請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87135完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒 | zh_TW |
| dc.contributor.advisor | Chih-Hsuan Chen | en |
| dc.contributor.author | 紀庚佑 | zh_TW |
| dc.contributor.author | Geng-You Ji | en |
| dc.date.accessioned | 2023-05-10T16:09:51Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-10 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-13 | - |
| dc.identifier.citation | [1] Araki, Y., Endo, T., Omori, T., Sutou, Y., Koetaka, Y., Kainuma, R., & Ishida, K. (2011). Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthquake Engineering & Structural Dynamics, 40(1), 107-115.
[2] Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., & Wagner, M. (2004). Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering: A, 378(1-2), 24-33. [3] Casciati, F., Casciati, S., & Faravelli, L. (2007, June). Fatigue characterization of a Cu-based shape memory alloy. In Proceedings of the Estonian Academy of Sciences, Physics, Mathematics (Vol. 56, No. 2). [4] Omori, T., Kusama, T., Kawata, S., Ohnuma, I., Sutou, Y., Araki, Y., ... &Kainuma,R. (2013). Abnormal grain growth induced by cyclic heat treatment. Science, 341(6153), 1500-1502. [5] Fu, H., Xu, S., Zhao, H., Dong, H., & Xie, J. (2017). Cyclic stress-strain response of directionally solidified polycrystalline Cu-Al-Ni shape memory alloys. Journal of Alloys and Compounds, 714, 154-159. [6] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2(2) (1997) 1-21. [7] H. Kessler, W. Pitsch, On the nature of the martensite to austenite reverse transformation, Acta Metallurgica 15(2) (1967) 401-405. [8] 李芝媛、吳錫侃, 淺談形狀記憶合金, 科儀新知第十六卷 6 (1995) 6. [9] Wayman, C. M. (1993). Shape memory alloys. MRS bulletin, 18(4), 49-56. [10] T. Schroeder, C. Wayman, The two-way shape memory effect and other “training” phenomena in Cu Zn single crystals, Scripta metallurgica 11(3) (1977) 225-230. [11] T. Schroeder, C. Wayman, The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys, Acta Metallurgica 25(12) (1977) 1375-1391. [12] Tehrani, B. T., Shameli-Derakhshan, S., & Feriz, H. J. (2017). An Overview on Active Confinement of Concrete Column and Pier Using Shape Memory Alloys. In International Conference on researches in Science and Engineering, Istanbul, Turkey. [13] Kelemen, M., Virgala, I., Prada, E., & Lipták, T. (2015). Experimental verification of the shape memory alloy (SMA) spring actuator for application on in-pipe machine. Metalurgija, 54(1), 173-176. [14] Ma, J., Karaman, I., & Noebe, R. D. (2010). High temperature shape memory alloys. International Materials Reviews, 55(5), 257-315. [15] K. Otsuka, Pseudoelasticity, (1981). [16] K. Otsuka, C. Wayman, Reviews on the Deformation Behavior of Materials (P. Feltham, Ed.), Vol. II (2) (1977) 83. [17] Liu, Y., Mahmud, A., Kursawe, F., & Nam, T. H. (2008). Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi. Journal of Alloys and Compounds, 449(1-2), 82-87. [18] R. Kainuma, S. Takahashi, K. Ishida, Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys, Metallurgical and Materials Transactions A 27(8) (1996) 2187-2195. [19] R. Kainuma, N. Satoh, X. Liu, I. Ohnuma, K. Ishida, Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system, Journal of Alloys and Compounds 266(1-2) (1998) 191-200. [20] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Ductile Cu–Al–Mn based shape memory alloys: general properties and applications, Materials Science and Technology 24(8) (2008) 896-901. [21] R. Kainuma, Y. Yoshinaka, T. Omori, Cyclic Properties of Superelasticity in Cu–Al–Mn Single-Crystalline Sheets with Bainite Precipitates, Shape Memory and Superelasticity 4(4) (2018) 428-434. [22] Omori, T., Kusama, T., Kawata, S., Ohnuma, I., Sutou, Y., Araki, Y., ... & Kainuma, R.(2013). Abnormal grain growth induced by cyclic heat treatment. Science, 341(6153), 1500-1502. [23] Xu, S., Kusama, T., Xu, X., Huang, H., Omori, T., Xie, J., & Kainuma, R. (2019). Large [001] single crystals via abnormal grain growth from columnar polycrystal. Materialia, 6, 100336. [24] Kusama, T., Omori, T., Saito, T., Kise, S., Tanaka, T., Araki, Y., & Kainuma, R. (2017).Ultra-large single crystals by abnormal grain growth. Nature communications , 8(1), 1-9. [25] Bhattacharya, K. (2003). Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect (Vol. 2). Oxford University Press. [26] James, R. D., & Hane, K. F. (2000). Martensitic transformations and shape-memory materials. Acta materialia, 48(1), 197-222. [27] Fornell, J., Tuncer, N., & Schuh, C. A. (2017). Orientation dependence in superelastic Cu-Al-Mn-Ni micropillars. Journal of Alloys and Compounds, 693, 1205-1213. [28] Liu, J. L., Huang, H. Y., Xie, J. X., Xu, S., & Li, F. (2017). Superelastic fatigue of columnar-grained Cu-Al-Mn shape memory alloy under cyclic tension at high strain. Scr. Mater, 136, 106-110. [29]Melton, K. N., & Mercier, O. (1979). Fatigue of NiTi thermoelastic martensites. Acta Metallurgica, 27(1), 137-144. [30] Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T., & Miyazaki, S. (1995). Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Materials Science and Engineering: A, 202(1-2), 148-156. [31] Strnadel, B., Ohashi, S., Ohtsuka, H., Miyazaki, S., & Ishihara, T. (1995). Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys. Materials Science and Engineering: A, 203(1-2), 187-196. [32] Kato, H., Ozu, T., Hashimoto, S., & Miura, S. (1999). Cyclic stress–strain response of superelastic Cu–Al–Mn alloy single crystals. Materials Science and Engineering: A, 264(1-2), 245-253. [33] Ziolkowski, A. (2015). Pseudoelasticity of shape memory alloys: theory and experimental studies. Butterworth-Heinemann. [34] Karami, M., Chu, K., Zhu, Z., Wang, Z., Sun, Q., Huang, M., & Chen, X. (2022). Orientation-dependent superelasticity and fatigue of CuAlMn alloy under in situ micromechanical tensile characterization. Journal of the Mechanics and Physics of Solids, 160, 104787. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87135 | - |
| dc.description.abstract | 本研究對單晶CuAlMn試片進行超彈性疲勞實驗後,再透過數位影像關係法(DIC)對試片表面應變進行分析,藉此了解超彈性循環過程中其應變場變化。實驗中使用的試片晶體方位分別為[ 0 2 5 ]、[ 1 1 4 ]與[ 6 0 5 ],其中[ 0 2 5 ]與[ 1 1 4 ]方位試片表現出約10%的可拉伸應變量,而[ 6 0 5 ]方位試片則表現出約7%的可拉伸應變量。疲勞實驗結果顯示,[ 1 1 4 ]方位試片的相變應力衰退速度最快,且殘留應變累積速度也最快。DIC分析的結果顯示,殘留應變主要累積的位置會在應力誘發麻田散體開始出現的位置上,然後以此為中心,離此處越遠則累積的殘留應變越少。局部應變分析的結果顯示,以應力誘發麻田散體先出現的位置為中心,離中心越遠殘留應變累積越慢,則相變應力衰減越慢,此結果可得到殘留應變會使誘發麻田散體相變的應力下降這一結論。對能量耗散進行分析會發現在應力誘發麻田散體出現位置開始改變的時候,拉伸時的能量耗散會達到最大值,推測原因可能為此階段每次拉伸中同時誘發麻田散體相變的區域較多的緣故。比較三個試片會發現[ 1 1 4 ]方位試片的超彈性衰退過程與其他試片不同,[ 1 1 4 ]方位試片的相變應力會先大幅下降,然後才開始大量累積殘留應變,推測為拉伸前期局部會積累大量殘留應變,使試片整體相變應力大幅下降,由於僅局部積累大量殘留應變,因此在循環拉伸前期整體平均累積的殘留應變少,但是局部的相變應力已有明顯下降。 | zh_TW |
| dc.description.abstract | In this study, the surface strain distributions of the three CuAlMn single crystals were analyzed by the digital image correlation method (DIC) during cyclic superelastic tests. The purpose of this study was to reveal the evolutions of the strain field during superelastic cycles to understand the effects of residual strain on the decay of superelastic behavior. The tensile orientations of the studied samples were [ 0 2 5 ], [ 1 1 4 ], and [ 6 0 5 ], respectively. 10 % of strain was applied on the [ 0 2 5 ]- and [ 1 1 4 ]-orientated samples, and 7 % strain was applied on the [ 6 0 5 ] one. The fatigue test results showed that the [ 1 1 4 ]-orientated sample had the fastest decay rate of critical stress and the fastest accumulation rate of residual strain. The results of DIC analyses showed that the main accumulation position of residual strain was at the position where the stress-induced martensite nucleated. Furthermore, regions that experienced less martensitic transformation showed less residual martensite. The results of local strain analyses also indicated that residual strain accumulated the most at the position where the stress-induced martensite nucleated, which was associated with the fastest decay of critical stress. On the other hand, regions that underwent less martensitic transformation showed a more minor residual strain and slower decay of critical stress, indicating that the amount of martensitic transformation was directly related to the amount of residual strain and thus caused the decay of transformation stress. The analysis of energy dissipation showed that the energy dissipation increased with increasing cycle number and reached the maximum value at which the main stress-induced martensitic transformation band began to shift. The increase of energy dissipation with cycle number was considered caused by the simultaneous formations of martensite at various regions in the sample, resulting in more significant friction between martensite variants. Comparing these three samples showed that the superelasticity degradation process of the [ 1 1 4 ]-oriented sample was different from others. The critical stress of the [ 1 1 4 ]-oriented sample dropped sharply initially, but its residual strain accumulated later. The reason for this feature was that a large amount of residual strain accumulated in a local region at the first few cycles, causing a significant drop in the critical stress, while the average residual strain of the sample remained relatively small. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-10T16:09:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-10T16:09:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 圖目錄 vi 表目錄 ix 第一章 前言 1 第二章 文獻回顧 2 2-1 形狀記憶合金簡介 2 2-2 形狀記憶合金特性 3 2-2-1 形狀記憶效應 3 2-2-2 超彈性 7 2-3 Cu-Al-Mn形狀記憶合金 11 2-3-1 Mn含量對形狀記憶特性的影響 11 2-3-2 成分與時效處理對形狀記憶特性之影響 15 2-3-3 Cu-Al-Mn形狀記憶合金單晶製備 17 2-4 超彈性理論應變計算 23 2-5 超彈性應力應變循環 26 第三章 實驗方法 28 3-1 合金配置與熔煉 28 3-2 製備單晶試片 31 3-3 相變態溫度量測 32 3-4 EBSD晶體方位分析 34 3-5 循環拉伸實驗 34 第四章 超彈性疲勞測試結果 36 4-1 各試片EBSD晶體方位分析 36 4-2 材料相變溫度 37 4-3 單晶CuAlMn常溫超彈性疲勞 38 4-3-1 [ 0 2 5 ]方位試片 38 4-3-2 [ 1 1 4 ]方位試片 44 4-3-3 [ 6 0 5 ]方位試片 49 4-4 殘留應變對相變應力之影響 54 4-4-1 殘留應變分布 54 4-4-2 應力誘發麻田散體出現位置改變 59 4-4-3 局部區域應變分布 62 4-4-4 應力-應變曲線之能量耗散與殘留應變關係 67 4-4-5 應變場演化 71 4-5 不同晶體方位試片疲勞拉伸表現比較 73 第五章 結論 81 參考文獻 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 疲勞 | zh_TW |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | CuAlMn | zh_TW |
| dc.subject | 單晶 | zh_TW |
| dc.subject | 超彈性 | zh_TW |
| dc.subject | CuAlMn | en |
| dc.subject | shape memory alloy | en |
| dc.subject | fatigue | en |
| dc.subject | superelasticity | en |
| dc.subject | single crystal | en |
| dc.title | 以數位影像關係法分析CuAlMn形狀記憶合金之超彈性疲勞現象 | zh_TW |
| dc.title | Analyzing Superelastic Fatigue Behavior of CuAlMn Shape Memory Alloy by Digital Image Correlation Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳錫侃;林新智 | zh_TW |
| dc.contributor.oralexamcommittee | Shyi-Kaan Wu;Hsin-Chih Lin | en |
| dc.subject.keyword | 形狀記憶合金,CuAlMn,單晶,超彈性,疲勞, | zh_TW |
| dc.subject.keyword | shape memory alloy,CuAlMn,single crystal,superelasticity,fatigue, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202300402 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 5.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
