Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒zh_TW
dc.contributor.advisorYi-Ju Chouen
dc.contributor.author白松德zh_TW
dc.contributor.authorSomdeb Bandopadhyayen
dc.date.accessioned2023-05-05T17:32:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-05-
dc.date.issued2023-
dc.date.submitted2023-02-12-
dc.identifier.citation[1] M. Adams, P. Colella, D. T. Graves, and et al. Chombo software package for amr applications - design document. Technical report, Los Alamos National Laboratory,2016.
[2] M. Aftosmis, M. Berger, and G. Adomavicius. A parallel multilevel method for adaptively refined cartesian grids with embedded boundaries. In 38th Aerospace Sciences Meeting and Exhibit, Reno,NV,U.S.A., 01 2000. doi: 10.2514/6.2000-808.
[3] M. J. Aftosmis, M. J. Berger, and J. E. Melton. Robust and efficient cartesian mesh generation for component-based geometry. AIAA Journal, 36(6):952–960, 1998. doi: 10.2514/2.464.
[4] D. S. Balsara. Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. The Astrophysical Journal Supplement Series, 151(1):149, March 2004.
[5] S. Bandopadhyay and H. Shang. Sadhana: A doubly linked list-based multidimensional adaptive mesh refinement framework for solving hyperbolic conservation laws with application to astrophysical hydrodynamics and magnetohydrodynamics. The Astrophysical Journal Supplement Series, 263(2):32, dec 2022. doi: 10.3847/1538-4365/ac9279. URL https://dx.doi.org/10.3847/1538-4365/ac9279.
[6] P. Batten, N. Clarke, C. Lambert, and D. Causon. On the choice of wavespeeds for the HLLC Riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570,1997.
[7] M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82(1):64–84, 1989. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(89)90035-1.
[8] M. J. Berger. Data structures for adaptive grid generation. SIAM Journal on Scientific and Statistical Computing, 7(3):904–916, 1986. doi: 10.1137/0907061.
[9] M. J. Berger and R. J. Leveque. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries. In 9th Computational Fluid Dynamics Conference, AIAA Paper No. 1989-1930, Buffalo, New York, United States, June 1989. American Institute of Aeronautics and Astronautics.
[10] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3):484–512, 1984. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(84)90073-1.
[11] J. Bordner and M. L. Norman. Enzo-p / cello: Scalable adaptive mesh refinement for astrophysics and cosmology. In Proceedings of the Extreme Scaling Workshop, BW-XSEDE ’12, USA, 2012. University of Illinois at Urbana-Champaign.
[12] M. Brio and C. C. Wu. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 75:400–422, April 1988.
[13] C. Brummel-Smith, G. Bryan, I. Butsky, L. Corlies, A. Emerick, J. Forbes, Y. Fujimoto, N. Goldbaum, P. Grete, C. Hummels, J. H. Kim, D. Koh, M. Li, Y. Li, X. Li,B. O’Shea, M. Peeples, J. Regan, M. Salem, and F. Zhao. Enzo: An adaptive mesh refinement code for astrophysics (version 2.6). Journal of Open Source Software, 4,10 2019. doi: 10.21105/joss.01636
[14] G. Bryan, M. Norman, B. O’Shea, T. Abel, J. Wise, M. Turk, D. Reynolds, D. Collins, P. Wang, S. Skillman, B. Smith, R. Harkness, J. Bordner, J. H. Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, and Y. Li. Enzo: An adaptive mesh refinement code for astrophysics. The Astrophysical Journal Supplement Series, 211(2):19, mar 2014. doi: 10.1088/0067-0049/211/2/19.
[15] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–1133, 2011. doi: 10.1137/100791634.
[16] A. Calder, B. Curts, L. Dursi, B. Fryxell, G. Henry, P. MacNece, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, J. Truran, and M. Zingale. High-performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors. In SC ’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pages 56– 56, 12 2000. ISBN 0-7803-9802-5. doi: 10.1109/SC.2000.10010.
[17] L. Chacón. A non-staggered, conservative, ∇· b →= 0, finite-volume scheme for 3d implicit extended magnetohydrodynamics in curvilinear geometries. Computer Physics Communications, 163(3):143–171, 2004. ISSN 0010-4655.
[18] W. J. Coirier and K. G. Powell. An accuracy assessment of cartesian-mesh approaches for the euler equations. Journal of Computational Physics, 117(1):121–131, 1995. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1995.1050.
[19] W. Dai and P. R. Woodward. Interactions between magnetohydrodynamical shocks and denser clouds. The Astrophysical Journal, 436:776–783, December 1994.
[20] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the mhd equations. Journal of Computational Physics, 175(2):645–673, 2002. ISSN 0021-9991.
[21] D. DeZeeuw and K. G. Powell. An adaptively refined cartesian mesh solver for the euler equations. Journal of Computational Physics, 104(1):56–68, 1993. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1993.1007.
[22] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley, D. Sheeler, A. Siegel, and K. Weide. Extensible component-based architecture for flash, a massively parallel, multiphysics simulation code. Parallel Computing, 35(10):512–522, 2009. ISSN 0167-8191. doi: https://doi.org/10.1016/j.parco.2009.08.001. URL https://www.sciencedirect.com/science/article/pii/S0167819109000945.
[23] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves, M. Lijewski, F. Löffler, B. O' Shea, E. Schnetter, B. Van Straalen, and K. Weide. A survey of high level frameworks in block-structured adaptive mesh refinement packages. Journal of Parallel and Distributed Computing, 74(12):3217–3227, 2014. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2014.07.001. URL https://www.sciencedirect.com/science/article/pii/S0743731514001178. Domain-Specific Languages and High-Level Frameworks for High-Performance Computing.
[24] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf. The Cactus framework and toolkit: Design and applications. In Vector and Parallel Processing – VECPAR’2002, 5th International Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer. URL http://edoc.mpg.de/3341.
[25] M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive pde solver based on hashing and space-filling curves. Parallel Computing, 25(7):827–843, 1999. ISSN 0167-8191. doi: https://doi.org/10.1016/S0167-8191(99)00020-4. URL https://www.sciencedirect.com/science/article/pii/S0167819199000204.
[26] C. Groth, D. D. Zeeuw, K. Powell, T. Gombosi, and Q. Stout. A parallel solutionadaptive scheme for ideal magnetohydrodynamics. In 14th Computational Fluid Dynamics Conference, Norfolk,VA,U.S.A., 11 1999. doi: 10.2514/6.1999-3273.
[27] A. Harten, P. D. Lax, and B. v. Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM review, 25(1):35–61, 1983.
[28] C. Helzel, J. A. Rossmanith, and B. Taetz. An unstaggered constrained transport method for the 3d ideal magnetohydrodynamic equations. Journal of Computational Physics, 230(10):3803–3829, 2011. ISSN 0021-9991.
[29] A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes. In 14th Fluid and Plasma Dynamics Conference, June 1981.
[30] H. Ji, F.-S. Lien, and E. Yee. A new adaptive mesh refinement data structure with an application to detonation. Journal of Computational Physics, 229(23):8981–8993, 2010. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2010.08.023. URL https://www.sciencedirect.com/science/article/pii/S0021999110004705.
[31] A. Khokhlov. Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations. Journal of Computational Physics, 143(2):519–543, 1998. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1998.9998. URL https://www.sciencedirect.com/science/article/pii/S0021999198999983.
[32] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. Journal of Computational Physics, 160(1):241–282, 2000.
[33] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer. Paramesh: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126(3):330–354, 2000. ISSN 0010-4655. doi: https://doi.org/10.1016/S0010-4655(99)00501-9.
[34] C. P. McNally, W. Lyra, and J.-C. Passy. A well-posed kelvin-helmholtz instability test and comparison. The Astrophysical Journal Supplement Series, 201(2):18, jun 2012.
[35] A. Mignone, C. Zanni, P. Tzeferacos, B. van Straalen, P. Colella, and G. Bodo. The pluto code for adaptive mesh computations in astrophysical fluid dynamics. The Astrophysical Journal Supplement Series, 198(1):7, December 2011. doi: 10.1088/0067-0049/198/1/7.
[36] T. Miyoshi and K. Kusano. A multi-state hll approximate riemann solver for ideal magnetohydrodynamics. Journal of Computational Physics, 208(1):315–344, 2005. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2005.02.017. URL https://www.sciencedirect.com/science/article/pii/S0021999105001142.
[37] H. Nessyahu and E. Tadmor. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87(2):408–463, 1990. ISSN 0021-9991.
[38] S. A. Orszag and C.-M. Tang. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 90(1):129– 143, 1979.
[39] B. W. O’shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel, R. Harkness, and A. Kritsuk. Introducing enzo, an amr cosmology application. In T. Plewa, T. Linde, and V. Gregory Weirs, editors, Adaptive Mesh Refinement - Theory and Applications, pages 341–349, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-27039-3.
[40] A. Poludnenko, P. Varniére, A. Cunningham, A. Frank, and S. Mitran. Astrobear: Amr for astrophysical applications - i: Methods. In Adaptive Mesh Refinement - Theory and Applications, pages 331–340, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-27039-3.
[41] K. G. Powell, P. L. Roe, and J. Quirk. Adaptive-mesh algorithms for computational fluid dynamics. In M. Y. Hussaini, A. Kumar, and M. D. Salas, editors, Algorithmic Trends in Computational Fluid Dynamics, pages 303–337, New York, NY, 1993. Springer New York. ISBN 978-1-4612-2708-3.
[42] P. L. Roe. Characteristic-based schemes for the euler equations. Annual Review of Fluid Mechanics, 18(1):337–365, 1986.
[43] J. A. Rossmanith. An unstaggered, high‐resolution constrained transport method for magnetohydrodynamic flows. SIAM Journal on Scientific Computing, 28(5):1766–1797, 2006.
[44] E. Schnetter, S. Hawley, and I. Hawke. Evolutions in 3d numerical relativity using fixed mesh refinement. Classical and Quantum Gravity, 21, 10 2003. doi: 10.1088/0264-9381/21/6/014.
[45] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. Journal of Computational Physics, 83(1):32–78, 1989.
[46] G. A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978.
[47] J. M. Stone, K. Tomida, C. J. White, and K. G. Felker. The athena++ adaptive mesh refinement framework: Design and magnetohydrodynamic solvers. The Astrophysical Journal Supplement Series, 249(1):4, June 2020.
[48] A. Susanto. High-Order Finite-Volume Schemes for Magnetohydrodynamics. PhD thesis, University of Waterloo, 2014. URL http://hdl.handle.net/10012/8597.
[49] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. Astronomy and Astrophysics, pages 337–364, 4 2002. doi: 10.1051/0004-6361:20011817.
[50] E. F. Toro and A. Chakraborty. The development of a riemann solver for the steady supersonic euler equations. The Aeronautical Journal (1968), 98(979):325– 339, 1994. doi: 10.1017/S0001924000026890.
[51] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the hll-riemann solver. Shock waves, 4(1):25–34, 1994.
[52] R. Tumblin, P. Ahrens, S. Hartse, and R. W. Robey. Parallel compact hash algorithms for computational meshes. SIAM Journal on Scientific Computing, 37(1):C31–C53, 2015. doi: 10.1137/13093371X.
[53] G. Tóth. The ∇· b = 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational Physics, 161(2):605–652, 2000. ISSN 0021-9991.
[54] G. D. van Albada, B. van Leer, and W. W. Roberts. A Comparative Study of Computational Methods in Cosmic Gas Dynamics, pages 95–103. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-642-60543-7.
[55] B. van Leer. Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4):361–370, 1974.
[56] B. Van Leer. Towards the ultimate conservative difference scheme iii. upstreamcentered finite-difference schemes for ideal compressible flow. Journal of Computational Physics, 23(3):263–275, 1977.
[57] P. Varniére, A. Poludnenko, A. Cunningham, A.and Frank, and S. Mitran. Astrobear: Amr for astrophysical applications - ii: Tests and applications. In T. Plewa, T. Linde, and V. Gregory Weirs, editors, Adaptive Mesh Refinement - Theory and Applications, pages 463–472, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-27039-3.
[58] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54(1):115–173, 1984.
[59] H. Yee, M. Vinokur, and M. Djomehri. Entropy splitting and numerical dissipation. Journal of Computational Physics, 162(1):33–81, 2000.
[60] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, and J. E. Bussoletti. A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics. Journal of Computational Physics, 92(1):1–66, 1991. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(91)90291-R.
[61] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat. Boxlib with tiling: An adaptive mesh refinement software framework. SIAM Journal on Scientific Computing, 38(5):S156–S172, 2016. doi: 10.1137/15M102616X.
[62] U. Ziegler. A three-dimensional cartesian adaptive mesh code for compressible magnetohydrodynamics. Computer Physics Communications, 116(1):65–77, 1999. ISSN 0010-4655. doi: https://doi.org/10.1016/S0010-4655(98)00139-8.
[63] U. Ziegler. The nirvana code: Parallel computational mhd with adaptive mesh refinement. Computer Physics Communications, 179(4):227–244, 2008. ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2008.02.017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87105-
dc.description.abstract這篇論文提出了一種新的、創新的區塊結構自適應網格生成方法。目前的自適應網格生成方法通常復雜且不靈活,使得它們難以實施和定制特定應用程序。所提出的方法通過引入一個簡單而靈活的數據結構,使用雙向鏈表( DLL)在計算過程中存儲各個塊的信息,從而解決了這些問題。自適應網格生成的一個關鍵挑戰是維護具有不同網格細化級別的塊之間的連通性。所提出的方法通過利用面向連續的希爾伯特空間填充曲線( SFC)來解決這個挑戰。詳細描述了一個基於表格列表的算法,概述了生成 SFC 並根據特定應用程序的要求修改它的過程。計算塊的鄰域的傳統定義已經修改,以增強整體連通性和提高算法效率。這種修改允許更凖確地表示塊之間的關係,從而提高自適應網格生成過程的凖確性。所提出的方法已成功應用於開發一個名為 SADHANA 的自適應網格框架,該框架用於解決天體物理學中遇到的時zh_TW
dc.description.abstractThis dissertation presents a new and innovative approach towards the development of block-structured adaptive mesh generation. The current methodologies for adaptive mesh generation are often complex and inflexible, making them difficult to implement and customize for specific applications. The proposed approach addresses these issues by introducing a simple yet flexible data structure utilizing a Doubly Linked List (DLL) to store the information of individual blocks during computation.

One of the key challenges in adaptive mesh generation is maintaining connectivity between blocks with varying levels of mesh refinement. The proposed approach addresses this challenge by utilizing a face-continuous Hilbert Space Filling Curve (SFC) to maintain connectivity. A tabulated list-based algorithm is described in detail, outlining the process of generating the SFC and modifying it as per the requirements of the specific application.

The conventional definition of the neighborhood of a computational block has been modified to enhance the overall connectivity and to improve the efficiency of the algorithm. This modification allows for a more accurate representation of the relationship between blocks, which in turn improves the accuracy of the adaptive mesh generation process.

The proposed approach has been successfully applied in the development of an adaptive mesh framework called SADHANA, which is used to solve time-dependent hyperbolic equations encountered in astrophysics. The development of SADHANA was made possible through the support of Dr. Hsien Shang from the Computational Astrophysical Sciences (CompAS) group at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA). This support included both financial funding and access to the computational facility, without which this research would not have been possible.

In conclusion, this dissertation focuses on the novel and existing concepts developed by the current PhD candidate, which collectively have become the foundation for the initial development of the SADHANA code. The proposed approach for adaptive mesh generation is simple, flexible, and effective, making it suitable for a wide range of applications. The success of the proposed approach in the development of SADHANA serves as a testament to its potential for future use in other fields.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:32:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-05T17:32:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Denotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Chapter 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 : Mesh Refinement Strategies . . . . . . . . . . . . . . . . . . . . 5
2.1 Overview of AMR Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 AMR Libraries & AMR Codes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 AMR Data Structure, Mesh-Connectivity & Parallelisation . . . . . . . . . . 12
Chapter 3 : Block Structured Adaptive Mesh Refinement : Current Approach . . . . 16
3.1 Nested Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Doubly Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Neighborhood of AMR Blocks : Modified Definition For Boundaries . . . . . . 21
3.4 Nested Mesh Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 SFC Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Tabulated List Based Approach For SFC Generation . . . . . . . . . . . . 30
3.5 Mesh Adaption Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Zone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Post Adaption Boundary Update . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Restriction, Flux-Correction & Prolongation . . . . . . . . . . . . . . . 42
3.6 Finite Volume Based Discretization for BSAMR . . . . . . . . . . . . . . . 47
3.7 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Parallelization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 4 : Applied Example : SADHANA Framework . . . . . . . . . . . . . . . 52
4.1 SADHANA Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 SADHANA Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Numerical Methods in SADHANA . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Flux Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Hydrodynamic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1.1 1D HD: Sod Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1.2 1D HD: Shu-Osher Shock Tube . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1.3 2D HD: Yee’s Isentropic Vortex . . . . . . . . . . . . . . . . . . . . . 62
4.4.1.4 2D HD: Kelvin– Helmholtz Instability . . . . . . . . . . . . . . . . . . 64
4.4.1.5 2D HD: Double Mach Reflection . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Magnetohydrodynamic Simulations . . . . . . . . . . . . . . . . . . . . . 66
4.4.2.1 1D MHD: Brio-Wu Shock Tube . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2.2 1D MHD: Shu-Osher-Susanto Shock Tube . . . . . . . . . . . . . . . . . . 68
4.4.2.3 2D MHD: Isodensity MHD Vortex . . . . . . . . . . . . . . . . . . . . . 69
4.4.2.4 2D MHD: Orszag-Tang Vortex . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2.5 2D MHD: Cloud-Shock Interaction . . . . . . . . . . . . . . . . . . . . 72
4.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 5 : Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Suggestion for future work . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Appendix A — Riemann Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 HLLC Riemann Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 HLLD Riemann Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
-
dc.language.isoen-
dc.subject流體動力學zh_TW
dc.subject希爾伯特空間填充曲線zh_TW
dc.subject適應性網格細化zh_TW
dc.subject磁流體動力學zh_TW
dc.subjectHilbert Space Filling Curveen
dc.subjectAdaptive Mesh Refinementen
dc.subjectHydrodynamicsen
dc.subjectMagnetohydrodynamicsen
dc.title表列演算法生成空間填充曲線的雙向鍊結串列式區塊結構自適應網格精緻化方法zh_TW
dc.titleA Doubly Linked List Dependent Approach Towards Block Structured Adaptive Mesh Refinement Using A Tabulated List Based Algorithm For Space Filling Curve Generationen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee彭威禮;尚賢;李景輝;譚遠培;呂聖元zh_TW
dc.contributor.oralexamcommitteeUe-Li Pen;Hsien Shang;Chin-Fei Lee;Ronald E Taam;Sheng-Yuan Liuen
dc.subject.keyword適應性網格細化,希爾伯特空間填充曲線,流體動力學,磁流體動力學,zh_TW
dc.subject.keywordAdaptive Mesh Refinement,Hilbert Space Filling Curve,Hydrodynamics,Magnetohydrodynamics,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202300415-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf73.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved