Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87123
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author黃章栢zh_TW
dc.contributor.authorZhang-Bo Huangen
dc.date.accessioned2023-05-10T16:05:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-10-
dc.date.issued2023-
dc.date.submitted2023-02-09-
dc.identifier.citation[1] T. Stein. "Carbon Dioxide Now More than 50% Higher than Pre-Industrial Levels." National Oceanic and Atmospheric Administration. https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels (accessed Dec., 2022).
[2] F. Haase et al., "Laser Contact Openings for Local Poly-Si-Metal Contacts Enabling 26.1%-Efficient POLO-IBC Solar Cells," Solar Energy Materials and Solar Cells, vol. 186, pp. 184-193, 2018.
[3] "Best Research-Cell Efficiency Chart." NREL. https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec., 2022).
[4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[5] W. Ke and M. G. Kanatzidis, "Prospects for Low-Toxicity Lead-Free Perovskite Solar Cells," Nature Communications, vol. 10, no. 1, p. 965, 2019.
[6] L. Meng, J. You, and Y. Yang, "Addressing the Stability Issue of Perovskite Solar Cells for Commercial Applications," Nature Communications, vol. 9, no. 1, p. 5265, 2018.
[7] K. Shen et al., "Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal," Crystals, vol. 8, no. 6, p. 232, 2018.
[8] W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave, "On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System," Chemical Science, 10.1039/C5SC04845A vol. 7, no. 7, pp. 4548-4556, 2016.
[9] C. J. Bartel et al., "New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides," Science Advances, vol. 5, no. 2, p. eaav0693, 2019.
[10] S. Chen, T. Bimenyimana, and M. Guli, "First-Principles Study on the Electronic Properties of Perovskites MASnaPb(1-a)XbY(3-b) (X, Y = Cl, Br, I)," Results in Physics, vol. 14, p. 102408, 2019.
[11] G. Hodes, "Perovskite-Based Solar Cells," Science, vol. 342, no. 6156, pp. 317-318, 2013.
[12] S. D. Stranks et al., "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, vol. 342, no. 6156, pp. 341-344, 2013.
[13] F. Hao, C. C. Stoumpos, R. P. H. Chang, and M. G. Kanatzidis, "Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells," Journal of the American Chemical Society, vol. 136, no. 22, pp. 8094-8099, 2014.
[14] S. Tao et al., "Absolute Energy Level Positions in Tin- and Lead-Based Halide Perovskites," Nature Communications, vol. 10, no. 1, p. 2560, 2019.
[15] Y. Wu et al., "Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 Achieved by Additive Engineering," Advanced Materials, vol. 29, no. 28, p. 1701073, 2017.
[16] S. Seo, S. Jeong, C. Bae, N. G. Park, and H. Shin, "Perovskite Solar Cells with Inorganic Electron- and Hole-Transport Layers Exhibiting Long-Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air," Advanced Materials, vol. 30, no. 29, p. 1801010, 2018.
[17] H. Li and W. Zhang, "Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment," Chemical Reviews, vol. 120, no. 18, pp. 9835-9950, 2020.
[18] D. Yang et al., "28.3%-Efficiency Perovskite/Silicon Tandem Solar Cell by Optimal Transparent Electrode for High Efficient Semitransparent Top Cell," Nano Energy, vol. 84, p. 105934, 2021.
[19] K. Mertens, Photovoltaics: Fundamentals, Technology, and Practice. 2018.
[20] Y. Wu, W. Chen, G. Chen, L. Liu, Z. He, and R. Liu, "The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells," Nanomaterials, vol. 8, no. 6, p. 356, 2018.
[21] F. Wang et al., "Materials Toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies," Advanced Functional Materials, vol. 28, no. 52, p. 1803753, 2018.
[22] W. S. Yang et al., "Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells," Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[23] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells," Nature Materials, vol. 13, no. 9, pp. 897-903, 2014.
[24] D. Yang et al., "Surface Optimization to Eliminate Hysteresis for Record Efficiency Planar Perovskite Solar Cells," Energy & Environmental Science, vol. 9, no. 10, pp. 3071-3078, 2016.
[25] H. Yoon, S. M. Kang, J. K. Lee, and M. Choi, "Hysteresis-Free Low-Temperature-Processed Planar Perovskite Solar Cells with 19.1% Efficiency," Energy & Environmental Science, vol. 9, no. 7, pp. 2262-2266, 2016.
[26] M. Stephen, K. Genevičius, G. Juška, K. Arlauskas, and R. C. Hiorns, "Charge Transport and Its Characterization Using Photo-CELIV in Bulk Heterojunction Solar Cells," Polymer International, vol. 66, no. 1, pp. 13-25, 2017.
[27] S. Ryu, N. Y. Ha, Y. H. Ahn, J. Y. Park, and S. Lee, "Light Intensity Dependence of Organic Solar Cell Operation and Dominance Switching Between Shockley–Read–Hall and Bimolecular Recombination Losses," Scientific Reports, vol. 11, no. 1, p. 16781, 2021.
[28] "How Does Temperature and Irradiance Affect I-V Curves?" Seaward Electronic Ltd. https://www.seaward.com/gb/support/solar/faqs/00797-how-does-temperature-and-irradiance-affect-i-v-curves/ (accessed Dec., 2022).
[29] "Quantum Efficiency." PVCDROM. https://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency (accessed Dec., 2022).
[30] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells," Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
[31] G. Maculan et al., "CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector," The Journal of Physical Chemistry Letters, vol. 6, no. 19, pp. 3781-3786, 2015.
[32] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells," Nano Letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[33] N. Li et al., "Cation and Anion Immobilization Through Chemical Bonding Enhancement with Fluorides for Stable Halide Perovskite Solar Cells," Nature Energy, vol. 4, no. 5, pp. 408-415, 2019.
[34] H. S. Jung, G. S. Han, N. G. Park, and M. J. Ko, "Flexible Perovskite Solar Cells," Joule, vol. 3, no. 8, pp. 1850-1880, 2019.
[35] X. Li, P. Li, Z. Wu, D. Luo, H. Y. Yu, and Z. H. Lu, "Review and Perspective of Materials for Flexible Solar Cells," Materials Reports: Energy, vol. 1, no. 1, p. 100001, 2021.
[36] J. Long, Z. Huang, J. Zhang, X. Hu, L. Tan, and Y. Chen, "Flexible Perovskite Solar Cells: Device Design and Perspective," Flexible and Printed Electronics, vol. 5, no. 1, p. 013002, 2020.
[37] W. B. LIU. "玻璃轉移溫度 Glass transition temperature." ACMT. https://www.smartmolding.com/18-11c03/ (accessed Dec., 2022).
[38] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, "Surface Oxidation Activates Indium Tin Oxide for Hole Injection," Journal of Applied Physics, vol. 87, no. 1, pp. 572-576, 2000.
[39] J. H. Park, K. J. Ahn, S. I. Na, and H. K. Kim, "Effects of Deposition Temperature on Characteristics of Ga-Doped ZnO Film Prepared by Highly Efficient Cylindrical Rotating Magnetron Sputtering for Organic Solar Cells," Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 657-663, 2011.
[40] H. Liu et al., "Efficient and Ultraviolet Durable Inverted Organic Solar Cells Based on an Aluminum-Doped Zinc Oxide Transparent Cathode," Applied Physics Letters, vol. 103, no. 4, p. 043309, 2013.
[41] B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, "Transparent and Conductive Electrodes Based on Unpatterned, Thin Metal Films," Applied Physics Letters, vol. 93, no. 22, p. 223304, 2008.
[42] J. Wang et al., "Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrode-Based Flexible Perovskite Solar Cells and the Suppression Method," Solar RRL, vol. 2, no. 9, p. 1800118, 2018.
[43] G. Zeng, J. Zhang, X. Chen, H. Gu, Y. Li, and Y. Li, "Breaking 12% Efficiency in Flexible Organic Solar Cells by Using a Composite Electrode," Science China Chemistry, vol. 62, no. 7, pp. 851-858, 2019.
[44] Y. Jin et al., "Long-Term Stable Silver Nanowire Transparent Composite as Bottom Electrode for Perovskite Solar Cells," Nano Research, vol. 11, no. 4, pp. 1998-2011, 2018.
[45] E. Lee et al., "All-Solution-Processed Silver Nanowire Window Electrode-Based Flexible Perovskite Solar Cells Enabled with Amorphous Metal Oxide Protection," Advanced Energy Materials, vol. 8, no. 9, p. 1702182, 2018.
[46] V. D. Tran, S. V. N. Pammi, B. J. Park, Y. Han, C. Jeon, and S. G. Yoon, "Transfer-Free Graphene Electrodes for Super-Flexible and Semi-Transparent Perovskite Solar Cells Fabricated Under Ambient Air," Nano Energy, vol. 65, p. 104018, 2019.
[47] K. Sun, P. Li, Y. Xia, J. Chang, and J. Ouyang, "Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode," ACS Applied Materials & Interfaces, vol. 7, no. 28, pp. 15314-15320, 2015.
[48] I. A. Howard et al., "Coated and Printed Perovskites for Photovoltaic Applications," Advanced Materials, vol. 31, no. 26, p. 1806702, 2019.
[49] F. Di Giacomo, A. Fakharuddin, R. Jose, and T. M. Brown, "Progress, Challenges and Perspectives in Flexible Perovskite Solar Cells," Energy & Environmental Science, vol. 9, no. 10, pp. 3007-3035, 2016.
[50] Y. Galagan, "Perovskite Solar Cells: Toward Industrial-Scale Methods," The Journal of Physical Chemistry Letters, vol. 9, no. 15, pp. 4326-4335, 2018.
[51] D. H. Kim, J. B. Whitaker, Z. Li, M. F. A. M. van Hest, and K. Zhu, "Outlook and Challenges of Perovskite Solar Cells Toward Terawatt-Scale Photovoltaic Module Technology," Joule, vol. 2, no. 8, pp. 1437-1451, 2018.
[52] J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, "Conductor Microstructures by Laser Curing of Printed Gold Nanoparticle Ink," Applied Physics Letters, vol. 84, no. 5, pp. 801-803, 2004.
[53] S. J. Moon et al., "Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules," IEEE Journal of Photovoltaics, vol. 5, no. 4, pp. 1087-1092, 2015.
[54] B. Turan and S. Haas, "Scribe Width Optimization of Absorber Laser Ablation for Thin-film Silicon Solar Modules," Journal of Laser Micro / Nanoengineering, vol. 8, pp. 234-243, 2013.
[55] A. L. Palma et al., "Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio," IEEE Journal of Photovoltaics, vol. 7, no. 6, pp. 1674-1680, 2017.
[56] Y. Galagan, E. W. C. Coenen, W. J. H. Verhees, and R. Andriessen, "Towards the Scaling Up of Perovskite Solar Cells and Modules," Journal of Materials Chemistry A, vol. 4, no. 15, pp. 5700-5705, 2016.
[57] X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE Journal of Quantum Electronics, vol. 33, no. 10, pp. 1706-1716, 1997.
[58] A. L. Palma, "Laser-Processed Perovskite Solar Cells and Modules," Solar RRL, vol. 4, no. 4, p. 1900432, 2020.
[59] B. Kim et al., "Selective Laser Ablation of Metal Thin Films Using Ultrashort Pulses," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, no. 3, pp. 771-782, 2021.
[60] S. Xiao, S. A. Fernandes, and A. Ostendorf, "Selective Patterning of ITO on Flexible PET Substrate by 1064 nm Picosecond Laser," Physics Procedia, vol. 12, pp. 125-132, 2011.
[61] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nature Communications, vol. 4, no. 1, p. 2761, 2013.
[62] L. Yang et al., "Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation," Advanced Materials, vol. 34, no. 24, p. 2201681, 2022.
[63] F. Di Giacomo et al., "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates," Advanced Energy Materials, vol. 5, no. 8, p. 1401808, 2015.
[64] B. Li and W. Zhang, "Improving the Stability of Inverted Perovskite Solar Cells Towards Commercialization," Communications Materials, vol. 3, no. 1, p. 65, 2022.
[65] H. Wang et al., "An in Situ Bifacial Passivation Strategy for Flexible Perovskite Solar Module with Mechanical Robustness by Roll-to-Roll Fabrication," Journal of Materials Chemistry A, vol. 9, no. 9, pp. 5759-5768, 2021.
[66] J. S. Yeo et al., "Reduced Graphene Oxide-Assisted Crystallization of Perovskite via Solution-Process for Efficient and Stable Planar Solar Cells with Module-Scales," Nano Energy, vol. 30, pp. 667-676, 2016.
[67] T. Bu et al., "Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module," Nature Communications, vol. 9, no. 1, p. 4609, 2018.
[68] T. Bu et al., "Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules," ACS Applied Materials & Interfaces, vol. 10, no. 17, pp. 14922-14929, 2018.
[69] S. Pisoni et al., "Impact of Interlayer Application on Band Bending for Improved Electron Extraction for Efficient Flexible Perovskite Mini-Modules," Nano Energy, vol. 49, pp. 300-307, 2018.
[70] J. Dagar et al., "Efficient Fully Laser-Patterned Flexible Perovskite Modules and Solar Cells Based on Low-Temperature Solution-Processed SnO2/Mesoporous-TiO2 Electron Transport Layers," Nano Research, vol. 11, no. 5, pp. 2669-2681, 2018.
[71] P. Ru et al., "High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells," Advanced Energy Materials, vol. 10, no. 12, p. 1903487, 2020.
[72] B. Taheri et al., "Laser-Scribing Optimization for Sprayed SnO2-Based Perovskite Solar Modules on Flexible Plastic Substrates," ACS Applied Energy Materials, vol. 4, no. 5, pp. 4507-4518, 2021.
[73] P. Zhou et al., "Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells," Micromachines, vol. 8, no. 2, p. 55, 2017.
[74] K. Li et al., "An Efficient, Flexible Perovskite Solar Module Exceeding 8% Prepared with an Ultrafast PbI2 Deposition Rate," Scientific Reports, vol. 8, no. 1, p. 442, 2018.
[75] P. Kumar and A. K. Chauhan, "Highly Efficient Flexible Perovskite Solar Cells and Their Photo-Stability," Journal of Physics D: Applied Physics, vol. 53, no. 3, p. 035101, 2020.
[76] J. Chung et al., "Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by a Porous-Planar Structure as an Electron Transport Layer," Energy & Environmental Science, vol. 13, no. 12, pp. 4854-4861, 2020.
[77] X. Hu et al., "A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells," Joule, vol. 3, no. 9, pp. 2205-2218, 2019.
[78] Z. Huang et al., "Water-Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer," Advanced Functional Materials, vol. 29, no. 37, p. 1902629, 2019.
[79] X. Dai et al., "Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates," Advanced Energy Materials, vol. 10, no. 1, p. 1903108, 2020.
[80] T. Lei et al., "Flexible Perovskite Solar Modules with Functional Layers Fully Vacuum Deposited," Solar RRL, vol. 4, no. 11, p. 2000292, 2020.
[81] L. A. Castriotta et al., "Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area," ACS Applied Materials & Interfaces, vol. 13, no. 25, pp. 29576-29584, 2021.
[82] G. Thériault. "The Beginner's Guide on Spot Size of Laser Beam." GENTEC ELECTRO-OPTICS, INC. https://www.gentec-eo.com/blog/spot-size-of-laser-beam (accessed Dec., 2022).
[83] 楊曉冬、邵建新、廖生鴻、譚錦亞、周杰和蔣躍文, "刀口法測量高斯光束光斑半徑研究," 激光與紅外, vol. 39, no. 8, pp. 829-832, 2009.
[84] J. H. Yoon, J. K. Park, W. M. Kim, J. Lee, H. Pak, and J. h. Jeong, "Characterization of Efficiency-Limiting Resistance Losses in Monolithically Integrated Cu(In,Ga)Se2 Solar Modules," Scientific Reports, vol. 5, no. 1, p. 7690, 2015.
[85] B. Q. Lin, C. P. Huang, K. Y. Tian, P. H. Lee, W. F. Su, and L. Xu, "Laser Patterning Technology Based on Nanosecond Pulsed Laser for Manufacturing Bifacial Perovskite Solar Modules," International Journal of Precision Engineering and Manufacturing-Green Technology, pp. 1-17, 2022.
[86] L. Xu et al., "Improving the Efficiency and Stability of Inverted Perovskite Solar Cells by CuSCN-Doped PEDOT:PSS," Solar Energy Materials and Solar Cells, vol. 206, p. 110316, 2020.
[87] Q. Xiong et al., "CuSCN Modified PEDOT:PSS to Improve the Efficiency of Low Temperature Processed Perovskite Solar Cells," Organic Electronics, vol. 61, pp. 151-156, 2018.
[88] D. Huang et al., "Perovskite Solar Cells with a DMSO-Treated PEDOT:PSS Hole Transport Layer Exhibit Higher Photovoltaic Performance and Enhanced Durability," Nanoscale, vol. 9, no. 12, pp. 4236-4243, 2017.
[89] M. Wang, H. Wang, W. Li, X. Hu, K. Sun, and Z. Zang, "Defect Passivation Using Ultrathin PTAA Layers for Efficient and Stable Perovskite Solar Cells with a High Fill Factor and Eliminated Hysteresis," Journal of Materials Chemistry A, vol. 7, no. 46, pp. 26421-26428, 2019.
[90] A. A. Ashouri et al., "Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction," Science, vol. 370, no. 6522, pp. 1300-1309, 2020.
[91] Y. Lin et al., "Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability," ACS Energy Letters, vol. 5, no. 9, pp. 2935-2944, 2020.
[92] A. B. Yakar and R. L. Byer, "Femtosecond Laser Ablation Properties of Borosilicate Glass," Journal of Applied Physics, vol. 96, no. 9, pp. 5316-5323, 2004.
[93] Jdrewitt. "The Amorphous Structure of Glassy Silica (SiO2) in Two-Dimensions." Wikipedia. https://zh.wikipedia.org/wiki/%E7%8E%BB%E7%92%83 (accessed Dec., 2022).
[94] L. Ag. "Structure of Polyethylene Terephthalate (PET)." Wikipedia. https://zh.wikipedia.org/zh-tw/%E8%81%9A%E5%AF%B9%E8%8B%AF%E4%BA%8C%E7%94%B2%E9%85%B8%E4%B9%99%E4%BA%8C%E9%85%AF (accessed Dec., 2022).
[95] F. Weisbuch, V. N. Tokarev, S. Lazare, and D. Débarre, "Ablation with a Single Micropatterned KrF Laser Pulse: Quantitative Evidence of Transient Liquid Microflow Driven by the Plume Pressure Gradient at the Surface of Polyesters," Applied Physics A: Materials Science and Processing, vol. 76, no. 4, pp. 613-620, 2003.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87123-
dc.description.abstract置身於第三代太陽能電池領域技術發展中,鈣鈦礦太陽能電池已成為重要發展趨勢,在玻璃基板上於2009年首次製作出光電轉換效率3.8%的鈣鈦礦太陽能電池後,便在數十年間光電轉換效率即可達到25.7%,而鈣鈦礦太陽能電池的一大特性就是可以使用低溫製程,這使得可以製造於可撓性基板上,目前已達到22.4%的光電轉換效率。然而,這些高效率的元件都為小面積(<0.1 cm2),在朝往商業化模組開發的路上仍然有許多技術困難須克服,其中雷射雕刻的單片整合技術是關鍵環節之一。本實驗著重於研究在可撓性基板上,並通過旋塗法鍍膜,以雷射雕刻技術完成可撓性鈣鈦礦太陽能電池模組的製作。鈣鈦礦電池模組製作則是將電池以單片串聯模組的方式,藉由三條雷射切割線P1、P2和P3讓多顆電池互相串連。P1切割下電極用於定義單個子電池大小,P2讓上下電極能相互導通,最後P3切割上電極,重複此步驟完成電池串聯。我們使用波長為532 nm的奈秒脈衝雷射,在大氣環境下進行雷射雕刻,透過調整脈衝重疊率和雷射能量密度進行參數優化,探討P1切割線對後續鈣鈦礦電池鍍膜均勻性的影響,P2切割線所使用之雷射參數對接觸電阻的影響,以及P3切割線於上電極的效果。在提升鈣鈦礦電池的效率方面透過改變電洞傳輸層的方式,加入修飾層使得電壓與電流皆提升,在0.09 cm2的發電面積下讓玻璃與可撓性基板的鈣鈦礦電池效率從12.7%和7.9%提升至14.4%與10.8%,以此標準作為後續模組化製程的基礎。
最後,在2×2 cm2的玻璃基板與可撓性基板上,利用旋塗法的方式並串聯兩顆子電池形成模組,可做出有效發電面積1.0 cm2其光電轉換效率分別12.5%與10.1%的模組,填充因子都達到69.1%與60.1%,相比小面積的標準片只降低12%和6%,代表本實驗有效地以全雷射切割的方式完成模組,可應用於未來大面積塗佈法下使用相同雷射切割參數實現卷對卷或片對片的製程。
zh_TW
dc.description.abstractIn the development of the third generation of solar cells, perovskite (PVSK) solar cells have become an important trend in research development. Since the first perovskite solar cell (PSC) was reported on the glass substrate in 2009, with a power conversion efficiency (PCE) of 3.81%, the power conversion efficiency (PCE) of perovskite solar cell (PSC) has increased to 25.7% in the last decade. The PSCs can be made at low-temperature processes, which means we can apply them on flexible substrates. The best PCE on flexible substrate is 22.4% so far. However, flexible perovskite solar cells (FPSCs) with high PCEs are all made in small areas (<0.1 cm2) still difficulties to be overcome on the road toward commercialization, and monolithic integration is one of the key issues. In this study, we developed laser patterning technology based on a nanosecond pulsed laser to fabricate PVSK solar modules on the flexible substrate.
Perovskite solar modules are fabricated through a monolithic integration method, which is established by three scribing lines of P1, P2, and P3 by laser patterning method. P1 insulates the bottom electrode and defines the width of each sub-cell. P2 scribes absorber layer and allows top and back electrodes to connect and form a current flow path. P3 separates the top electrode, and finishes connection of sub‐cells in series. A nanosecond pulsed laser with a wavelength of 532 nm is used with the advantage of low cost compared with picosecond or femtosecond lasers. By adjusting the laser power density and pulse overlap ratio to optimize the scribing result, we investigated the effect of P1 scribing line on coating quality of PVSK layer and P2 scribing line on contact resistance between top and bottom electrodes. The wavelength of 532 nm is selected because of high absorption of PVSK layer and low absorption of TCO layer. To improve the PCE of PSCs, we add a modification layer on the hole transport layer. It shows that open circuit voltage and short circuit current are increased and the PCEs rise from 12.7% and 7.9% to 14.4% and 10.8% on the small area (0.09 cm2) glass substrate and flexible substrate, respectively. Therefore, we use these as control samples for comparison to subsequent module processes.
Finally, a mini‐module with two sub-cells was fabricated on the 2×2 cm2 flexible substrate by a spin coating method. The module efficiency based on active area of 1.0 cm2 is 10.8% with the fill factor of 60.1% on flexible substrates. In conclusion, we have successfully demonstrated all laser patterning technology to fabricate flexible perovskite solar modules, and make possible the large-area and large‐scale flexible perovskite solar modules.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-10T16:05:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-10T16:05:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 鈣鈦礦太陽能電池介紹 5
1.2.1 鈣鈦礦太陽能電池的演進 5
1.2.2 鈣鈦礦材料結構 5
1.3 鈣鈦礦太陽能電池光電原理 7
1.4 鈣鈦礦太陽能電池元件結構 10
1.5 鈣鈦礦太陽能電池性質介紹 12
1.5.1 短路電流(Short Circuit Current, Jsc) 12
1.5.2 開路電壓(Open Circuit Voltage, Voc) 15
1.5.3 填充因子(Fill Factor, FF) 17
1.5.4 光電轉換效率(Photovoltaic Conversion Efficiency, PCE) 19
第二章 文獻回顧 20
2.1 可撓性鈣鈦礦太陽能電池介紹 20
2.1.1 可撓性鈣鈦礦太陽能電池基板與下電極的選擇 20
2.1.2 可撓性鈣鈦礦太陽能電池導電下電極 22
2.2 可撓性鈣鈦礦太陽能電池大面積製程介紹 27
2.3 可撓性鈣鈦礦太陽能電池模組性質介紹 29
2.3.1 串聯模組製程順序介紹 29
2.3.2 串聯模組設計介紹 31
2.3.3 模組雷射加工介紹 33
2.3.4 可撓性鈣鈦礦太陽能電池模組效率表現 35
2.4 研究動機 44
第三章 實驗流程與方法介紹 45
3.1 實驗方法 45
3.1.1 可撓性基板製備流程圖 45
3.1.2 可撓性鈣鈦礦電池模組製備流程圖 46
3.1.3 雷射製程開發流程圖 47
3.2 實驗用儀器列表 48
3.3 實驗雷射基台架設與介紹 50
3.3.1 脈衝雷射和光路設計 50
3.3.2 2D振鏡系統(2D Galvanometer Scanner) 53
3.3.3 精密微控定位走台 54
3.4 實驗用化學物質列表 55
3.5 實驗藥品製備方式 57
3.5.1 NiOx凝膠溶液(Sol‐gel) 57
3.5.2 PEDOT:PSS溶液 57
3.5.3 MeO-2PACz溶液 57
3.5.4 2PACz溶液 57
3.5.5 CH3NH3PbI3 鈣鈦礦前驅溶液 58
3.5.6 PC61BM溶液 58
3.5.7 PEI介面修飾層溶液 58
3.6 鈣鈦礦電池元件和模組製備流程 59
3.6.1 玻璃和柔性基材元件製程步驟 59
3.6.2 玻璃和柔性基材模組製程步驟 61
3.7 實驗分析設備介紹 62
3.7.1 積分球與光譜儀(Integrating & Sphere Spectrometer) 62
3.7.2 外部量子效率測量儀(External Quantum Efficiency, EQE) 63
3.7.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 63
3.7.4 能量分散光譜儀(Energy Dispersive Spectroscopy, EDS) 64
3.7.5 膜厚分析儀(Surface Profiler) 64
3.7.6 太陽光模擬器(Solar Simulator) 65
3.8 模組實驗分析方法介紹 66
3.8.1 雷射參數定義與量測方法 66
3.8.2 波長532 nm奈秒脈衝雷射功率能量設定 71
3.8.3 傳輸線法分析(Transfer Line Method, TLM) 72
第四章 實驗結果與討論 73
4.1 硬質(玻璃)基板標準片與模組製作 73
4.1.1 小面積標準試片的製程方式 73
4.1.2 P1線雷射參數 77
4.1.3 兩電極間接觸電阻測量 81
4.1.4 P2線雷射參數 82
4.1.5 P3線雷射參數 86
4.1.6 玻璃基板模組之光電轉換效率表現 89
4.2 可撓性(PET)基板標準片與模組製作 92
4.2.1 小面積標準試片的製程對比 92
4.2.2 P1線雷射參數 99
4.2.3 P2線雷射參數 110
4.2.4 P3線雷射參數 118
4.2.5 可撓性基板模組之光電轉換效率表現 121
4.2.6 PET與玻璃基板對雷射切割影響比較 127
4.2.7 可撓性基板標準片與模組之彎曲測試 127
第五章 結論 131
第六章 建議與未來工作 133
參考文獻 134
-
dc.language.isozh_TW-
dc.subject奈秒脈衝雷射zh_TW
dc.subject可撓性鈣鈦礦太陽能電池zh_TW
dc.subject全雷射雕刻模組zh_TW
dc.subjectnanosecond pulse laseren
dc.subjectall laser scribingen
dc.subjectflexible perovskite solar moduleen
dc.title奈秒脈衝雷射雕刻技術應用於可撓性鈣鈦礦太陽能電池模組的製造zh_TW
dc.titleLaser Patterning Technology Based on Nanosecond Pulsed Laser for Fabricating Flexible Perovskite Solar Modulesen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊嘉揚;蔡豐羽zh_TW
dc.contributor.oralexamcommitteeJia-Yang Juang;Feng-Yu Tsaien
dc.subject.keyword可撓性鈣鈦礦太陽能電池,全雷射雕刻模組,奈秒脈衝雷射,zh_TW
dc.subject.keywordflexible perovskite solar module,all laser scribing,nanosecond pulse laser,en
dc.relation.page141-
dc.identifier.doi10.6342/NTU202300227-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2027-01-02-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
10.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved