Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author黃品超zh_TW
dc.contributor.authorPin-Chou Huangen
dc.date.accessioned2023-05-10T16:05:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-02-10-
dc.identifier.citation參考文獻
[1] K. Zeb et al., "A Survey on Waste Heat Recovery: Electric Power Generation and Potential Prospects within Pakistan," Renewable Sustainable Energy Rev., vol. 75, pp. 1142-1155, 2017/08/01/ 2017.
[2] B. Zhou et al., "Significant Enhancement in the Thermoelectric Performance of Aluminum-Doped ZnO Tuned by Pore Structure," ACS Appl. Mater. Interfaces, vol. 12, no. 46, pp. 51669-51678, 2020/11/18 2020.
[3] S. Ghahari, E. Ghafari, and N. Lu, "Effect of ZnO Nanoparticles on Thermoelectric Properties of Cement Composite for Waste Heat Harvesting," Constr. Build. Mater., vol. 146, pp. 755-763, 2017.
[4] J.-H. Lee, K.-H. Ko, and B.-O. Park, "Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol–Gel Method," J. Cryst. Growth, vol. 247, no. 1, pp. 119-125, 2003/01/01/ 2003.
[5] M.-C. Jun, S.-U. Park, and J.-H. Koh, "Comparative Studies of Al-Doped ZnO and Ga-Doped ZnO Transparent Conducting Oxide Thin Films," Nanoscale Res. Lett., vol. 7, no. 1, p. 639, 2012/11/22 2012.
[6] L. Zhu and W. Zeng, "Room-temperature Gas Sensing of ZnO-Based Gas Sensor: A Review," Sens. Actuators, A, vol. 267, pp. 242-261, 2017/11/01/ 2017.
[7] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, "Air Stable High Resolution Organic Transistors by Selective Laser Sintering of Ink-Jet Printed Metal Nanoparticles," Appl. Phys. Lett., vol. 90, no. 14, p. 141103, 2007.
[8] T. Y. Choi, D. Poulikakos, and C. P. Grigoropoulos, "Fountain-Pen-Based Laser Microstructuring with Gold Nanoparticle Inks," Appl. Phys. Lett., vol. 85, no. 1, pp. 13-15, 2004.
[9] T. Park and D. Kim, "Excimer Laser Sintering of Indium Tin Oxide Nanoparticles for Fabricating Thin Films of Variable Thickness on Flexible Substrates," Thin Solid Films, vol. 578, pp. 76-82, 2015/03/02/ 2015.
[10] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, "Polymers for 3D Printing and Customized Additive Manufacturing," Chem. Rev., vol. 117, no. 15, pp. 10212-10290, 2017/08/09 2017.
[11] S. Bet and A. Kar, "Thin Film Deposition on Plastic Substrates Using Silicon Nanoparticles and Laser Nanoforming," Materials Science and Engineering: B, vol. 130, no. 1, pp. 228-236, 2006/06/15/ 2006.
[12] W. Shou et al., "Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization," ACS Appl. Mater. Interfaces, vol. 11, no. 37, pp. 34416-34423, 2019/09/18 2019.
[13] H. Alam and S. Ramakrishna, "A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials," Nano Energy, vol. 2, no. 2, pp. 190-212, 2013.
[14] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annu. Rev. Mater. Res., vol. 41, no. 1, pp. 399-431, 2011.
[15] J. He and T. M. Tritt, "Advances in Thermoelectric Materials Research: Looking Back and Moving Forward," Science, vol. 357, no. 6358, p. eaak9997, 2017.
[16] R. Radhakrishnan, "A Review of: “Thermoelectric Handbook, Macro to Nano, D.M. Rowe (editor)”," Mater. Manuf. Processes, vol. 23, no. 6, pp. 626-627, 2008/07/04 2008.
[17] Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, "Nanostructured Thermoelectric Materials: Current Research and Future Challenge," Progress in Natural Science: Materials International, vol. 22, no. 6, pp. 535-549, 2012.
[18] P. Jood et al., "Al-doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties," Nano Lett., vol. 11, no. 10, pp. 4337-4342, 2011.
[19] T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, "Thermoelectric Properties of Al-Doped ZnO as a Promising Oxidematerial for High-Temperature Thermoelectric Conversion," J. Mater. Chem., vol. 7, no. 1, pp. 85-90, 1997.
[20] S. Liu, M. Lan, G. Li, Y. Piao, H. Ahmoum, and Q. Wang, "Breaking the Tradeoff Among Thermoelectric Parameters by Multi Composite of Porosity and CNT in AZO Films," Energy, vol. 225, p. 120320, 2021.
[21] P. Jood et al., "Heavy Element Doping for Enhancing Thermoelectric Properties of Nanostructured Zinc Oxide," RSC Adv., vol. 4, no. 13, pp. 6363-6368, 2014.
[22] H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, and E. Savary, "Preparation of Ni-doped ZnO Ceramics for Thermoelectric Applications," J. Eur. Ceram. Soc., vol. 31, no. 15, pp. 2957-2963, 2011.
[23] H. Ahmoum et al., "Structural, Morphological and Transport Properties of Ni Doped ZnO Thin Films Deposited by Thermal Co-Evaporation Method," Mater. Sci. Semicond. Process., vol. 123, p. 105530, 2021.
[24] A. Tomeda, T. Ishibe, T. Taniguchi, R. Okuhata, K. Watanabe, and Y. Nakamura, "Enhanced Thermoelectric Performance of Ga-Doped ZnO Film by Controlling Crystal Quality for Transparent Thermoelectric Films," Thin Solid Films, vol. 666, pp. 185-190, 2018/11/30/ 2018.
[25] N. H. Tran Nguyen et al., "Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films," ACS Appl. Mater. Interfaces, vol. 8, no. 49, pp. 33916-33923, 2016.
[26] Y. Yang et al., "Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts," ACS Nano, vol. 6, no. 8, pp. 6984-6989, 2012.
[27] P. Sikam, C. Sararat, P. Moontragoon, T. Kaewmaraya, and S. Maensiri, "Enhanced Thermoelectric Properties of N-Doped ZnO and SrTiO3: A First-Principles Study," Appl. Surf. Sci., vol. 446, pp. 47-58, 2018.
[28] M.-H. Hong, H. Choi, D. I. Shim, H. H. Cho, J. Kim, and H.-H. Park, "Study of the Effect of Stress/Strain of Mesoporous Al-doped ZnO Thin Films on Thermoelectric Properties," Solid State Sci., vol. 82, pp. 84-91, 2018.
[29] K.-H. Jung, K. Hyoung Lee, W.-S. Seo, and S.-M. Choi, "An Enhancement of a Thermoelectric Power Factor in a Ga-Doped ZnO System: A Chemical Compression by Enlarged Ga Solubility," Appl. Phys. Lett., vol. 100, no. 25, p. 253902, 2012.
[30] K. Park and K. Ko, "Effect of TiO2 on High-Temperature Thermoelectric Properties of ZnO," J. Alloys Compd., vol. 430, no. 1-2, pp. 200-204, 2007.
[31] J. Kwon et al., "Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications," ACS Appl. Mater. Interfaces, vol. 8, no. 18, pp. 11575-11582, 2016/05/11 2016.
[32] G. Yang et al., "Understanding the Sintering and Heat Dissipation Behaviours of Cu Nanoparticles during Low-Temperature Selective Laser Sintering Process on Flexible Substrates," J. Phys. D: Appl. Phys., vol. 54, no. 37, p. 375304, 2021/07/05 2021.
[33] S. Feng, S. Cao, Z. Tian, H. Zhu, and D. Kong, "Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics," ACS Appl. Mater. Interfaces, vol. 11, no. 49, pp. 45844-45852, 2019/12/11 2019.
[34] D. Lee, H. Pan, S. H. Ko, H. K. Park, E. Kim, and C. P. Grigoropoulos, "Non-Vacuum, Single-Step Conductive Transparent ZnO Patterning by Ultra-Short Pulsed Laser Annealing of Solution-Deposited Nanoparticles," Appl. Phys. A, vol. 107, no. 1, pp. 161-171, 2012.
[35] J. Yan et al., "Al0. 3Zn0. 7O Film UV Detector and its Laser Sintering Synthetic Process," Appl. Surf. Sci., vol. 504, p. 144459, 2020.
[36] L.-j. Huang, B.-j. Li, and N.-f. Ren, "Enhancing Optical and Electrical Properties of Al-Doped ZnO Coated Polyethylene Terephthalate Substrates by Laser Annealing Using Overlap Rate Controlling Strategy," Ceram. Int., vol. 42, no. 6, pp. 7246-7252, 2016.
[37] I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, "Selective Laser Sintering of Ag Nanoparticles Ink for Applications in Flexible Electronics," Appl. Surf. Sci., vol. 336, pp. 157-162, 2015.
[38] F. Zacharatos et al., "Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates," Materials, vol. 11, no. 11, p. 2142, 2018.
[39] S. P. Malyukov and A. V. Sayenko, "Laser Sintering of a Porous TiO2 Film in Dye-Sensitized Solar Cells," J. Russ. Laser Res., vol. 34, no. 6, pp. 531-536, 2013/11/01 2013.
[40] M. K. Rahman, Z. Lu, and K.-S. Kwon, "Green Laser Sintering of Copper Oxide (CuO) Nano Particle (NP) Film to Form Cu Conductive Lines," AIP Adv., vol. 8, no. 9, p. 095008, 2018.
[41] S. Phadke, J. B. Stanley, J. D. Sorge, and D. P. Birnie III, "Clustering Effects in Solution‐Based Nanoparticle/Template Hybrid Coatings," J. Soc. Inf. Disp., vol. 15, no. 12, pp. 1089-1093, 2007.
[42] A. Gómez-Núñez, S. Alonso-Gil, C. López, P. Roura, and A. Vilà, "Role of Ethanolamine on the Stability of a Sol–Gel ZnO Ink," The Journal of Physical Chemistry C, vol. 121, no. 42, pp. 23839-23846, 2017.
[43] A. Alyamani et al., "Photoresponse and Photocapacitor Properties of Au/AZO/p-Si/Al Diode with AZO Film Prepared by Pulsed Laser Deposition (PLD) Method," Appl. Phys. A, vol. 122, no. 4, pp. 1-7, 2016.
[44] N. m. Azizah et al., "Influence of Al Doping on the Crystal Structure, Optical Properties, and Photodetecting Performance of ZnO Film," Progress in Natural Science: Materials International, vol. 30, no. 1, pp. 28-34, 2020.
[45] Y.-Y. Chen, P. W. Wang, J.-C. Hsu, and C.-Y. Lee, "Post-Annealing Properties of Aluminum-Doped Zinc Oxide Films Fabricated by Ion Beam Co-Sputtering," Vacuum, vol. 87, pp. 227-231, 2013.
[46] S.-F. Tseng, "Investigation of Post-Annealing Aluminum-Doped Zinc Oxide (AZO) Thin Films by a Graphene-Based Heater," Appl. Surf. Sci., vol. 448, pp. 163-167, 2018/08/01/ 2018.
[47] C.-F. Ding, W.-T. Hsiao, and H.-T. Young, "Evaluation of Structural Properties of AZO Conductive Films Modification Using Low-Temperature Ultraviolet Laser Annealing," Ceram. Int., vol. 45, no. 13, pp. 16387-16398, 2019/09/01/ 2019.
[48] C. Wood, A. Chmielewski, and D. Zoltan, "Measurement of Seebeck Coefficient Using a Large Thermal Gradient," Rev. Sci. Instrum., vol. 59, no. 6, pp. 951-954, 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87125-
dc.description.abstract技蓬勃發展的現代,能量的需求持續上升,如何利用廢熱發電是一個重要的議題。熱電薄膜材料可有效的在生活中收集廢熱來產生電能;其中摻雜鋁的氧化鋅材料高導電性、低成本、對環境友善的材料特性,是其為具潛力的熱電材料。有別於高真空製程導致成本高、耗費時間多,本研究利用波長532 nm、脈衝波時間8 ns的雷射,利用雷射高能量密度以及極短的加熱時間,搭配2D振鏡系統,高效和低成本的方式。將摻雜鋁的氧化鋅(1.5 at%)燒結沉積在石英上。
透過研究不同表面質量密度以及不同雷射參數的影響,得出最優化摻雜鋁的氧化鋅薄膜。表面質量密度 3.52 mg/cm2,其燒結出來的薄膜有較佳導電率。從不同掃描次數的實驗,可觀察到第一次雷射掃描主要是將材料能燒結成薄膜,可使薄膜附著力上升;後幾次的掃描是將薄膜進行退火,多次掃描會使薄膜連續性下降;再經過X光繞射儀的量測,可觀察到雷射燒結/退火會使得摻雜鋁的氧化鋅結晶變差。最終在表面質量密度 3.52 mg/cm2、脈衝重疊率98.5%、雷射能量794 mW、掃描一次時,可獲得最佳功率因子0.128 μWcm-1K-2。
zh_TW
dc.description.abstractThe demand of energy rises, with increasing popularity and technology development. It is important to utilize waste heat to recycle the energy. Thermoelectric material films can effectively collect waste heat in life to generate electricity. Aluminum-doped zinc oxide(AZO) has suitable properties, like high conductivity, low cost, and environmentally friendly, and has been investigated for application of thermoelectric device. Different from the high cost and time-consuming high-vacuum process, this work use a nanosecond pulsed laser with a wavelength of 532 nm and a pulse duration of 8ns, to successfully sinter AZO nanoparticles on quartz, owing to laser’s high energy density and flexible patterning capability via galvanometer scanner system.
Surface mass densities and laser process parameters, different results has been studied. The optimal surface mass density is founded to be 3.52 mg/cm2, which shows better conductivity. In the experiments of multiple laser scanning times, it can be observed that the first time of laser scanning is mainly to sinter AZO nanoparticles into a film, which can increase the adhesion of nanoparticles. The next few scans are to anneal the film, however, it is observed multiple scans will reduce film continuity. Moreover, X-ray diffractometer(XRD) measurement shows that multiple laser scan decrease the crystal peaks which implies worse crystal quality of AZO films. Finally, the maximum power factor of 0.128 μWcm-1K-2 can be obtained when the surface mass density is 3.52 mg/cm2, the overlap ratio is 98.5%, the laser energy is 794 mW, and one scan is performed.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-10T16:05:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-10T16:05:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiii
第 1 章 緒論 1
第 2 章 文章回顧和實驗動機 2
2.1 熱電原理 2
2.1.1 席貝克效應 (Seebeck effect) 2
2.1.2 帕爾帖效應 (Peltier effect) 3
2.1.3湯姆森 效應(Thomson effect) 5
2.1.4無因次熱電參數 6
2.2摻雜氧化鋅材料 9
2.1.1摻雜鋁的氧化鋅(Aluminum-doped ZnO, AZO) 10
2.1.2摻雜銦的氧化鋅(Indium-doped ZnO) 12
2.1.3摻雜鎳的氧化鋅(Nickel-doped ZnO) 13
2.1.4摻雜鎵的氧化鋅(Gallium-doped ZnO,GZO) 13
2.1.5 其他材料摻雜 14
2.3 加法雷射燒結 17
2.2.1金屬顆粒材料之加法雷射燒結 17
2.2.2半導體顆粒材料之燒結 22
2.4 研究動機與實驗目的 27
第 3 章 實驗方法與實驗架構 29
3.1 氧化鋅奈米顆粒之塗層製備 29
3.1.1摻雜鋁的氧化鋅奈米顆粒塗層之實驗流程 29
3.2選擇性雷射燒結實驗 31
3.2.1 脈衝雷射光路架設 33
3.2.2振鏡掃瞄系統 35
3.2.3 掃描狹縫光束分析儀 36
3.2.4 微型控制走台 38
3.3 薄膜表面型態以及成分分析 38
3.3.1 鎢燈絲式掃描式電子顯微鏡 (Scanning Electron Microscope , SEM) 38
3.3.2 膜厚測定儀 (Surface Profiler) 39
3.3.3 X光繞射儀(X-ray diffractometer , XRD) 40
3.4 薄膜電性以及熱電分析 41
3.4.1四點探針 (Four Point Probe) 41
3.4.2 數位萬用電錶 (Digital Multimeter,DMM) 42
3.4.3 霍爾量測儀 (Hall effect measurement system) 43
3.4.4 熱電特性量測 44
第 4 章 結果與討論 46
4.1 摻雜鋁的氧化鋅奈米顆粒塗層 46
4.1.1氧化鋅奈米顆粒塗層 46
4.2選擇性雷射燒結系統之參數討論 48
4.2.1脈衝雷射輸出功率 48
4.2.2雷射光斑大小測量 49
4.3 雷射燒結氧化鋅奈米顆粒線段 50
4.4 雷射燒結摻雜鋁的氧化鋅薄膜 53
4.4.1 表面質量密度7.04 mg/cm2 燒結結果 54
4.4.2 不同表面質量密度燒結結果 56
4.5 不同掃描次數對薄膜性質影響 60
4.5.1掃描次數對表面樣貌影響 61
4.5.2 掃描次數對電學性質的影響 65
4.5.3 XRD量測結果 66
4.6 席貝克係數以及功率因子量測 69
4.7 SEM圖 74
第 5 章 結論以及未來展望 75
5.1結論 75
5.2 未來展望 75
參考文獻 77
-
dc.language.isozh_TW-
dc.subject熱電薄膜zh_TW
dc.subject功率因子zh_TW
dc.subject席貝克係數zh_TW
dc.subject雷射燒結zh_TW
dc.subject摻雜鋁的氧化鋅奈米顆粒zh_TW
dc.subjectAl-doped ZnOen
dc.subjectPower factoren
dc.subjectthermoelectric filmen
dc.subjectLaser sinteringen
dc.subjectSeebeck coefficienten
dc.title選擇性雷射燒結摻雜鋁的氧化鋅奈米顆粒及其熱電元件應用zh_TW
dc.titleSelective Laser Sintering Al-Doped Zinc Oxide for Application of Thermoelectric Devicesen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳炳煇;李明蒼zh_TW
dc.contributor.oralexamcommitteePing-Hei Chen;Ming-Tsang Leeen
dc.subject.keyword雷射燒結,摻雜鋁的氧化鋅奈米顆粒,熱電薄膜,席貝克係數,功率因子,zh_TW
dc.subject.keywordLaser sintering,Al-doped ZnO,thermoelectric film,Seebeck coefficient,Power factor,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202300332-
dc.rights.note未授權-
dc.date.accepted2023-02-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved