional and statistical analysis to produce the brain activation map. The participants also performed the MEG experiment adapting the same 2 back task to induce brain neural activation. Brain signal were recorded and analyzed using time frequency analysis and source analysis to generate time-frequency response and band power map. The NBR hypotheses were explored by using the frequency band power change with the characteristics of neural excitation or inhibition. To fuse the fQSM and MEG data, we established the ROI in the peak value of fQSM activation area. The susceptibility change and band power change in the ROI were selected to calculate Pearson correlation in 18 subjects. And we also evaluated the similarity between fQSM activation map and MEG band power map using the cosine similarity evaluation. The optimized fQSM suppressed shadowing artifacts at the ventricles and brain boundaries and reduced the variability by enhancing 1.54 times common voxel ratios compared with original processing. In the correlation analysis, the susceptibility change in NBR observed in the precuneus of DMN is positively correlated with alpha power (r=0.51, p=0.04), and the highest cosine similarity compared with other band power also observed in the region. The results indicated that the NBR in precuneus may be related to the neural inhibition hypothesis. It suppressed the irrelevant information, so that the brain can focus on memory tasks. In summary, this study applied fQSM and MEG to explore the NBR mechanism and provided preliminary evidence for the neural inhibition hypothesis. This application shows that the optimized fQSM combined with MEG has potential for application to long-term and interventional clinical research to observe the blood oxygen and neural activity, which is believed to be of great benefit to precision medicine in neuroscience. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T16:05:11Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-05-18T16:05:11Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 ⅱ
中文摘要 ⅲ Abstract ⅴ 目錄 ⅶ 圖目錄 x 表目錄 ⅹⅴ 第一章 緒論 1 1.1 功能性磁振造影 1 1.2 負活化血氧相依機制 2 1.3 功能性定量磁化率影像 5 1.4 腦磁圖 8 1.5 研究動機與目的 9 第二章 功能性定量磁化率影像 11 2.1 資料收集與實驗設計 11 2.2 分析流程與方法 12 2.2.1 線圈影像重組 12 2.2.2 相位展開 13 2.2.3 去除背景磁場 14 2.2.4 正則化計算磁化率 15 2.2.5 功能性影像分析 18 2.2.6 評估指標 18 2.3 結果 19 2.3.1 結構性磁化率影像 19 2.3.2 重複掃描影像QSM的變異性 21 2.3.3 功能性定量磁化率影像結果 25 第三章 腦磁圖之神經活動 31 3.1 資料收集與實驗設計 31 3.2腦磁圖資料分析 32 3.2.1 腦波訊號前處理 32 3.2.2 時頻分析 33 3.2.3 溯源分析 33 3.2.4 相關性分析 34 3.3 結果 36 3.3.1 時頻分析結果 36 3.3.2 溯源分析結果 41 3.3.3 相關性分析結果 52 第四章 討論 59 4.1 負活化血氧相依機制假說 59 4.1.1 fQSM 活化腦區驗證血液竊取假說 59 4.1.2 MEG頻帶功率變化驗證神經相關假說 60 4.2 工作記憶任務MEG頻帶功能 63 4.2.1 檢索與編碼期 64 4.2.2數字維護期間 66 4.3 預設模式網絡之負活化反應 67 4.4 功能性定量磁化率影像 68 4.4.1 二維結合三維相位處理方法 68 4.4.2 fQSM及BOLD-fMRI的訊號變化與雜訊 69 4.4.3 fQSM及BOLD-fMRI 之正負活化與神經活動的時間差 70 4.4.4 fQSM及fMRI之空間與時間解析度 71 4.4.5 fQSM與fMRI灰質活化體素比較 74 4.4.6 fQSM與腦血流量、腦血容量及腦血氧代謝 75 4.5研究限制 75 4.5.1 神經活動的功率變化對負BOLD假說解釋的侷限性 75 4.5.2 大腦邊界影響QSM準確率 76 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 79 5.2.1 神經、血流及代謝變化驗證負活化機制假說 79 5.2.2 多模態連結方法 81 5.2.3負活化反應與認知負荷 83 參考文獻 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 以功能性定量磁化率影像與腦磁圖探討負活化血氧相依機制 | zh_TW |
dc.title | Exploring Negative BOLD with functional Quantitative Susceptibility Mapping and Magnetoencephalography | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖漢文;廖書賢;吳昌衛;林慶波 | zh_TW |
dc.contributor.oralexamcommittee | Hon-Man Liu;Shu-Hsien Liao;Chang-Wei Wu;Ching-Po Lin | en |
dc.subject.keyword | 功能性磁振影像,血氧濃度相依對比,負活化血氧相依反應,功能性定量磁化率影像,腦磁圖, | zh_TW |
dc.subject.keyword | functional MRI,blood oxygenation-level dependent,negative BOLD response,functional quantitative susceptibility mapping,magnetoencephalography, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202300502 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-02-16 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。