Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉zh_TW
dc.contributor.advisorFu-shan Jawen
dc.contributor.author洪健華zh_TW
dc.contributor.authorJian-Hua Hongen
dc.date.accessioned2023-05-05T17:29:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-05-
dc.date.issued2023-
dc.date.submitted2023-02-13-
dc.identifier.citation1. Chien CC, Han MM, Chiu YH, et al. Epidemiology of cancer in end-stage renal disease dialysis patients: a national cohort study in Taiwan. Journal of Cancer. 2017;8(1):9-18.
2. Igarashi K, Ueda S, Yoshida K, Kashiwagi K. Polyamines in renal failure. Amino Acids. 2006;31(4):477-483.
3. Stengel B. Chronic kidney disease and cancer: a troubling connection. Journal of nephrology. 2010;23(3):253-262.
4. Hung PH, Shen CH, Chiu YL, et al. The aggressiveness of urinary tract urothelial carcinoma increases with the severity of chronic kidney disease. BJU Int. 2009;104(10):1471-1474.
5. Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis. 2002;17(4):265-277.
6. Igarashi K, Uemura T, Kashiwagi K. Acrolein: An Effective Biomarker for Tissue Damage Produced from Polyamines. Methods Mol Biol. 2018;1694:459-468.
7. Igarashi K, Kashiwagi K. Protein-conjugated acrolein as a biochemical marker of brain infarction. Mol Nutr Food Res. 2011;55(9):1332-1341.
8. Pan J, Awoyemi B, Xuan Z, et al. Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies. Chem Res Toxicol. 2012;25(12):2788-2795.
9. Teramoto Y, Jiang G, Goto T, et al. Androgen Receptor Signaling Induces Cisplatin Resistance via Down-Regulating GULP1 Expression in Bladder Cancer. Int J Mol Sci. 2021;22(18).
10. Dimitroff CJ, Klohs W, Sharma A, et al. Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs. 1999;17(2):121-135.
11. Mohammadi M, Froum S, Hamby JM, et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 1998;17(20):5896-5904.
12. Boeri L, Soligo M, Frank I, et al. Cigarette smoking is associated with adverse pathological response and increased disease recurrence amongst patients with muscle-invasive bladder cancer treated with cisplatin-based neoadjuvant chemotherapy and radical cystectomy: a single-centre experience. BJU Int. 2019;123(6):1011-1019.
13. Kim PH, Kent M, Zhao P, et al. The impact of smoking on pathologic response to neoadjuvant cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. World J Urol. 2014;32(2):453-459.
14. Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicological sciences : an official journal of the Society of Toxicology. 2010;115(1):118-130.
15. Tsou HH, Hu CH, Liu JH, et al. Acrolein Is Involved in the Synergistic Potential of Cigarette Smoking- and Betel Quid Chewing-Related Human Oral Cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(5):954-962.
16. Tian J, Fu G, Xu Z, Chen X, Sun J, Jin B. Urinary exfoliated tumor single-cell metabolomics technology for establishing a drug resistance monitoring system for bladder cancer with intravesical chemotherapy. Med Hypotheses. 2020;143:110100.
17. Habuchi T, Takahashi R, Yamada H, Kakehi Y, Sugiyama T, Yoshida O. Metachronous multifocal development of urothelial cancers by intraluminal seeding. Lancet. 1993;342(8879):1087-1088.
18. Bondaruk J, Jaksik R, Wang Z, et al. Erratum: The origin of bladder cancer from mucosal field effects. iScience. 2022;25(7):104715.
19. Seisen T, Granger B, Colin P, et al. A Systematic Review and Meta-analysis of Clinicopathologic Factors Linked to Intravesical Recurrence After Radical Nephroureterectomy to Treat Upper Tract Urothelial Carcinoma. European urology. 2015;67(6):1122-1133.
20. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249.
21. Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol. 2022.
22. Lin MY, Niu SW, Li WM, et al. Incidence and survival variations of upper tract urothelial cancer in Taiwan (2001-2010). Int J Urol. 2022;29(2):121-127.
23. Jhuang JR, Chiang CJ, Su SY, Yang YW, Lee WC. Reduction in the Incidence of Urological Cancers after the Ban on Chinese Herbal Products Containing Aristolochic Acid: An Interrupted Time-Series Analysis. Sci Rep. 2019;9(1):19860.
24. Chen CH, Grollman AP, Huang CY, et al. Additive Effects of Arsenic and Aristolochic Acid in Chemical Carcinogenesis of Upper Urinary Tract Urothelium. Cancer Epidemiol Biomarkers Prev. 2021;30(2):317-325.
25. Jia L, Liu Z, Sun L, et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci. 2007;48(1):339-348.
26. Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res. 2008;52(1):7-25.
27. Ghilarducci DP, Tjeerdema RS. Fate and effects of acrolein. Rev Environ Contam Toxicol. 1995;144:95-146.
28. Wang HT, Lin JH, Yang CH, et al. Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget. 2017;8(41):70406-70421.
29. Fujioka K, Shibamoto T. Determination of toxic carbonyl compounds in cigarette smoke. Environ Toxicol. 2006;21(1):47-54.
30. Feng Z, Hu W, Hu Y, Tang MS. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A. 2006;103(42):15404-15409.
31. Tang MS, Wang HT, Hu Y, et al. Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol Nutr Food Res. 2011;55(9):1291-1300.
32. Wang HT, Hu Y, Tong D, et al. Effect of carcinogenic acrolein on DNA repair and mutagenic susceptibility. J Biol Chem. 2012;287(15):12379-12386.
33. Wang HT, Zhang S, Hu Y, Tang MS. Mutagenicity and sequence specificity of acrolein-DNA adducts. Chem Res Toxicol. 2009;22(3):511-517.
34. Wang HT, Weng MW, Chen WC, et al. Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis. Carcinogenesis. 2013;34(1):220-227.
35. Bouaoun L, Sonkin D, Ardin M, et al. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum Mutat. 2016;37(9):865-876.
36. Farina MS, Lundgren KT, Bellmunt J. Immunotherapy in Urothelial Cancer: Recent Results and Future Perspectives. Drugs. 2017;77(10):1077-1089.
37. von der Maase H, Sengelov L, Roberts JT, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(21):4602-4608.
38. Nakata H, Kikuchi Y, Tode T, et al. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89(7):733-740.
39. Badjatia N, Satyam A, Singh P, Seth A, Sharma A. Altered antioxidant status and lipid peroxidation in Indian patients with urothelial bladder carcinoma. Urol Oncol. 2010;28(4):360-367.
40. Grivas P, Yu EY. Role of Targeted Therapies in Management of Metastatic Urothelial Cancer in the Era of Immunotherapy. Curr Treat Options Oncol. 2019;20(8):67.
41. Chell V, Balmanno K, Little AS, et al. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene. 2013;32(25):3059-3070.
42. Garje R, An J, Obeidat M, Kumar K, Yasin HA, Zakharia Y. Fibroblast Growth Factor Receptor (FGFR) Inhibitors in Urothelial Cancer. Oncologist. 2020;25(11):e1711-e1719.
43. Cousin S, Khalifa E, Crombe A, et al. Targeting ERBB2 mutations in solid tumors: biological and clinical implications. J Hematol Oncol. 2018;11(1):86.
44. Jiang Q, Xie MX, Zhang XC. Complete response to trastuzumab and chemotherapy in recurrent urothelial bladder carcinoma with HER2 gene amplification: A case report. World J Clin Cases. 2020;8(3):594-599.
45. Peyromaure M, Scotte F, Amsellem-Ouazana D, Vieillefond A, Oudard S, Beuzeboc P. Trastuzumab (Herceptin) in metastatic transitional cell carcinoma of the urinary tract: report on six patients. European urology. 2005;48(5):771-775; discussion 775-778.
46. Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Molecular cancer. 2022;21(1):79.
47. Ito A, Shintaku I, Satoh M, et al. Intravesical seeding of upper urinary tract urothelial carcinoma cells during nephroureterectomy: an exploratory analysis from the THPMG trial. Jpn J Clin Oncol. 2013;43(11):1139-1144.
48. Andersson E, Steven K, Guldberg P. Size-based enrichment of exfoliated tumor cells in urine increases the sensitivity for DNA-based detection of bladder cancer. PLoS One. 2014;9(4):e94023.
49. Sajid MT, Zafar MR, Ahmad H, Ullah S, Mirza ZI, Shahzad K. Diagnostic accuracy of NMP 22 and urine cytology for detection of transitional cell carcinoma urinary bladder taking cystoscopy as gold standard. Pak J Med Sci. 2020;36(4):705-710.
50. Wang X, Gu Y, Zhang S, et al. Unbiased enrichment of urine exfoliated cells on nanostructured substrates for sensitive detection of urothelial tumor cells. Cancer Med. 2020;9(1):290-301.
51. Wang SM, Lai MN, Chen PC, et al. Increased upper and lower tract urothelial carcinoma in patients with end-stage renal disease: a nationwide cohort study in Taiwan during 1997-2008. BioMed research international. 2014;2014:149750.
52. Stiborova M, Frei E, Breuer A, Bieler CA, Schmeiser HH. Aristolactam I a metabolite of aristolochic acid I upon activation forms an adduct found in DNA of patients with Chinese herbs nephropathy. Exp Toxicol Pathol. 1999;51(4-5):421-427.
53. Chen CH, Dickman KG, Moriya M, et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A. 2012;109(21):8241-8246.
54. Jelakovic B, Karanovic S, Vukovic-Lela I, et al. Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 2012;81(6):559-567.
55. Lowrance WT, Ordonez J, Udaltsova N, Russo P, Go AS. CKD and the risk of incident cancer. Journal of the American Society of Nephrology : JASN. 2014;25(10):2327-2334.
56. Vanholder R, Argiles A, Baurmeister U, et al. Uremic toxicity: present state of the art. Int J Artif Organs. 2001;24(10):695-725.
57. Kushner D, Beckman B, Nguyen L, et al. Polyamines in the anemia of end-stage renal disease. Kidney Int. 1991;39(4):725-732.
58. Sindhu KK. Uremic toxins: some thoughts on acrolein and spermine. Ren Fail. 2016;38(10):1755-1758.
59. Moghe A, Ghare S, Lamoreau B, et al. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicological sciences : an official journal of the Society of Toxicology. 2015;143(2):242-255.
60. Lee HW, Wang HT, Weng MW, et al. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget. 2014;5(11):3526-3540.
61. Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem. 1998;273(26):16058-16066.
62. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607-614.
63. Carmella SG, Chen M, Zhang Y, Zhang S, Hatsukami DK, Hecht SS. Quantitation of acrolein-derived (3-hydroxypropyl)mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: effects of cigarette smoking. Chem Res Toxicol. 2007;20(7):986-990.
64. Saginala K, Barsouk A, Aluru JS, Rawla P, Padala SA, Barsouk A. Epidemiology of Bladder Cancer. Med Sci (Basel). 2020;8(1).
65. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. European urology. 2016;70(1):106-119.
66. Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. European urology. 2006;49(3):466-465; discussion 475-467.
67. van Rhijn BW, Burger M, Lotan Y, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. European urology. 2009;56(3):430-442.
68. Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95(1 Suppl 1):S20-S25.
69. Drayton RM, Catto JW. Molecular mechanisms of cisplatin resistance in bladder cancer. Expert Rev Anticancer Ther. 2012;12(2):271-281.
70. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116-129.
71. Iyer G, Milowsky MI. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol Oncol. 2013;31(3):303-311.
72. Pardo OE, Latigo J, Jeffery RE, et al. The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res. 2009;69(22):8645-8651.
73. Isharwal S, Huang H, Nanjangud G, et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum Pathol. 2018;77:63-69.
74. Koga F, Yoshida S, Tatokoro M, et al. ErbB2 and NFkappaB overexpression as predictors of chemoradiation resistance and putative targets to overcome resistance in muscle-invasive bladder cancer. PLoS One. 2011;6(11):e27616.
75. Hayashi T, Seiler R, Oo HZ, et al. Targeting HER2 with T-DM1, an Antibody Cytotoxic Drug Conjugate, is Effective in HER2 Over Expressing Bladder Cancer. J Urol. 2015;194(4):1120-1131.
76. Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33-48.
77. Patel TH, Cecchini M. Targeted Therapies in Advanced Gastric Cancer. Curr Treat Options Oncol. 2020;21(9):70.
78. Patelli G, Zeppellini A, Spina F, et al. The evolving panorama of HER2-targeted treatments in metastatic urothelial cancer: A systematic review and future perspectives. Cancer Treat Rev. 2022;104:102351.
79. Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. European urology. 2013;63(2):234-241.
80. Boffetta P. Tobacco smoking and risk of bladder cancer. Scand J Urol Nephrol Suppl. 2008(218):45-54.
81. Chen CH, Shun CT, Huang KH, et al. Stopping smoking might reduce tumour recurrence in nonmuscle-invasive bladder cancer. BJU Int. 2007;100(2):281-286; discussion 286.
82. Rink M, Zabor EC, Furberg H, et al. Impact of smoking and smoking cessation on outcomes in bladder cancer patients treated with radical cystectomy. European urology. 2013;64(3):456-464.
83. Browman GP, Wong G, Hodson I, et al. Influence of cigarette smoking on the efficacy of radiation therapy in head and neck cancer. N Engl J Med. 1993;328(3):159-163.
84. Wang HT, Chen TY, Weng CW, Yang CH, Tang MS. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells. Oncotarget. 2016;7(49):80450-80464.
85. Borowicz S, Van Scoyk M, Avasarala S, et al. The soft agar colony formation assay. J Vis Exp. 2014(92):e51998.
86. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014(88).
87. Chen YT, Chen JJ, Wang HT. Targeting RNA Polymerase I with Hernandonine Inhibits Ribosomal RNA Synthesis and Tumor Cell Growth. Mol Cancer Res. 2019;17(11):2294-2305.
88. Lamont FR, Tomlinson DC, Cooper PA, Shnyder SD, Chester JD, Knowles MA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. British journal of cancer. 2011;104(1):75-82.
89. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2013;22(4):795-803.
90. Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol. 2021;13:303-328.
91. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265-7279.
92. O'Toole C, Perlmann P, Unsgaard B, Moberger G, Edsmyr F. Cellular immunity to human urinary bladder carcinoma. I. Correlation to clinical stage and radiotherapy. International journal of cancer. 1972;10(1):77-91.
93. Wu K, Zeng J, Zhou J, et al. Slug contributes to cadherin switch and malignant progression in muscle-invasive bladder cancer development. Urol Oncol. 2013;31(8):1751-1760.
94. McConkey DJ, Choi W, Marquis L, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3-4):335-344.
95. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611-629.
96. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019.
97. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415-428.
98. Wang MH, Sun R, Zhou XM, et al. Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway. Cell Death Dis. 2018;9(1):2.
99. Brunner A, Prelog M, Verdorfer I, Tzankov A, Mikuz G, Ensinger C. EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol. 2008;61(3):307-310.
100. Chakravarti A, Winter K, Wu CL, et al. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group. International journal of radiation oncology, biology, physics. 2005;62(2):309-317.
101. Salzberg M, Borner M, Bauer JA, Morant R, Rauch D, Rochlitz C. Trastuzumab (Herceptin) in patients with HER-2-overexpressing metastatic or locally advanced transitional cell carcinoma of the bladder: report on 7 patients. Eur J Cancer. 2006;42(15):2660-2661.
102. Hussain MH, MacVicar GR, Petrylak DP, et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(16):2218-2224.
103. Cimpean AM, Tarlui V, Cumpanas AA, Bolintineanu S, Cumpanas A, Raica M. Critical Overview of HER2 Assessement in Bladder Cancer: What Is Missing for a Better Therapeutic Approach? Anticancer Res. 2017;37(9):4935-4942.
104. Oudard S, Culine S, Vano Y, et al. Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur J Cancer. 2015;51(1):45-54.
105. Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158(6):1955-1959.
106. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-98.
107. Xie X, Lin J, Zhong Y, Fu M, Tang A. FGFR(3S249C) mutation promotes chemoresistance by activating Akt signaling in bladder cancer cells. Exp Ther Med. 2019;18(2):1226-1234.
108. Perez-Ibave DC, Burciaga-Flores CH, Elizondo-Riojas MA. Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: A review. Cancer Epidemiol. 2018;54:48-55.
109. Nagpal M, Singh S, Singh P, Chauhan P, Zaidi MA. Tumor markers: A diagnostic tool. Natl J Maxillofac Surg. 2016;7(1):17-20.
110. Lee LJ, Kwon CS, Forsythe A, Mamolo CM, Masters ET, Jacobs IA. Humanistic and Economic Burden of Non-Muscle Invasive Bladder Cancer: Results of Two Systematic Literature Reviews. Clinicoecon Outcomes Res. 2020;12:693-709.
111. Planz B, Jochims E, Deix T, Caspers HP, Jakse G, Boecking A. The role of urinary cytology for detection of bladder cancer. Eur J Surg Oncol. 2005;31(3):304-308.
112. Gopalakrishna A, Longo TA, Fantony JJ, et al. The diagnostic accuracy of urine-based tests for bladder cancer varies greatly by patient. BMC urology. 2016;16(1):30.
113. Tetu B. Diagnosis of urothelial carcinoma from urine. Mod Pathol. 2009;22 Suppl 2:S53-59.
114. Li X, Gheinani AH, Adam RM. A multi-omics approach to understanding the field effect in bladder cancer. Transl Androl Urol. 2019;8(6):775-778.
115. Jones TD, Wang M, Eble JN, et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res. 2005;11(18):6512-6519.
116. Bharadwaj S, Liu G, Shi Y, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840-1856.
117. Carvalho S, Abreu CM, Ferreira D, et al. Phenotypic Analysis of Urothelial Exfoliated Cells in Bladder Cancer via Microfluidic Immunoassays: Sialyl-Tn as a Novel Biomarker in Liquid Biopsies. Front Oncol. 2020;10:1774.
118. Goulet CR, Champagne A, Bernard G, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19(1):137.
119. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. International journal of cancer. 2020;146(4):895-905.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87097-
dc.description.abstract臨床上發現末期腎病患者罹患泌尿上皮癌的機率頗高,而慢性腎病變是末期腎病的前身,其亦與泌尿上皮癌相關,然,慢性腎病變與泌尿上皮癌間之相互作用仍缺乏確切證據。
研究發現尿毒症的「毒素」之一即多胺(polyamines)產生的丙烯醛,其濃度與慢性腎功能衰竭密切相關。從先前研究發現丙烯醛能誘導DNA損傷並抑制尿路上皮細胞中的DNA修復,進而導致膀胱癌的形成。
據此,本研究假設丙烯醛參與了慢性腎病變患者泌尿上皮癌的形成,在研究中收集62名泌尿上皮癌患者及43名健康對照受試者。藉由分析受試者其腫瘤組織中的丙烯醛-DNA (Acr-dG)加合物(adduct)和p53基因突變、血漿丙烯醛-蛋白質偶聯物 (plasma acrolein-protein conjugates, Acr-PC) 以及 3-HPMA濃度、尿液Acr代謝物來驗證研究假設。
本研究結果發現Acr-dG組織濃度與泌尿上皮癌患者的慢性腎病變分期有統計上的顯著關聯性。研究中,大多數受試者的p53突變是G到A和G到T的突變,其中更有50%的G:C對突變發生在CpG位點,形成Acr-dG加合物誘導的突變譜,慢性腎病變泌尿上皮癌受試者血漿中的 Acr-PC濃度顯著高於健康對照受試者 (p<0.001)。此外,與健康受試者相比,患有慢性腎病變的泌尿上皮癌受試者,其尿液3-HPMA亦發生了改變。
綜合以上結果顯示,丙烯醛可能為內源性物質,即尿毒症的毒素藉由體內誘發,導致慢性腎病變患者的泌尿上皮細胞癌化。
在驗證假設一丙烯醛可能與泌尿上皮癌化具正相關後,我們更進一步探討丙烯醛是否和泌尿上皮癌治療的抗藥性有關。
臨床上使用順鉑(Cisplatin)為第一線化學治療泌尿上皮癌的藥物。然而,順鉑的抗藥性與膀胱癌復發及預後相關,而過去的研究指出,成纖維細胞生長因子受體 (FGFR)和人類表皮生長因子受體2(HER2)基因被激活與上皮癌細胞增生及抗藥性有關,另外,臨床上已知吸煙亦為上皮癌最常見的危險因子之一,並且有實驗證據顯示吸煙與順鉑抗藥性有關。然而,兩者背後潛在的機制仍未清楚。
丙烯醛為一種高活性醛,除了烹飪油煙和汽車廢氣,也大量存在於菸草煙霧中,本研究為了驗證丙烯醛與順鉑抗藥性有關,利用非肌肉浸潤性和肌肉浸潤性兩類膀胱癌細胞株RT4和T24,分別利用丙烯醛暴露後,分析其誘發之順鉑抗藥性和下游信號調控變化。利用Cell viability assay、Cell proliferation assay、Soft agar colony formation assay、Cell migration assay、Quantitative real-time RT-PCR及蛋白質轉漬法(Western blot analysis)相關細胞實驗來做確認,此外,亦利用異種移植小鼠模型來確認腫瘤抗藥性和藥物逆轉可行性。
本研究結果發現丙烯醛在非肌肉浸潤性和肌肉浸潤性膀胱癌細胞株 RT4 和 T24 中,分別透過HER2和FGFR3信號的激活,引起RT4和T24細胞中丙烯醛誘導的順鉑抗藥性。而抗 HER2 抗體曲妥珠單抗和 FGFR 抑製劑 PD173074 分別逆轉了 RT4 和 T24 細胞的順鉑抗藥性。此外,透過丙烯醛誘導的順鉑抗性T24 克隆的異種移植小鼠模型,我們發現與單獨使用順鉑相比,順鉑與 PD173074 合併使用可顯著減小腫瘤大小。綜合以上結果顯示,順鉑抗藥性背後的不同訊號調控顯著改變了標靶治療合併化療的有效性。而本研究為順鉑抗藥性之膀胱癌的治療提供可行的策略。
泌尿上皮細胞脫落之細胞urinary exfoliated cell (UEC),此類細胞中之癌細胞根據先前腔內植入或區域癌化之理論,在疾病進展或復發過程具有其特殊角色,以往多利用其細胞型態或免疫螢光標記作為腫瘤之偵測應用。而臨床已知上泌尿道上皮癌接受根治性腎輸尿管切除術後有高達20-50%於膀胱復發,顯示urinary exfoliated cell (UEC) 可能是癌細胞用以攜帶原位腫瘤細胞資訊及促進癌化。
為了分析尿液中相關細胞包括UEC或腫瘤細胞周圍細胞,以進行細胞特性鑑定和分析,以更全面了解癌細胞如何促進正常表皮細胞癌化與腫瘤復發之過程。本研究收集21位上泌尿道上皮癌病患接受腎臟輸尿管根除或膀胱根除術前後,及7位健康對照組之自解尿液,經由慢速離心後分離並利用多重免疫螢光染色(multiplex immunofluorescence)鑑別出UEC(Pan CK+/ CD45-/ DAPI+)。本研究發現,泌尿上皮癌患者的 UEC 高於健康對照組,且嚴重期別組別顯著高於早期期別與健康對照組,顯示UEC 與上皮癌間具正關聯性。此外,本研究也發現手術後三個月UEC與手術前UEC相比,其下降幅度降低 75% 之患者,其無復發存活期較長(HR 0.091, 95% CI 0.0009-0.912, p= 0.0415),可能可做為區分疾病復發的生物標記。
本研究由三個層面切入—分析丙烯醛在泌尿上皮癌癌化角色和化療順鉑藥物抗藥性、以及尿液脫落細胞對癌化起源與復發之初步探索,全面性的解構泌尿上皮癌從初始癌化之因素以及治療過程中復發、惡化及抗藥性形成。為泌尿上皮癌癌化危險因子,治療抗藥性和腫瘤復各議題提出相關之見解。
zh_TW
dc.description.abstractThere is high prevalence of urothelial carcinoma (UC) in patients with end-stage renal disease (ESRD). Although chronic kidney disease (CKD), a precursor to ESRD, is associated with urothelial carcinoma2, definitive evidence for an interaction between chronic kidney disease and urothelial carcinoma remains lacking.Acrolein, which is known to be produced from polyamines, is considered a uremic "toxin". Previous studies have found that acrolein induces DNA damage and inhibits DNA repair in urothelial cells, leading to bladder cancer.
