請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87156完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍 | zh_TW |
| dc.contributor.advisor | Sheng-Lung Huang | en |
| dc.contributor.author | 呂修羽 | zh_TW |
| dc.contributor.author | Hsiu-Yu Lu | en |
| dc.date.accessioned | 2023-05-18T07:40:54Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-10 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-13 | - |
| dc.identifier.citation | [1]D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.
[2]J. F. Bille, “High resolution imaging in microscopy and Ophthalmology New Frontiers in biomedical optics,” Springer International Publishing, 2019. [3]W. Drexler and J. G. Fujimoto, “Optical Coherence Tomography Technology and Applications,” 2nd edition, Springer International Publishing Switzerland, pp. 3-94, pp. 865-911, 2015. [4]M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt., vol. 49, pp. D30-D61, 2010. [5]S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diodelaser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst., vol. 28, pp. 587-594, 2000. [6]S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett., vol. 22, pp. 340, 1997. [7]R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express, vol. 14(8), pp. 3225-3237, 2006. [8]J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express, vol. 6, pp. 1340–1350, 2015. [9]Optores GmbH, “Next generation FDML Laser,” [Online]. Available: https://www.optores.com/index.php/products/31-next-generation-fdml-laser. [Accessed: 26-Dec-2022] [10]R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express, pp. 3513- 3528, 2005. [11]W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express, vol. 18, pp. 14685-14704, 2010. [12]Luna Innovation, “Tunable Fabry-Perot Fiber Filters,” [Online]. Available: https://lunainc.com/product/ffp-tf-ffp-tf2. [Accessed: 1-Jan-2023] [13]Technica Optica Components, “TFP50 High-Speed Fabry-Perot Tunable Filter,” [Online]. Available: https://technicasa.com/tfp50-high-speed-fabry-perot-tunable-filter/. [Accessed: 1-Jan-2023] [14]Lambda Quest, “High Speed Optical Tunable Filter,” [Online]. Available: https://www.lambdaquest.com/products.htm. [Accessed: 1-Jan-2023] [15]T. Klein and R. Huber [Invited], “High-speed OCT light sources and systems,” Biomed. Opt. Express, vol. 8, pp. 828–859, 2017. [16]MKS Instruments, “3900S CW Tunable Ti:sapphire Lasers,” [Online]. Available: https://www.spectra-physics.com/en/f/3900s-ti-sapphire-laser. [Accessed: 26-Dec-2022] [17]Y. C. Lin, T. T. Yang, and S. L. Huang, “Ultra-broadband wavelength-swept Ti:sapphire crystal fiber laser,” Opt. Lett., vol. 47, pp. 2778, 2022. [18]S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett., vol. 21, pp. 731, 1996. [19]V. M. Kodach, D. J. Faber, and T. G. Van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun., vol. 281, pp. 4975, 2008. [20]K. F. Wall, and A. Sanchez, “Titanium sapphire lasers,” Linc. Lab. j., vol. 3, pp. 447, 1990. [21]S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol., vol. 58, pp. R37, 2013. [22]M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum., vol. 55, pp. 1791, 1984. [23]K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diodelaser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photon. Technol. Lett., vol. 24, pp. 854, 2012. [24]K. F. Wall and A. Sanchez, “Titanium sapphire lasers,” Linc. Lab. J., vol. 3, pp. 447-462, 1990. [25]P. B. Welander, “Epitaxial aluminum oxide thin films on niobium (110): A study of their growth and their use in superconducting tunnel-junctions,” Ph.D. dissertation, University of Illinois at Urbana-Champaign Graduate College, 2007 [26]StackExchange, “Why don't molecules of ionic compounds exist?,” [Online]. Available: https://chemistry.stackexchange.com/questions/9730/why-dont-molecules-of-ionic-compounds-exist. [Accessed: 09-Sept-2022] [27]Shinkosha, “Physical properties of sapphire,” 2022. [Online]. Available: https://www.shinkosha.com/english/techinfo/feature/physical-properties-of-sapphire/. [Accessed: 09-Sept-2022] [28]RefractiveIndex.INFO, “Optical constants of Al2O3,” 1972. [Online]. Available: https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-e. [Accessed: 09-Sept-2022] [29]J. Ma, D. Maolu, and C. Qinghan, “A new absorption band of Ti-doped Al2O3 crystals after thermal annealing and γ-irradiation,” Zeitschrift für Naturforschung A, Vol. 61 (Issue 10-11), pp. 564-568, 2006. [30]E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification.” Top. Appl. Phys., Springer, vol. 95, 2004. [31]P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc., vol. 3, pp. 125-133, 1986. [32]R. L. Aggarwal, A. Sanchez, M. Stuppi, R. E. Fahey, A. J. Strauss, W. Rapoport, and C. P. Khattak, “Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3,” IEEE J. Quantum Electron., vol. 24, pp. 1003-1008, 1988. [33]E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Sapphire: material, manufacturing, applications,” Springer Science & Business Media, 2009. [34]T. Danger, K. Petermann, and G. Huber, “Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3,” Appl. Phys. A, vol. 57, pp. 309-313, 1993. [35]P. Alberts, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc., vol. 3, pp. 134-139, 1986. [36]M. S. Akselrod and F. J. Bruni, “Modern trends in crystal growth and new applications of sapphire,” J. Cryst. Growth, vol. 360, pp.134-145, 2012. [37]J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” NTRS, No. ADL-73235, 1972. [38]J. Czochralski, “A new method for the measurement of the crystallization rate of metals,” Z. Phys. Chem., vol. 92, pp. 219-221, 1918. [39]R. L. Aggarwal, A. Sanchez, M. Stuppi, R. E. Fahey, A. J. Strauss, W. Rapoport, and C. P. Khattak, “Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3,” IEEE J. Quantum Electron., vol. 24, pp. 1003-1008, 1988. [40]S. C. Wang, “Development and applications of glass-clad Ti:Al2O3 crystal fiber,” Ph.D. dissertation, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2016. [41]T. I. Yang, “The study of near-infrared broadband single mode crystal fiber light sources,” Ph.D. dissertation, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2021. [42]J. H. Wang, “The study of Ti:sapphire crystal fiber based wavelength swept laser,” M.S. thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2018 [43]S. C. Wang, T. I. Yang, D. Y. Jheng, C. Y. Hsu, T. T. Yang, T. S. Ho, and S. L. Huang, “Broadband and high-brightness light source: glass-clad Ti: sapphire crystal fiber,” Opt. Lett., vol. 40, pp. 5594-5597, 2015. [44]L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electron. Lett., vol. 31, pp. 1151-1152, 1995. [45]A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett., vol. 22, pp. 1556-1558, 1997. [46]A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. Lett., vol. 75, pp. 15-17, 2002. [47]L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett., vol. 85, pp. 5167-5169, 2004. [48]V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, and M. Pollnau, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett., vol. 85, pp. 1122-1124, 2004. [49]L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc., vol. 21, pp. 1452-1462, 2004. [50]C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett., vol. 31, pp. 3450-3452, 2006. [51]C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett., vol. 37, pp. 4630-4632, 2012. [52]D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Quantum Eletron., vol. 21, pp. 16-23, 2014. [53]C. C. Lee, “Thin film optics and coating technology,” Yi Hsien Publishing Co., 2009. [54]A. Macleod and C. Clark, “Coating design with the Essential Macleod,” Thin Film Center Inc, 2012. [55]A. Madani, “Titanium dioxide based microtubular cavities for on-chip integration,” Ph. D. dissertation, Technische Universität Chemnitz, p. 41, 2017. [56]JEOL, “JEBG BS-60/JST BS-ICE Series Electron Beam Sources and Power Supplies brochure,” [Online]. Available: https://www.jeolusa.com/Portals/2/brochures/JEBG%20BS-60_JST%20BS-ICE_Series%20Electron%20Beam%20Sources%20and%20Power%20Supplies%20Brochure.pdf. [Accessed: 4-Nov-2022] [57]H. K. Pulker, “Coating on glass,” Chap7, Elsevier sci., 1984. [58]Y. Q. Hou, D. M. Zhuang, G. Zhang, M. Zhao, and M. S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci., vol. 218, pp. 98-106, 2016. [59]G. Parjadis de Larivière, J. M. Frigerio, J. Rivory, and F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt., vol. 31, pp. 6056-6061, 1992. [60]J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for determination of the optical constant n, k and the thickness of weekly absorbing thin films,” J. Phys. E: Sci. Instrum., vol. 9, pp. 1002-1004, 1976. [61]N. Ismail, C. C. Kores, D. Geskus, & M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, pp, 16366-16389, 2016. [62]C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Ser. 7, vol. 16, pp. 115-144, 1899. [63]P. D. Atherton, N. K. Reay, J. Ring, and T. R. Hicks, “Tunable fabry-perot filters,” Opt. Eng., vol. 20, pp. 806-814, 1981. [64]M. Hercher, “The spherical mirror Fabry-Perot interferometer,” Appl. Opt., vol. 7, pp. 951-966, 1968. [65]LightMachinery, “Etalon designer user’s guide,” [Online]. Available: https://lightmachinery.com/optical-design-center/library/users-guides/etalon-designer-users-guide/. [Accessed: 3-Nov-2022] [66]S. M. Kobtsev and N. A. Sventsitskaya, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc., vol. 73, pp. 114-123, 1992. [67]J. Farnell, “Nonlinear and tunable fishnet metamaterials,” Ph. D. dissertation, The Australian National University, 2010. [68]RefractiveIndex.Info- Quartz refractive index. [Online]. Available: http://refractiveindex.info/?shelf=main&book=SiO2&page=Ghosh-o. [Accessed: 09-Oct-2022] [69]D. R. Preuss and J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: Theoretical treatment and experimental design,” Appl. Opt., vol. 19, no. 5, pp. 702, 1980. [70]D. Brewster, “On the laws which regulate the polarisation of light by reflexion from transparent bodies,” Philos. Trans. R. Soc. Lond., B, Biol. Sci., vol. 105, pp. 125- 159, 1815. [71]A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun., vol. 156, no. 4-6, pp. 264-270, 1998. [72]J. M. Liu, “Photonic devices,” Cambridge, 2005. [73]Edmund Optics Inc., “Gaussian beam propagation,” [Online]. Available: https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/. [Accessed: 14-Oct-2022] [74]K. Iizuka, “Elements of photonics, volume I: In free space and special media,” John Wiley & Sons, vol. 41, 2002. [75]COMSOL, “Understanding the paraxial Gaussian beam formula,” [Online]. Available: https://www.comsol.com/blogs/understanding-the-paraxial-gaussian-beam-formula/. [Accessed: 14-Oct-2022] [76]S. G. Hanson, M. L. Jakobsen, and H. T. Yura, “Complex-valued ABCD matrices and speckle metrology,” Springer Ser. Opt. Sci., vol. 198, 2016. [77]Thorlabs, “PF10-03-P01 - Ø1" Protected Silver Mirror,” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=PF10-03-P01. [Accessed: 20-Oct-2022] [78]Thorlabs, “PBS12-780 - 1/2" Polarizing Beamsplitter Cube, 780 nm,” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=PBS12-780. [Accessed: 4-Nov-2022] [79]Semrock, “532 nm laser BrightLine® single-edge super-resolution / TIRF dichroic beamsplitter, Part number: Di03-R532-t1-25x36,” [Online]. Available: https://www.semrock.com/FilterDetails.aspx?id=Di03-R532-t1-25x36. [Accessed: 16-Oct-2022] [80]Newport, “Aspheric objective lens, 60x, 2.8 mm EFL, 600-1050 nm,” [Online]. Available: https://www.newport.com/p/5721-B-H. [Accessed: 20-Oct-2022] [81]Newport, “Aspheric Objective Lens, 10x, 15.3 mm EFL, 600-1050 nm,” [Online]. Available: https://www.newport.com/p/5726-B-H. [Accessed: 20-Oct-2022] [82]Newport, “Broadband Faraday Optical Isolator (ISO-05-800-BB),” [Online]. Available: https://www.newport.com/p/ISO-05-800-BB. [Accessed: 28-Nov-2022] | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87156 | - |
| dc.description.abstract | 掃頻雷射被廣泛應用於光學同調斷層掃描術上,其縱向解析度由光源頻寬所決定。對於直接式掃頻雷射而言,掃頻速度受限於增益介質的光增益;換言之若掃頻速度過快,對於各波長而言,訊號不足以在共振腔中形成雷射便消失。然而R. Huber及J. G. Fujimoto團隊在2006年展示了一種新型態的鎖模雷射-傅立葉域鎖模雷射(Fourier-domain mode locking; FDML),在不需限縮頻寬的前提下成功打破了雷射掃頻速度的限制,實現超快速OCT成像技術。
因此,本論文將以傅立葉域鎖模雷射作為目標,利用摻鈦藍寶石光纖作為增益介質建構單向環腔式高速掃頻雷射,期望將來只需在此架構上導入色散補償延遲光纖並使掃頻速度與腔長相匹配即為FDML。 作為增益介質的摻鈦藍寶石其螢光頻譜之半高寬可達180 nm,且760 nm的螢光中心波長落於組織散射損耗及水的吸收較小的波段,因此很適合做為光學同調斷層掃描術之光源。本實驗室使用雷射加熱基座長晶法生長出纖心直徑為16 μm且衰減係數僅為 0.017 cm-1之玻璃纖衣光纖波導結構,不僅解決了摻鈦藍寶石因本身的短螢光生命週期及低吸收截面積特性而難達到低閥值輸出的問題,極高的表面積對體積比更有效提高了散熱能力,在1950 mW的幫浦下產生5.87 dB增益。 本論文首先利用光線轉換矩陣模擬元件在環形共振腔內的配置,找出其複數光束參數解使高斯光束能形成穩定雷射共振腔。接著分別將兩種波長可調元件配合光學隔離器在環形共振腔內架構出掃頻雷射。其功率輸出結果與本文所建構之環腔雷射數值模型相符,此模型並可用於未來腔內元件功率損耗可行性之評估。 在雙折射濾波器做為波長可調元件下之雷射輸出波長可由751 nm調至841 nm,達到90 nm的掃頻頻寬。法布里-佩羅濾波器調變之雷射則受限於濾波器本身56 nm的自由頻譜範圍而使可調頻寬為53 nm。此掃描雷射可以產生0.147 nm的瞬時線寬,對應之3-dB靈敏度滑落深度為0.96 mm。此外,當掃頻頻率由1 Hz升至20 kHz時,其雷射輸出頻寬由38 nm降至3 nm。經證實此現象並非雷射本身達到掃頻速率極限,而是濾波器結構中的壓電致動器速度過慢所致。 | zh_TW |
| dc.description.abstract | Wavelength-swept lasers are widely used in optical coherence tomography, in which their axial resolution is determined by the bandwidth of the light source. For direct wavelength-swept lasers, the sweep speed is limited by the optical gain value; in other words, if the sweep speed is too high, the signal disappears in the resonant cavity before even turning into a laser output. The Fourier-domain mode-locked (FDML) laser, which successfully overcame the tuning frequency limit without compromising the bandwidth, was introduced by R. Huber and J. G. Fujimoto in 2006. It achieves the development of ultra-fast OCT imaging technology by overcoming the restriction of laser sweep speed.
Therefore, we set the Fourier domain mode-locked laser as an ultimate goal. Ti:sapphire crystal is used as the gain medium to construct a unidirectional ring-cavity wavelength-swept laser. It is expected that in the future, the presented arrangement only requires the addition of dispersion-managed delay fiber in order to create an FDML laser by matching the sweep speed to the cavity length. The fluorescence spectrum of Ti:sapphire has a full width at half maximum of up to 180 nm, with the central wavelength located at 760 nm, which falls into a region called therapeutic window with low tissue scattering and low water absorption, making it suitable as a light source for optical coherence tomography. To overcome the short fluorescence lifetime and low absorption cross section that causes the high threshold power of Ti:sapphire laser, a glass-clad crystal fiber (CF) with a core diameter of 16 μm and low attenuation coefficient of 0.017 cm-1 made by laser-heated pedestal growth (LHPG) method was used in this research. Its high surface area to volume ratio also improves heat dissipation effectively. The Ti:sapphire CF produces 5.87 dB gain at 1950 mW of pumps. The configuration of the ring resonator is analyzed with the ray transfer matrix. The solutions of the complex beam parameters are found so that a stable laser resonator for the Gaussian beam is constructed. Then, a birefringence filter and a Fabry-Perot filter are added to the resonant ring cavity to create wavelength-swept lasers. The power output results are consistent with the numerical model of the ring-cavity laser presented. This model can evaluate the feasibility of any intra-cavity components with different power losses. When the birefringence filter is used as a wavelength tuning element, the laser output wavelength can be adjusted from 751 nm to 841 nm, reaching a total bandwidth of 90 nm. On the other hand, the Fabry-Perot filter's free spectral range, which is 56 nm, restricts the laser performance, resulting in an adjustable bandwidth of 53 nm. The 0.147-nm instantaneous laser linewidth corresponds to a 3-dB coherence roll-off of 0.96 mm. Additionally, the laser bandwidth is reduced from 38 nm to 3 nm as the sweep frequency rises from 1 Hz to 20,000 Hz. It has been established that the slow speed of the piezoelectric actuator in the filter structure, rather than a lack of build-up time for the laser dynamic, is responsible for this phenomenon. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T07:40:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T07:40:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xv Chapter 1 Introduction and Research Motivation 1 1.1 Introduction to Optical Coherence Tomography 1 1.2 Introduction to Wavelength Swept Laser 2 Chapter 2 Glass-clad Ti:sapphire Crystal Fiber 8 2.1 Characteristic of Ti:sapphire Crystal 8 2.2 Laser-Heated Pedestal Growth System 17 2.3 Post Processing of Crystal Fiber 25 2.4 Optical Properties of Crystal Fibers 29 2.4.1 Fluorescence Lifetime 31 2.4.2 Propagation loss 33 Chapter 3 Broadband Optical Components for Ti:sapphire Laser 36 3.1 Principle of Optical Thin-Film Design 36 3.2 Optical Thin-Film Deposition 42 3.2.1 Principle of Dielectric Electron Gun Evaporation System 42 3.2.2 Target Material Analysis 49 3.2.3 Controlling Software Introduction 52 3.2.4 Coating Design and Deposition Result 57 3.3 Tunable Fabry-Perot Filter 60 3.3.1 General Introduction of Ideal Fabry-Perot Filter 60 3.3.2 Effective Performance of FPF in Practice 64 3.4 Birefringent Filter 67 Chapter 4 Laser-diode Pumped Ti:sapphire Crystal Fiber Laser 73 4.1 Numerical Model of Ti:sapphire Crystal Fiber Laser 73 4.2 Verification of Ti:sapphire Simulation Parameters with Linear Cavity Lasers 78 4.3 Ring Cavity Mode Analysis 83 4.4 Bidirectional Ring Cavity Ti:sapphire Laser Performance 90 Chapter 5 Wavelength-Tunable Ti:sapphire CF Laser with Unidirectional Ring Cavity 96 5.1 Unidirectional Wavelength-Tunable Ti:sapphire CF Laser with Birefringence Filter 96 5.1.1 Characteristic Measurement of BRF 96 5.1.2 Bidirectional Wavelength-Tunable Laser 100 5.1.3 Unidirectional Wavelength-Tunable Laser 103 5.2 Simulation of Unidirectional Wavelength-Tunable Laser 110 5.2.1 Numerical Model of Ti:sapphire Ring-Cavity Laser 110 5.2.2 Laser Cavity Round-Trip Loss Analysis 112 5.3 Wavelength-Swept Ti:sapphire CF Laser with Tunable Fabry-Perot Filter 116 5.3.1 Self-made tunable FPF 116 5.3.2 Custom-made tunable FPF 118 Chapter 6 Conclusions and Future Work 135 6.1 Conclusions 135 6.2 Future Work 136 REFERENCE 137 Appendix 146 | - |
| dc.language.iso | en | - |
| dc.subject | 環形共振腔 | zh_TW |
| dc.subject | 掃頻式雷射 | zh_TW |
| dc.subject | 摻鈦藍寶石晶體 | zh_TW |
| dc.subject | 晶體光纖 | zh_TW |
| dc.subject | 寬頻可調波長雷射 | zh_TW |
| dc.subject | Ti:sapphire crystal | en |
| dc.subject | wavelength-swept laser | en |
| dc.subject | broadband wavelength- tunable laser | en |
| dc.subject | crystal fiber | en |
| dc.subject | ring resonant cavity | en |
| dc.title | 掃頻式環腔摻鈦藍寶石晶體光纖雷射之研究 | zh_TW |
| dc.title | Wavelength-Swept Ring Cavity Ti:sapphire Crystal Fiber Laser | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹明哲;楊尚達 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Che Chan;Shang-Da Yang | en |
| dc.subject.keyword | 摻鈦藍寶石晶體,晶體光纖,掃頻式雷射,寬頻可調波長雷射,環形共振腔, | zh_TW |
| dc.subject.keyword | Ti:sapphire crystal,crystal fiber,wavelength-swept laser,broadband wavelength- tunable laser,ring resonant cavity, | en |
| dc.relation.page | 149 | - |
| dc.identifier.doi | 10.6342/NTU202300269 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-06-30 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
