請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維 | zh_TW |
| dc.contributor.advisor | Shi-Wei Chu | en |
| dc.contributor.author | 黃冠傑 | zh_TW |
| dc.contributor.author | Guan-Jie Huang | en |
| dc.date.accessioned | 2023-05-05T17:20:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-05 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-01-11 | - |
| dc.identifier.citation | [1] Ahmed H Zewail. Laser femtochemistry. Science, 242(4886):1645–1653, 1988.
[2] Dongping Zhong, Samir Kumar Pal, Chaozhi Wan, and Ahmed H Zewail. Femtosecond dynamics of a drug-protein complex: Daunomycin with Apo riboflavin-binding protein. Proceedings of the National Academy of Sciences, 98(21):11873–11878, 2001. [3] Samir Kumar Pal, Jorge Peon, Biman Bagchi, and Ahmed H Zewail. Biological water: femtosecond dynamics of macromolecular hydration. The Journal of Physical Chemistry B, 106(48):12376–12395, 2002. [4] Martin C Fischer, Jesse W Wilson, Francisco E Robles, and Warren S Warren. Invited review article: pump-probe microscopy. Review of Scientific Instruments, 87(3):031101, 2016. [5] Pu-Ting Dong and Ji-Xin Cheng. Pump–probe microscopy: theory, instrumentation,and applications. Spectroscopy, 32(4):2–11, 2017. [6] Dar’ya Davydova, Alejandro de la Cadena, Denis Akimov, and Benjamin Dietzek. Transient absorption microscopy: Advances in chemical imaging of photoinduced dynamics. Laser & Photonics Reviews, 10(1):62–81, 2016. [7] Erik M Grumstrup, Michelle M Gabriel, Emma EM Cating, Erika M Van Goethem, and John M Papanikolas. Pump–probe microscopy: Visualization and spectroscopy of ultrafast dynamics at the nanoscale. Chemical Physics, 458:30–40, 2015. [8] Ji-Xin Cheng and Xiaoliang Sunney Xie. Coherent Raman scattering microscopy. CRC press, 2016. [9] Wei Min, Christian W Freudiger, Sijia Lu, and X Sunney Xie. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annual Review of Physical Chemistry, 62(1):507, 2011. [10] Chi Zhang and Ji-Xin Cheng. Perspective: Coherent Raman scattering microscopy, the future is bright. APL Photonics, 3(9):090901, 2018. [11] Andreas Othonos. Probing ultrafast carrier and phonon dynamics in semiconductors. Journal of Applied Physics, 83(4):1789–1830, 1998. [12] Tersilla Virgili, Giulia Grancini, Egle Molotokaite, Inma Suarez-Lopez, Sai Kiran Rajendran, Andrea Liscio, Vincenzo Palermo, Guglielmo Lanzani, Dario Polli, and Giulio Cerullo. Confocal ultrafast pump-probe spectroscopy: A new technique to explore nanoscale composites. Nanoscale, 4(7):2219–2226, 2012. [13] Chi Zhang, Delong Zhang, and Ji-Xin Cheng. Coherent Raman scattering microscopy in biology and medicine. Annual Review of Biomedical Engineering, 17:415, 2015. [14] Warren R Zipfel, Rebecca M Williams, and Watt W Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 21(11):1369–1377, 2003. [15] Robert W. Boyd. Nonlinear Optics, Third Edition. Academic Press, Inc., 2008. [16] Winifried Denk, James H Strickler, and Watt W Webb. Two-photon laser scanning fluorescence microscopy. Science, 248(4951):73–76, 1990. [17] Barry R Masters. Confocal microscopy and multiphoton excitation microscopy: the genesis of live cell imaging, volume 72. SPIE Press, 2006. [18] Joseph R Lakowicz. Principles of fluorescence spectroscopy. Springer, 2006. [19] Laura Martinez Maestro, Emma Martín Rodríguez, Francisco Sanz Rodríguez, MC Iglesias-de la Cruz, Angeles Juarranz, Rafik Naccache, Fiorenzo Vetrone, Daniel Jaque, John A Capobianco, and José García Solé. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano letters, 10(12):5109–5115, 2010. [20] Till T Meiling, Piotr J Cywiński, and Hans-Gerd Löhmannsröben. Two-photon excitation fluorescence spectroscopy of quantum dots: Photophysical properties and application in bioassays. The Journal of Physical Chemistry C, 122(17):9641–9647, 2018. [21] Jagdeep Shah. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, volume 115. Springer Science & Business Media, 2013. [22] Rohit P Prasankumar, Prashanth C Upadhya, and Antoinette J Taylor. Ultrafast carrier dynamics in semiconductor nanowires. Physica Status Solidi (b), 246(9):1973–1995, 2009. [23] Ayan Kar, Prashanth C Upadhya, Shadi A Dayeh, S Tom Picraux, Antoinette J Taylor, and Rohit P Prasankumar. Probing ultrafast carrier dynamics in silicon nanowires. IEEE Journal of Selected Topics in Quantum Electronics, 17(4):889–895, 2010. [24] Sunil Kumar, M Khorasaninejad, MM Adachi, KS Karim, SS Saini, and AK Sood. Probing ultrafast carrier dynamics, nonlinear absorption and refraction in core-shell silicon nanowires. Pramana, 79(3):471–481, 2012. [25] Maxim R Shcherbakov, Polina P Vabishchevich, Alexander S Shorokhov, Katie E Chong, Duk-Yong Choi, Isabelle Staude, Andrey E Miroshnichenko, Dragomir N Neshev, Andrey A Fedyanin, and Yuri S Kivshar. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Letters, 15(10):6985–6990, 2015. [26] Maxim R Shcherbakov, Sheng Liu, Varvara V Zubyuk, Aleksandr Vaskin, Polina P Vabishchevich, Gordon Keeler, Thomas Pertsch, Tatyana V Dolgova, Isabelle Staude, Igal Brener, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nature Communications, 8(1):1–6, 2017. [27] Dario Polli, Daniele Brida, Shaul Mukamel, Guglielmo Lanzani, and Giulio Cerullo. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses. Physical Review A, 82(5):053809, 2010. [28] CV Shank, R_ Yen, and Ch Hirlimann. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Physical Review Letters, 50(6):454, 1983. [29] MC Downer and CV Shank. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Physical Review Letters, 56(7):761, 1986. [30] Takayuki Tanaka, Akira Harata, and Tsuguo Sawada. Subpicosecond surface restricted carrier and thermal dynamics by transient reflectivity measurements. Journal of Applied Physics, 82(8):4033–4038, 1997. [31] A. J. Sabbah and D. M. Riffe. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Physical Review B, 66(16):165217, 2002. [32] Juan Cabanillas-Gonzalez, Giulia Grancini, and Guglielmo Lanzani. Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics. Advanced Materials, 23(46):5468–5485, 2011. [33] Yuri Kivshar. All-dielectric meta-optics and non-linear nanophotonics. National Science Review, 5(2):144–158, 2018. [34] Yusuke Nagasaki, Masafumi Suzuki, and Junichi Takahara. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters, 17(12):7500–7506, 2017. [35] Guan-Jie Huang, Hao-Yu Cheng, Yu-Lung Tang, Ikuto Hotta, Junichi Takahara, Kung-Hsuan Lin, and Shi-Wei Chu. Transient super-/sub-linear nonlinearities in silicon nanostructures. Advanced Optical Materials, 10(5):2101711, 2022. [36] Hervé Rigneault and Pascal Berto. Tutorial: coherent Raman light matter interaction processes. APL Photonics, 3(9):091101, 2018. [37] Christian W. Freudiger, Wei Min, Brian G. Saar, Sijia Lu, Gary R. Holtom, Chengwei He, Jason C. Tsai, Jing X. Kang, and X. Sunney Xie. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322(5909):1857, 2008. [38] Lu Wei, Fanghao Hu, Yihui Shen, Zhixing Chen, Yong Yu, Chih-Chun Lin, Meng C. Wang, and Wei Min. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nature Methods, 11(4):410–412, 2014. [39] Fa-Ke Lu, Srinjan Basu, Vivien Igras, Mai P. Hoang, Minbiao Ji, Dan Fu, Gary R. Holtom, Victor A. Neel, Christian W. Freudiger, David E. Fisher, and X. Sunney Xie. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences, 112(37):11624, 2015. [40] Luyuan Zhang, Lingyan Shi, Yihui Shen, Yupeng Miao, Mian Wei, Naixin Qian, Yinong Liu, and Wei Min. Spectral tracing of deuterium for imaging glucose metabolism. Nature Biomedical Engineering, 3(5):402–413, 2019. [41] Jessica C Mansfield, George R Littlejohn, Mark P Seymour, Rob J Lind, Sarah Perfect, and Julian Moger. Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy. Analytical Chemistry, 85(10):5055–5063, 2013. [42] Yali Bi, Chi Yang, Yage Chen, Shuai Yan, Guang Yang, Yaozu Wu, Guoping Zhang, and Ping Wang. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light: Science & Applications, 7(1):1–10, 2018. [43] Minghua Zhuge, Kai-Chih Huang, Hyeon Jeong Lee, Ying Jiang, Yuying Tan, Haonan Lin, Pu-Ting Dong, Guangyuan Zhao, Daniela Matei, Qing Yang, et al. Ultrasensitive vibrational imaging of retinoids by visible preresonance stimulated Raman scattering microscopy. Advanced Science, 8(9):2003136, 2021. [44] Lu Wei, Zhixing Chen, Lixue Shi, Rong Long, Andrew V Anzalone, Luyuan Zhang, Fanghao Hu, Rafael Yuste, Virginia W Cornish, and Wei Min. Super-multiplex vibrational imaging. Nature, 544(7651):465–470, 2017. [45] Lu Wei and Wei Min. Electronic preresonance stimulated Raman scattering microscopy. The Journal of Physical Chemistry Letters, 9(15):4294–4301, 2018. [46] AC Albrecht and MC Hutley. On the dependence of vibrational Raman intensity on the wavelength of incident light. The Journal of Chemical Physics, 55(9):4438–4443, 1971. [47] John M Dudik, Craig R Johnson, and Sanford A Asher. Wavelength dependence of the preresonance Raman cross sections of CH3CN, SO2−4, ClO−4, and NO−3. The Journal of Chemical Physics, 82(4):1732–1740, 1985. [48] Guan-Jie Huang, Pei-Chen Lai, Ming-Wei Shen, Jia-Xuan Su, Jhan-Yu Guo, Kuo- Chuan Chao, Peng Lin, Ji-Xin Cheng, Li-An Chu, Ann-Shyn Chiang, et al. Towards stimulated Raman scattering spectro-microscopy across the entire Raman active region using a multiple-plate continuum. Optics Express, 30(21):38975–38984, 2022. [49] Jagdeep Shah. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, volume 115. Springer Science & Business Media, 1999. [50] Ellen J Yoffa. Dynamics of dense laser-induced plasmas. Physical Review B, 21(6):2415, 1980. [51] Henry M van Driel. Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-μm picosecond laser pulses. Physical Review B, 35(15):8166, 1987. [52] D. E. Aspnes and A. A. Studna. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Physical Review B, 27(2):985, 1983. [53] Henry M van Driel. Influence of hot phonons on energy relaxation of high-density carriers in germanium. Physical Review B, 19(11):5928, 1979. [54] D Chekulaev, V Garber, and A Kaplan. Free carrier plasma optical response and dynamics in strongly pumped silicon nanopillars. Journal of Applied Physics, 113(14):143101, 2013. [55] M Ghanassi, MC Schanne-Klein, F Hache, AI Ekimov, D Ricard, and Chr Flytzanis. Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: Confirmation of the role of Auger recombination. Applied Physics Letters, 62(1):78–80, 1993. [56] U Strauss, WW Rühle, and K Köhler. Auger recombination in intrinsic GaAs. Applied Physics Letters, 62(1):55–57, 1993. [57] Ammar Zakar, Rihan Wu, Dimitri Chekulaev, Vera Zerova, Wei He, Leigh Canham, and Andrey Kaplan. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon. Physical Review B, 97(15):155203, 2018. [58] Sheng S Li. Semiconductor physical electronics. Springer Science & Business Media, 2012. [59] H Htoon, JA Hollingsworth, R Dickerson, and VI Klimov. Effect of zero-to-one dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Physical Review Letters, 91(22):227401, 2003. [60] Albert Haug. Carrier density dependence of Auger recombination. Solid-State Electronics, 21(11-12):1281–1284, 1978. [61] Marc Achermann, Andrew P Bartko, Jennifer A Hollingsworth, and Victor I Klimov. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nature Physics, 2(8):557–561, 2006. [62] James R Chelikowsky and Marvin L Cohen. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Physical Review B, 14(2):556, 1976. [63] Gustav Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen Der Physik, 330(3):377–445, 1908. [64] Sebastian Volz. Thermal nanosystems and nanomaterials, volume 118. Springer Science & Business Media, 2009. [65] Craig F Bohren and Donald R Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 1983. [66] Shawn Sederberg, Curtis J Firby, Shawn R Greig, and Abdulhakem Y Elezzabi. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices. Nanophotonics, 6(1):235–257, 2017. [67] Arseniy I Kuznetsov, Andrey E Miroshnichenko, Mark L Brongersma, Yuri S Kivshar, and Boris Luk'yanchuk. Optically resonant dielectric nanostructures. Science, 354(6314):aag2472, 2016. [68] Giuseppe Della Valle, Ben Hopkins, Lucia Ganzer, Tatjana Stoll, Mohsen Rahmani, Stefano Longhi, Yuri S Kivshar, Costantino De Angelis, Dragomir N Neshev, and Giulio Cerullo. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photonics, 4(9):2129–2136, 2017. [69] Maxim R. Shcherbakov, Dragomir N. Neshev, Ben Hopkins, Alexander S. Shorokhov, Isabelle Staude, Elizaveta V. Melik-Gaykazyan, Manuel Decker, Alexander A. Ezhov, Andrey E. Miroshnichenko, Igal Brener, Andrey A. Fedyanin, and Yuri S. Kivshar. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Letters, 14(11):6488–6492, 2014. [70] Yi-Shiou Duh, Yusuke Nagasaki, Yu-Lung Tang, Pang-Han Wu, Hao-Yu Cheng, Te-Hsin Yen, Hou-Xian Ding, Kentaro Nishida, Ikuto Hotta, Jhen-Hong Yang, et al. Giant photothermal nonlinearity in a single silicon nanostructure. Nature Communications, 11(1):1–9, 2020. [71] Tianyue Zhang, Ying Che, Kai Chen, Jian Xu, Yi Xu, Te Wen, Guowei Lu, Xiaowei Liu, Bin Wang, Xiaoxuan Xu, et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon. Nature Communications, 11(1):1–9, 2020. [72] Francesco Priolo, Tom Gregorkiewicz, Matteo Galli, and Thomas F Krauss. Silicon nanostructures for photonics and photovoltaics. Nature Nanotechnology, 9(1):19–32, 2014. [73] Mansoor Sheik-Bahae, Ali A Said, T-H Wei, David J Hagan, and Eric W Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE Journal of Quantum Electronics, 26(4):760–769, 1990. [74] Jiangwei Wang, Mansour Sheik-Bahae, AA Said, David J Hagan, and Eric W Van Stryland. Time-resolved Z-scan measurements of optical nonlinearities. Journal of the Optical Society of America B, 11(6):1009–1017, 1994. [75] Tushar C Jagadale, Dhanya S Murali, and Shi-Wei Chu. Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique. Beilstein Journal of Nanotechnology, 10(1):2182–2191, 2019. [76] Hsueh-Yu Wu, Yen-Ta Huang, Po-Ting Shen, Hsuan Lee, Ryosuke Oketani, Yasuo Yonemaru, Masahito Yamanaka, Satoru Shoji, Kung-Hsuan Lin, Chih-Wei Chang, et al. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging. Scientific Reports, 6(1):1–9, 2016. [77] Shi-Wei Chu, Hsueh-Yu Wu, Yen-Ta Huang, Tung-Yu Su, Hsuan Lee, Yasuo Yonemaru, Masahito Yamanaka, Ryosuke Oketani, Satoshi Kawata, Satoru Shoji, et al. Saturation and reverse saturation of scattering in a single plasmonic nanoparticle. ACS Photonics, 1(1):32–37, 2014. [78] Sergey Makarov, Sergey Kudryashov, Ivan Mukhin, Alexey Mozharov, Valentin Milichko, Alexander Krasnok, and Pavel Belov. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma. Nano Letters, 15(9):6187–6192, 2015. [79] Wei Min, Sijia Lu, Shasha Chong, Rahul Roy, Gary R Holtom, and X Sunney Xie. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature, 461(7267):1105–1109, 2009. [80] Dan Fu, Tong Ye, Thomas E Matthews, Gunay Yurtsever, and Warren S Warren Sr. Two-color, two-photon, and excited-state absorption microscopy. Journal of Biomedical Optics, 12(5):054004, 2007. [81] Shasha Chong, Wei Min, and X Sunney Xie. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. The Journal of Physical Chemistry Letters, 1(23):3316–3322, 2010. [82] Junjie Li, Weixia Zhang, Ting-Fung Chung, Mikhail N Slipchenko, Yong P Chen, Ji-Xin Cheng, and Chen Yang. Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Scientific Reports, 5(1):1–9, 2015. [83] Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan, and Eric O Potma. Four-wave mixing microscopy of nanostructures. Advances in Optics and Photonics, 3(1):1–52, 2011. [84] Qiannan Cui, Yuanyuan Li, Jianhua Chang, Hui Zhao, and Chunxiang Xu. Temporally resolving synchronous degenerate and nondegenerate two-photon absorption in 2D semiconducting monolayers. Laser & Photonics Reviews, 13(2):1800225, 2019. [85] Denis G Baranov, Sergey V Makarov, Valentin A Milichko, Sergey I Kudryashov, Alexander E Krasnok, and Pavel A Belov. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures. ACS Photonics, 3(9):1546–1551, 2016. [86] Kung-Hsuan Lin, Hao-Yu Cheng, Chi-Yuan Yang, Hung-Wei Li, Chih-Wei Chang, and Shi-Wei Chu. Phonon dynamics of single nanoparticles studied using confocal pump-probe backscattering. Applied Physics Letters, 113(17):171906, 2018. [87] Frank Ceballos, Qiannan Cui, Matthew Z Bellus, and Hui Zhao. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale, 8(22):11681–11688, 2016. [88] Min Hu and Gregory V Hartland. Heat dissipation for au particles in aqueous solution: relaxation time versus size. The Journal of Physical Chemistry B, 106(28):7029–7033, 2002. [89] Alicia W Cohn, Alina M Schimpf, Carolyn E Gunthardt, and Daniel R Gamelin. Size-dependent trap-assisted Auger recombination in semiconductor nanocrystals. Nano Letters, 13(4):1810–1815, 2013. [90] George P Zograf, Mihail I Petrov, Dmitry A Zuev, Pavel A Dmitriev, Valentin A Milichko, Sergey V Makarov, and Pavel A Belov. Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating. Nano Letters, 17(5):2945–2952, 2017. [91] Denitza Denkova, Martin Ploschner, Minakshi Das, Lindsay M Parker, Xianlin Zheng, Yiqing Lu, Antony Orth, Nicolle H Packer, and James A Piper. 3D subdiffraction imaging in a conventional confocal configuration by exploiting superlinear emitters. Nature Communications, 10(1):1–12, 2019. [92] Gitanjal Deka, Kentaro Nishida, Kentaro Mochizuki, Hou-Xian Ding, Katsumasa Fujita, and Shi-Wei Chu. Resolution enhancement in deep-tissue nanoparticle imaging based on plasmonic saturated excitation microscopy. APL Photonics, 3(3):031301, 2018. [93] Alex R Guichard, Rohan D Kekatpure, Mark L Brongersma, and Theodore I Kamins. Temperature-dependent Auger recombination dynamics in luminescent silicon nanowires. Physical Review B, 78(23):235422, 2008. [94] Xiaoqi Hou, Jun Kang, Haiyan Qin, Xuewen Chen, Junliang Ma, Jianhai Zhou, Liping Chen, Linjun Wang, Lin-Wang Wang, and Xiaogang Peng. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nature Communications, 10(1):1–11, 2019. [95] VI Klimov, AA Mikhailovsky, Su Xu, A Malko, JA Hollingsworth, a CA Leatherdale, H-J Eisler, and MG Bawendi. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290(5490):314–317, 2000. [96] Mark J Kerr, Andres Cuevas, and Patrick Campbell. Limiting efficiency of crystalline silicon solar cells due to coulomb-enhanced Auger recombination. Progress in Photovoltaics: Research and Applications, 11(2):97–104, 2003. [97] Waldemar Kuett, Anton Esser, Klaus Seibert, Uli Lemmer, and Heinrich Kurz. Femtosecond studies of plasma formation in crystalline and amorphous silicon. In Applications of Ultrashort Laser Pulses in Science and Technology, volume 1268, pages 154–165. International Society for Optics and Photonics, 1990. [98] Yu-Lung Tang, Te-Hsin Yen, Kentaro Nishida, Junichi Takahara, Tianyue Zhang, Xiangping Li, Katsumasa Fujita, and Shi-Wei Chu. Mie-enhanced photothermal/ thermo-optical nonlinearity and applications on all-optical switch and superresolution imaging. Optical Materials Express, 11(11):3608–3626, 2021. [99] Omer Tzang, Alexander Pevzner, Robert E Marvel, Richard F Haglund, and Ori Cheshnovsky. Super-resolution in label-free photomodulated reflectivity. Nano Letters, 15(2):1362–1367, 2015. [100] PT Landsberg. Trap-Auger recombination in silicon of low carrier densities. Applied Physics Letters, 50(12):745–747, 1987. [101] C. V. Raman and K. S. Krishnan. A new type of secondary radiation. Nature, 121(3048):501–502, 1928. [102] Ricardo Aroca. Surface-enhanced vibrational spectroscopy. John Wiley & Sons, 2006. [103] David W. McCamant, Philipp Kukura, and Richard A. Mathies. Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy. Applied Spectroscopy, 57(11):1317–1323, 2003. [104] Derek A. Long. The Raman effect: a unified treatment of the theory of Raman scattering by molecules, volume 8. Wiley Chichester, 2002. [105] Ji-Xin Cheng and X Sunney Xie. Coherent anti-stokes Raman scattering miroscopy: instrumentation, theory, and applications. The Journal of Physical Chemistry B, 108(3):827–840, 2004. [106] Ji-Xin Cheng, Lewis D Book, and X Sunney Xie. Polarization coherent anti-stokes Raman scattering microscopy. Optics Letters, 26(17):1341–1343, 2001. [107] Andreas Volkmer, Lewis D Book, and X Sunney Xie. Time-resolved coherent anti-stokes Raman scattering microscopy: imaging based on Raman free induction decay. Applied Physics Letters, 80(9):1505–1507, 2002. [108] Conor L Evans, Eric O Potma, Mehron Puoris’ haag, Daniel Côté, Charles P Lin, and X Sunney Xie. Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 102(46):16807–16812, 2005. [109] Alejandro De la Cadena, Federico Vernuccio, Andrea Ragni, Giuseppe Sciortino, Renzo Vanna, Carino Ferrante, Natalia Pediconi, Carlo Valensise, Luca Genchi, Sergey P Laptenok, et al. Broadband stimulated Raman imaging based on multichannel lock-in detection for spectral histopathology. APL Photonics, 7(7):076104, 2022. [110] Pascal Berto, Esben Ravn Andresen, and Hervé Rigneault. Background-free stimulated Raman spectroscopy and microscopy. Physical Review Letters, 112(5):053905, 2014. [111] Delong Zhang, Mikhail N Slipchenko, Daniel E Leaird, Andrew M Weiner, and Ji-Xin Cheng. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Optics Express, 21(11):13864–13874, 2013. [112] Sandro Heuke, Alberto Lombardini, Edlef Büttner, and Hervé Rigneault. Simultaneous stimulated Raman gain and loss detection (SRGAL). Optics Express, 28(20):29619–29630, 2020. [113] Hanqing Xiong, Naixin Qian, Zhilun Zhao, Lingyan Shi, Yupeng Miao, and Wei Min. Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy. Optics Express, 28(10):15663–15677, 2020. [114] Sandro Heuke, Ingo Rimke, Barbara Sarri, Paulina Gasecka, Romain Appay, Loic Legoff, Peter Volz, Edlef Büttner, and Hervé Rigneault. Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy. Biomedical Optics Express, 12(12):7780–7789, 2021. [115] Bryce Manifold, Elena Thomas, Andrew T Francis, Andrew H Hill, and Dan Fu. Denoising of stimulated Raman scattering microscopy images via deep learning. Biomedical Optics Express, 10(8):3860–3874, 2019. [116] Andreas C Albrecht. On the theory of Raman intensities. The Journal of Chemical Physics, 34(5):1476–1484, 1961. [117] Sanford A Asher. UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annual Review of Physical Chemistry, 39:537–588, 1988. [118] Shibin Deng, Weigao Xu, Jinying Wang, Xi Ling, Juanxia Wu, Liming Xie, Jing Kong, Mildred S Dresselhaus, and Jin Zhang. Direct measurement of the Raman enhancement factor of Rhodamine 6G on graphene under resonant excitation. Nano Research, 7(9):1271–1279, 2014. [119] Bruce Hudson, W_ Hetherington III, Stephen Cramer, Ilan Chabay, and Gary K Klauminzer. Resonance enhanced coherent anti-stokes Raman scattering. Proceedings of the National Academy of Sciences, 73(11):3798–3802, 1976. [120] Lixue Shi, Hanqing Xiong, Yihui Shen, Rong Long, Lu Wei, and Wei Min. Electronic resonant stimulated Raman scattering micro-spectroscopy. The Journal of Physical Chemistry B, 122(39):9218–9224, 2018. [121] Bo-Han Chen, Jia-Xuan Su, Jhan-Yu Guo, Kai Chen, Shi-Wei Chu, Hsuan-Hao Lu, Chih-Hsuan Lu, and Shang-Da Yang. Double-pass multiple-plate continuum for high temporal contrast nonlinear pulse compression. Frontiers in Photonics, 3:937622, 2022. [122] Christian W Freudiger, Wei Min, Brian G Saar, Sijia Lu, Gary R Holtom, Chengwei He, Jason C Tsai, Jing X Kang, and X Sunney Xie. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322(5909):1857–1861, 2008. [123] Brian G Saar, Christian W Freudiger, Jay Reichman, C Michael Stanley, Gary R Holtom, and X Sunney Xie. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009):1368–1370, 2010. [124] Andreas Zumbusch, Gary R Holtom, and X Sunney Xie. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Physical Review Letters, 82(20):4142, 1999. [125] Fa-Ke Lu, Srinjan Basu, Vivien Igras, Mai P Hoang, Minbiao Ji, Dan Fu, Gary R Holtom, Victor A Neel, Christian W Freudiger, David E Fisher, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences, 112(37):11624–11629, 2015. [126] Fanghao Hu, Zhixing Chen, Luyuan Zhang, Yihui Shen, Lu Wei, and Wei Min. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angewandte Chemie International Edition, 54(34):9821–9825, 2015. [127] Christian W Freudiger, Wei Min, Gary R Holtom, Bingwei Xu, Marcos Dantus, and X Sunney Xie. Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nature Photonics, 5(2):103–109, 2011. [128] Lu Wei, Fanghao Hu, Yihui Shen, Zhixing Chen, Yong Yu, Chih-Chun Lin, Meng C Wang, and Wei Min. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nature Methods, 11(4):410–412, 2014. [129] Esben Ravn Andresen, Pascal Berto, and Hervé Rigneault. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Optics Letters, 36(13):2387–2389, 2011. [130] Nicola Coluccelli, Vikas Kumar, Marco Cassinerio, Gianluca Galzerano, Marco Marangoni, and Giulio Cerullo. Er/Tm: fiber laser system for coherent Raman microscopy. Optics Letters, 39(11):3090–3093, 2014. [131] Thomas Würthwein, Kristin Wallmeier, Maximilian Brinkmann, Tim Hellwig, Niklas M Lüpken, Nick S Lemberger, and Carsten Fallnich. Multi-color stimulated Raman scattering with a frame-to-frame wavelength-tunable fiber-based light source. Biomedical Optics Express, 12(10):6228–6236, 2021. [132] Maximilian Brinkmann, Sven Dobner, and Carsten Fallnich. Light source for narrow and broadband coherent Raman scattering microspectroscopy. Optics Letters, 40(23):5447–5450, 2015. [133] Christian W Freudiger, Wenlong Yang, Gary R Holtom, Nasser Peyghambarian, X Sunney Xie, and Khanh Q Kieu. Stimulated Raman scattering microscopy with a robust fibre laser source. Nature Photonics, 8(2):153–159, 2014. [134] Hope T Beier, Gary D Noojin, and Benjamin A Rockwell. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Optics Express, 19(20):18885–18892, 2011. [135] Hsiang-Yu Chung, Wei Liu, Qian Cao, Franz X Kärtner, and Guoqing Chang. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 μm. Optics Express, 25(14):15760–15771, 2017. [136] Nicholas G Horton, Ke Wang, Demirhan Kobat, Catharine G Clark, Frank W Wise, Chris B Schaffer, and Chris Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 7(3):205–209, 2013. [137] Delong Zhang, Mikhail N Slipchenko, and Ji-Xin Cheng. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. The Journal of Physical Chemistry Letters, 2(11):1248–1253, 2011. [138] Kota Koike, Nicholas I Smith, and Katsumasa Fujita. Spectral focusing in picosecond pulsed stimulated Raman scattering microscopy. Biomedical Optics Express, 13(2):995–1004, 2022. [139] Chih-Hsuan Lu, Yu-Jung Tsou, Hong-Yu Chen, Bo-Han Chen, Yu-Chen Cheng, Shang-Da Yang, Ming-Chang Chen, Chia-Chen Hsu, and Andrew H Kung. Generation of intense supercontinuum in condensed media. Optica, 1(6):400–406, 2014. [140] Chih-Hsuan Lu, Wei-Hsin Wu, Shiang-He Kuo, Jhan-Yu Guo, Ming-Chang Chen, Shang-Da Yang, and AH Kung. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration. Optics Express, 27(11):15638–15648, 2019. [141] Murat Yildirim, Hiroki Sugihara, Peter TC So, and Mriganka Sur. Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nature Communications, 10(1):1–12, 2019. [142] Henrik Fabricius and Oliver Pust. Linear variable filters for biomedical and hyperspectral imaging applications. Biomedical Optics, page BS3A.42, 2014. [143] P Neelakantan. Raman spectrum of acetonitrile. Proceedings of the Indian Academy of Sciences-Section A, 60(6):422–424, 1964. [144] Tobias Steinle, Vikas Kumar, Moritz Floess, Andy Steinmann, Marco Marangoni, Claudia Koch, Christina Wege, Giulio Cerullo, and Harald Giessen. Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy. Light: Science & Applications, 5(10):e16149–e16149, 2016. [145] Mojtaba Mohseni, Christoph Polzer, and Thomas Hellerer. Resolution of spectral focusing in coherent Raman imaging. Optics Express, 26(8):10230–10241, 2018. [146] Tianyu Wang, Chunyan Wu, Dimitre G Ouzounov, Wenchao Gu, Fei Xia, Minsu Kim, Xusan Yang, Melissa R Warden, and Chris Xu. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. Elife, 9:e53205, 2020. [147] KE Thorn, NR Monahan, SKK Prasad, K Chen, and JM Hodgkiss. Efficient and tunable spectral compression using frequency-domain nonlinear optics. Optics Express, 26(21):28140–28149, 2018. [148] Andrew M Weiner. Ultrafast optical pulse shaping: A tutorial review. Optics Communications, 284(15):3669–3692, 2011. [149] Chia-Lun Tsai, Frank Meyer, Alan Omar, Yicheng Wang, An-Yuan Liang, Chih- Hsuan Lu, Martin Hoffmann, Shang-Da Yang, and Clara J Saraceno. Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power. Optics Letters, 44(17):4115–4118, 2019. [150] JD Kafka and T Baer. Prism-pair dispersive delay lines in optical pulse compression. Optics Letters, 12(6):401–403, 1987. [151] Edmond Treacy. Optical pulse compression with diffraction gratings. IEEE Journal of Quantum Electronics, 5(9):454–458, 1969. [152] GE Jellison Jr and FA Modine. Optical functions of silicon at elevated temperatures. Journal of Applied Physics, 76(6):3758–3761, 1994. [153] Patrick E Hopkins, Edward V Barnat, Jose L Cruz-Campa, Robert K Grubbs, Murat Okandan, and Gregory N Nielson. Excitation rate dependence of Auger recombination in silicon. Journal of Applied Physics, 107(5):053713, 2010. [154] Francesco Crisafi, Vikas Kumar, Tullio Scopigno, Marco Marangoni, Giulio Cerullo, and Dario Polli. In-line balanced detection stimulated Raman scattering microscopy. Scientific Reports, 7(1):1–8, 2017. [155] Durga Prasad Khatua, Sabina Gurung, Asha Singh, Salahuddin Khan, Tarun Kumar Sharma, and J Jayabalan. Filtering noise in time and frequency domain for ultrafast pump–probe performed using low repetition rate lasers. Review of Scientific Instruments, 91(10):103901, 2020. [156] Peter Fimpel, Claudius Riek, Lukas Ebner, Alfred Leitenstorfer, Daniele Brida, and Andreas Zumbusch. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy. Applied Physics Letters, 112(16):161101, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87070 | - |
| dc.description.abstract | 激發-探測光譜顯微術結合了遠場光學顯微鏡的成像模式和超快光譜的時間分辨特性,已成爲研究電子和振動動力學的有力技術,在材料科學和生醫影像的應用中日益廣泛。這促使發展激發-探測技術以解析相應的時域及光譜特性。目前激發-探測中的時間分辨特性,主要用以研究載子動力學特性,對超快非線性在時域中的行爲研究較少。至於激發-探測技術中來探究振動特性,由於電子躍遷效率低,其靈敏度往往不足。
本研究在激發-探測光譜學的範疇下,主要拓展兩個研究方向,即探究半導體奈米結構中的超快載子動力學,以探討瞬態非線性行爲,並透過電子預共振效應發展高靈敏度之觀測方法,用以觀測生醫樣品內的振動特性。 本研究的第一部分,利用共軛焦顯微鏡搭配激發-探測的時間分辨特性,對矽奈米結構中的超快載子動力學進行檢測,並揭示了一種基於俄歇機制的瞬態非線性行爲。以往的研究主要集中在多光子吸收、四波混頻等瞬時非線性行爲,即在脈衝持續時間內發生的事件。此研究則展示了瞬態非線性具有非常規的特性,即在非激發-探測光之時間零點,仍具有非線性行為,呈現了各種非線性行爲之間的時間演化,包括次線性、全飽和、超線性響應。論文的第一部分主要對基於非線性載子動力學引起的瞬態非線性進行了檢測和應用。 在第二部分,我們著重於發展先進的超連續光源來獲取分子的振動信息,此信息提供了化學鍵的成像對比。激發-探測光譜顯微術能夠在不對樣品進行螢光標定的情況下,仍可對化學和生物樣品進行振動特性定位。然而,儘管激發-探測技術具有化學分辨性,目前的靈敏度仍然遠遠落後於螢光技術,源自於雷射 的激發能量遠小於激發態與基態的能階差,不能有效地促進振動能階之間的電子躍遷。而發展激發-探測光譜顯微術中的先進光源,有助於優化電子預共振效應,即透過控制激發光之能量接近至樣本之激發能階來增強振動信號。 在本論文所述的研究中,我們開發之激發-探測光譜顯微術用以檢測半導體奈米結構的時域特性以及解析生醫樣品的光譜特性。藉由非線性載子複合過程引起的瞬態非線性之研究,為操縱非線性行爲增加了新的自由度,即藉由時域進行調變。另一方面,對電子預共振效應的研究爲高靈敏度振動譜測量和生醫成像提供了新的思路。 | zh_TW |
| dc.description.abstract | Pump-probe spectro-microscopy combining the imaging modality of far-field optical microscopy with the time-resolved property of ultrafast spectroscopy has become a valuable technique for studying electronic and vibrational dynamics toward the growing applications in material science and biomedical imaging. The development of pump-probe techniques to resolve temporal or spectral features is highly desirable.
However, current time-resolved spectroscopy mainly focuses on carrier dynamics, and few reports address the ultrafast nonlinear optical behaviors in the temporal domain. As for vibrational properties in pump-probe techniques, they usually suffer from insufficient sensitivity due to low-efficiency electronic transition. In this study, under the scope of pump-probe spectroscopy, two major aspects are expanded, which are (A) characterizing the ultrafast carrier dynamics in semiconductors nanostructures to explore transient nonlinear behaviors and (B) investigating the vibrational properties of biomedical samples with highly sensitive detection through electronic pre-resonance effects. In the first part of the research, ultrafast carrier dynamics of silicon nanostructures are characterized based on a confocal time-resolved spectro-microscope, revealing an unusual transient nonlinear behavior based on Auger mechanisms. Most previous reports mainly focus on instantaneous nonlinear behaviors such as multi-photon absorption and four-wave mixing; that is, the nonlinearities occur within pulses duration. Here, we demonstrate transient nonlinearity featuring an unconventional off-time-zero property and presenting temporal evolution among various nonlinear behaviors, including sub-linear, full-saturation, and super-linear responses. The first part is devoted to the characterization and application of transient nonlinearity based on nonlinear carrier dynamics. In the second part, we focus on the development of an advanced supercontinuum light source to acquire the vibrational information of molecules, offering the contrast on chemical bonds. Pump-probe spectro-microscopy is capable to perform vibrational mapping of chemicals and biological samples without fluorescence labeling. However, despite the chemical specificity, the sensitivity is still far behind those in fluorescence techniques. This is attributed to the far-off resonance of the laser excitation, not efficiently promoting electronic transition among vibration levels. The development of the advanced light source in pump-probe spectro-microscopy is crucial in optimizing the electronic pre-resonance effects, where vibrational signals are significantly enhanced via tuning laser excitation close to the excited energy levels. In the research described herein, our developed pump-probe spectro-microscopy has been utilized to characterize the temporal and spectral features in semiconductor nanostructures and biomedical samples, respectively. The study of transient nonlinearity induced by the nonlinear recombination process adds new degrees of freedom in temporally manipulating nonlinear behaviors. On the other hand, the research on electronic pre-resonance effects sheds light on high-sensitive vibrational spectroscopic measurement and biomedical imaging. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-05T17:20:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-05T17:20:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
致謝 ii 中文摘要 iv Abstract vi Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Pump-probe Spectro-microscopy 2 1.1.1 Modulation Transfer Scheme 5 1.1.2 Time-resolved Property 6 1.2 Pump-probe Spectro-microscopy in Semiconductors Nanostructures 7 1.3 Pump-probe Spectro-microscopy in Biological Samples 8 1.4 Structure of dissertation 9 Chapter 2 Ultrafast Carrier Dynamics in Semiconductors Nanostructures 12 2.1 Introduction 12 2.2 Photoexcited Carriers Generation and Carrier Thermalization 14 2.3 Carriers Recombination Process 15 2.4 Carrier Dynamics Induced Refractive Index Variation 18 2.5 Refractive Index Variation Induced Mie Spectrum Shift 20 Chapter 3 Transient Nonlinearities in Silicon Nanostructures 25 3.1 Introduction 25 3.2 Concept of Transient Nonlinearity Generation 28 3.3 Experimental Methods and System Performance 30 3.3.1 Experimental Setup 30 3.3.2 System Performance 33 3.3.3 Fabrication process of SiNBs 34 3.4 Optical Properties of SiNBs Characterized by Confocal Pump-probe Spectromicroscope 35 3.5 Auger-induced Transient Nonlinearity in SiNBs 41 3.6 Application: Transient Nonlinearity for Point-spread-function Engineering 46 3.7 Discussion 47 Chapter 4 Theory of Coherent Raman Scattering 52 4.1 Spontaneous Raman Scattering 52 4.2 Coherent Raman Scattering 54 4.3 Classical Theory for Raman Effect 56 4.3.1 Forced Damped Oscillator Modeling Molecular Vibration 56 4.3.2 Spontaneous Raman Scattering 57 4.3.3 Coherent Raman Scattering 58 4.3.4 Energy Flow in Coherent Raman Scattering 64 4.3.5 Comparison between CARS and SRS 71 4.4 Electronic Pre-resonance Effect (EPR) 73 Chapter 5 Double-pass Multiple-plate Continuum (DPMPC) for Coherent Raman Scattering Spectro-microscopy 76 5.1 Introduction 76 5.2 Dual-wavelength Tunability from DPMPC 81 5.3 Experimental Methods 83 5.3.1 Experimental Setup 83 5.3.2 Sample Preparation 85 5.4 Entire Raman-active Region Interrogation 86 5.5 Coherent Raman Scattering Microscopy for Bio-imaging 88 5.6 Spectroscopic Measurement in the EPR Mode 89 5.7 Discussion 90 Chapter 6 Conclusion and Future Outlook 95 6.1 Conclusion 95 6.2 Future Outlook 97 References 99 Appendix A — PyMieScatt Code 124 | - |
| dc.language.iso | en | - |
| dc.subject | 多重薄片超寬頻譜 | zh_TW |
| dc.subject | 超快載子動力學 | zh_TW |
| dc.subject | 矽奈米粒子 | zh_TW |
| dc.subject | 激發-探測光譜顯微術 | zh_TW |
| dc.subject | 瞬態非線性 | zh_TW |
| dc.subject | 電子預共振效應 | zh_TW |
| dc.subject | 同調拉曼散射 | zh_TW |
| dc.subject | 俄歇複合 | zh_TW |
| dc.subject | electronic pre-resonance | en |
| dc.subject | pump-probe spectro-microscopy | en |
| dc.subject | silicon nanostructures | en |
| dc.subject | ultrafast carrier dynamics | en |
| dc.subject | Auger recombination | en |
| dc.subject | transient nonlinearity | en |
| dc.subject | multiple-plate continuum | en |
| dc.subject | coherent Raman scattering | en |
| dc.title | 激發-探测光譜顯微術應用於半導體奈米結構及生物樣本 | zh_TW |
| dc.title | Pump-probe Spectro-microscopy: From Semiconductor Nanostructures to Biological Samples | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 楊尚達 | zh_TW |
| dc.contributor.coadvisor | Shang-Da Yang | en |
| dc.contributor.oralexamcommittee | 楊超強;謝佳龍;詹明哲;林宮玄;朱麗安 | zh_TW |
| dc.contributor.oralexamcommittee | Chaw-Keong Yong;Chia-Lung Hsieh;Ming-Che Chan;Kung-Hsuan Lin;Li-An Chu | en |
| dc.subject.keyword | 激發-探測光譜顯微術,矽奈米粒子,超快載子動力學,俄歇複合,瞬態非線性,多重薄片超寬頻譜,同調拉曼散射,電子預共振效應, | zh_TW |
| dc.subject.keyword | pump-probe spectro-microscopy,silicon nanostructures,ultrafast carrier dynamics,Auger recombination,transient nonlinearity,multiple-plate continuum,coherent Raman scattering,electronic pre-resonance, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202300045 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-01-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 17.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