Therefore, we hypothesized that acrolein is involved in the formation of UC in patients with CKD. Sixty-two patients with UC and 43 healthy control subjects were collected and analyzed in the study. We analyzed acrolein-DNA (Acr-dG) adducts and p53 gene mutations in tumor tissues, plasma acrolein-protein conjugates (Acr-PC) and 3-HPMA levels, urine Acr metabolites of these patients to verify this hypothesis. We found a statistical correlation (p<0.01) between the level of Acr-dG and the stage of CKD in patients with UC. In these patients, the majority of p53 mutations were G to A and G to T mutations, and 50% of G:C pair mutations occurred at CpG sites, which was similar to the mutation spectrum induced by Acr-dG adducts. Plasma Acr-PC levels in UC patients with CKD were significantly higher than those in control subjects (p<0.001). Furthermore, urinary 3-HPMA was altered in UC patients with CKD compared with controls. Taken together, acrolein may act as an endogenous uremic toxin and promote the formation of UC in patients with CKD.
In addition to that acrolein may be related to carcinogenesis of UC, we further explored whether acrolein is related to drug resistance of cancer treatment. Currently, cisplatin-based chemotherapy is the first-line therapy for metastatic UC. However, cisplatin resistance is associated with tumor recurrence and prognosis. Previous studies have linked activation of fibroblast growth factor receptor (FGFR) and HER2 signaling to proliferation and drug resistance in UC. In addition, smoking is known to be one of the most common risk factors for UC, and there is evidence that smoking is associated with cisplatin resistance. However, the underlying mechanism remains unclear. The key substance of interest in this study, acrolein, is a highly reactive aldehyde, which is present in large quantities in tobacco smoke in addition to cooking fumes and vehicle exhaust.
To test this hypothesis, we analyzed acrolein-induced cisplatin resistance and downstream signaling regulation using both non-muscle invasive bladder UC and muscle invasive bladder UC cell lines —RT4 and T24, respectively. Cell experiments including cell viability assay, cell proliferation assay, soft agar colony formation assay, cell migration assay, Quantitative real-time RT-PCR and Western blot analysis were used to evaluate. We also use xenograft mouse model to validate tumor resistance and drug test.
We found that acrolein induced cisplatin resistance and tumor progression in RT4 and T24, respectively. Activation of signaling through HER2 and FGFR3 causes acrolein-induced cisplatin resistance in RT4 and T24 cells, respectively. Furthermore, anti-HER2 antibody trastuzumab and FGFR inhibitor PD173074 reversed cisplatin resistance in RT4 and T24 cells, respectively. Using a xenograft mouse model with an acrolein-induced cisplatin-resistant T24 clone, we found that the combination of cisplatin and PD173074 significantly reduced tumor size compared to cisplatin alone. Taken together, these results suggest that differential signaling regulation behind cisplatin resistance significantly alters the effectiveness of targeted therapy combined with chemotherapy. This study provides a feasible strategy for the treatment of cisplatin-resistant UC.
Urinary exfoliated cell (UEC)is the exfoliated cell of urinary tract. According to the previous theory of intraluminal implantation or field effect of regional canceration17,18, some of these cell has a special role in the process of disease progression or recurrence. Based on this, cell morphology or immunofluorescence labeling as a tumor detection was its most widely application. Up to 20-50% of upper urinary tract cancers recur in the bladder after radical nephroureterectomy, indicating that urinary exfoliated cell (UEC) may carry tumor cell information from primary tumors and may promote urothelial carcinogenesis.
In order to more fully understand how cancer cell promotes the process of normal epidermal cell carcinogenesis and tumor recurrence, we characterize and investigate the urinary cells in urine.
In this study, urine of patients with urothelial carcinoma before and after radical nephroureterectomy or radical cystectomy, as well as 7 healthy controls were collected. The urine was processed with slow centrifugation for cell pallet and stained with multiplex immunofluorescence. UEC was identified as Pan-CK+/CD45-/DAPI+ cells. The current study revealed that the UEC of patients with UC was higher than that of healthy controls, and the UEC level in more advanced stage was significantly higher than that of early stage and healthy controls, indicating a positive association between UEC and UC. In addition, this study also found that patients whose UEC decreased by 75% at three months after surgery compared with the initial UEC before operation had a significantly longer recurrence-free survival (HR 0.091, 95% CI 0.0009-0.912, p= 0.0415).
This study takes the investigation from three aspects - analyzing the role of acrolein in carcinogenesis and cisplatin resistance as well as the effect of urine exfoliated cells on cancer development and recurrence. Based on the above research results, a preliminary analysis is achieved for the biological characteristics of acrolein and urothelial cancer drug resistance and carcinogenicity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:29:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-05T17:29:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書i
誌謝ii
中文摘要iii
英文摘要v
第一章 Introduction 1
1.1泌尿上皮癌 (Urothelial carcinoma)1
1.2 致癌物與上皮癌癌化生成—丙烯醛(Acrolein) 2
1.3 泌尿上皮癌之順鉑抗藥性 (Cisplatin-resistance)機轉3
1.4 尿液細胞為基礎之泌尿上皮癌生物標記與相關應用5
1.5論文研究目 (Aims of the dissertation) 6
第二章 Role of Acrolein as endogenous uremic toxin in urothelial carcinoma patients with chronic kidney disease 8
2.1 Introduction 8
2.2 Material and Methods 10
2.3 Results 14
2.4 Discussion 27
2.5 Conclusions 30
第三章 The effect of acrolein on cisplatin resistance in urothelial carcinoma 31
3.1 Introduction 31
3.2 Material and Methods 33
3.3 Results 38
3.4 Discussion 51
3.5 Conclusions 55
第四章 Urinary exfoliated cells in urothelial carcinoma 56
3.1 Introduction 56
3.2 Material and Methods 57
3.3 Results 59
3.4 Discussion 64
3.5 Conclusions 66
結論與未來展望 ( Conclusion and Perspectives) 67
參考文獻 72
-
dc.language.isozh_TW-
dc.title探討丙烯醛與泌尿上皮癌治療抗藥性和致癌性的生物學特徵zh_TW
dc.titleBiological characterization of therapeutic resistance and carcinogenic potential between acrolein and urothelial carcinomaen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor黃昭淵;張瑛芝zh_TW
dc.contributor.coadvisorChao-Yuan Huang;Ying-Chih Changen
dc.contributor.oralexamcommittee余宏政;成佳憲;陳忠信zh_TW
dc.contributor.oralexamcommitteeHong-Jeng Yu ;Chia-Hsien Cheng ;Chung-Hsin Chenen
dc.subject.keyword泌尿上皮癌,丙烯醛,順鉑抗藥性,成纖維細胞生長因子受體,人類表皮生長因子受體2,尿液脫落細胞,zh_TW
dc.subject.keywordUrothelial carcinoma,Acrolein,Cisplatin-resistant,FGFR,HER2,Urinary exfoliated cell,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202300344-
dc.rights.note未授權-
dc.date.accepted2023-02-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
4.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved