請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8705
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐春田 | |
dc.contributor.author | Ko-Chun Liao | en |
dc.contributor.author | 廖可鈞 | zh_TW |
dc.date.accessioned | 2021-05-20T19:59:58Z | - |
dc.date.available | 2011-03-10 | |
dc.date.available | 2021-05-20T19:59:58Z | - |
dc.date.copyright | 2010-03-10 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-02-10 | |
dc.identifier.citation | Blackwell, J. H., 1954. A transient-flow method for determination of thermal constants of insulating materials in bulk, J. app. Phys., 25, 137–144.
Bullard, E. C. 1954. The flow of heat trough the floor of the Atlantic Ocean. proc. R. Sec. London, Ser. A., 222, 408-429. Carslaw, H. S., and J. C. Jaeger, 1959. Conduction of heat in solids, 2nd edn., Oxford University Press, London, 510. Chi, W. C., D. L. Reed, C. S. Liu, and N. Lundberg, 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision Zone, Terr. Atmos. Ocean. Sci., 9, 779-794. Davies, E. E., C. R. B. Lister, and J. G. Scalter, 1984. Towards determining the thermal state of old ocean lithosphere: Heat-flow measurements from the Blake-Bahama Outer Ridge, Northwestern Atlantic, Geophys. J. R. Astron. soc., 78, 507-545. Dickens, G. R., and M. S. Quinby-Hunt, 1997. Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications, J. Geophys. Res., 102, 773-783. Ford, K. H., T. H. Naehr, C. G. Skilbeck, and the Leg 201 Scientific Party, 2003. The use of infrared thermal imaging to identify gas hydrate in sediment core, In: D’Hondt, S. L., B. B. Jorgensen, and D. J. Miller, et al. (Eds), Proc. ODP, Init. Repts., 201, 1-20. Hartmann, A. and V. Villinger, 2002. Inversion of marine heat flow data measurements by expansion of the temperature decay function, Geophys. J. Int., 148 , 628–636. Hyndman, R. D., E. E. Davis, and J. A. Wright, 1979. The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity, Mar. Geophys. Res., 4, 181-205. Jaegar, J. C., 1956. Application of the theory of heat conduction to geothermal measurement. In: W. H. K. Lee(Ed.), Terrestrial heat flow, Am. Geophys Union., Washington, Dc, 7-23. Jemsek, J., R. Von Herzen, P. Andrew, 1985. In-situ measurement of thermal conductivity using the continuous-heating line source method and WHOI outtrigged probe, Tech. Report WHOI-85-28, Woods Hole Oceanographic Institution, 73pp. Kaul, N., H. Villinger, and A. Rosenberger, 2000. Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Marine Geology, 164, 37-51. Lee, T. C., A. D. Duchkov, and S. G. Morozov, 2003. Determination of thermal conductivity and formation temperature from cooling history of friction-heated probes, Geophys. J. Int., 152, 433–442. Lister, C. R. B., 1979. The pulse-probe method of conductivity measurement, Geophys. J. R. Astron. Soc., 57, 451-461. Nagihara, S., and C. R. B. Lister, 1993. Accuracy of marine heat flow instrumentation: Numerical studies on the effects of probe construction and the data reduction scheme, Geophys. J. Int., 112, 161–177. Pfender, M., and H. Villinger, 2002. Miniaturized data loggers for deep sea sediment temperrature gradient measurement, Marine Geology., 186, 557-570. Poort, J., V. Kaulio, D. Depreiter, and V. Soloviev, 2007. The thermal signals in gas hydrate seeps and mud volcanoes: an overview. In: Proceedings of the 2nd International Workshop on Gas Hydrate Studies and Other Related Topics-for the Future Energy and Enivornment Considerations. Japan: Kitami Institute of Technology., 11-14. Ruppel, C., 2007. Tapping methane hydrates for unconventional natural gas, Elements, 3(3), 193–199. Shyu, C. T., and H. I. Chang, 2005. Determination of seafloor temperatures using data from high-resolution marine heat probes, Terr. Atmos. Ocean. Sci., 16, 137-153. Shyu, C. T., Y. J. Chen, S. T. Chiang, and C. S. Liu, 2006. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan, Terr. Atmos. Ocean. Sci., 17, 845-869. Shyu, C. T., S. K. Hsu, and C. S. Liu, 1998. Heat flows off southwest Taiwan: Measurements over mud diapers and estimated from bottom simulating reflectors, Terr. Atmos. Ocean. Sci., 9, 795-812. Villinger, H., E. E. Davis and J. A. Wright, 1987. A new reduction algorithm for marine heat flow measurements. J. Geophys. Res., 92, 12846-12856. Von Herzen, R. P., R. S. Detrick, S. T. Crough, D. Epp, and U. Fehn ,1982. Thermal origin of the Hawaiian Swell: Heat flow evidence and thermal models, J. Geophys. Res., 87, 6711-6723. Weinberger, J. L., K. M. Brown, and P. E. Long, 2005. Painting a picture of gas hydrate distribution with thermal images, Geophs. Res. Lett., 32, L04609, doi:10.1029/2004GL021437. 李信宏 台灣西南海域之天然氣水合物穩定帶底部與沉積物熱導係數異常之探討,國立台灣大學海洋研究所碩士論文,2008。 徐春田 台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(2/4)天然氣水合物賦存區之地熱調查,經濟部中央地質調查所,2009。 陳育鐘 從台灣西南海域之海床溫度推估甲烷水包合物的深度研究,國立台灣大學海洋研究所碩士論文,1991。 黃耀昇 就地測取熱導係數法之探討及其應用於沖繩海槽西南端與東海大陸斜坡間之地熱探測,國立台灣大學海洋研究所碩士論文,1997。 劉家瑄 臺灣西南海域天然氣水合物賦存區地質調查研究地球物理調查(4/4)反射震測與海床聲納迴聲剖面調查研究,經濟部中央地質調查所,2007。 FLIR Systems ThermaCAM Researcher User’s manual. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8705 | - |
dc.description.abstract | 利用地熱的方法探測天然氣水合物,主要是根據海床之溫度梯度與天然氣水合物的穩定曲線的交點推估天然氣水合物的穩定帶底部(Base of Gas Hydrate Stability Zone;BGHS)的深度,以及天然氣水合物在減壓及升溫的情況下解離,產生急速吸熱之異常現象而偵測它的存在。一般學界廣泛地採用了利氏海底熱流探針(Lister-type marine heat probe)測量海床原位(in situ)之溫度梯度及熱導係數,然而從探針所取得之資料做迴歸計算求取海床之溫度梯度及熱導係數時,必須假定探針之熱容量為已知,但是目前並無一有效的方法來釐定探針的熱容量,僅能根據組成的材料來推估熱容量,因此估算出來的熱容量可大可小,範圍高達±20 %以上,實際上我們發現熱容量對求解上述參數的結果影響極大,尤其是溫度梯度,當然也就影響了BGHS深度的推估。因此我們提出了兩種方法,其一是將漆包線纏繞在探針表面,並觀察漆包線隨溫度而改變的電阻;其二是使用紅外線熱像儀(Infrared thermal camera)直接掃描探針表面溫度的變化。經實驗測試的結果就準確度及方便性而言,紅外線掃描法遠優於漆包線纏繞法,所測出來熱容量的標準偏差僅在±2 %以內,較一般估計值的偏差範圍縮小了十倍。
另外,將天然氣水合物從海床下取出至海面時,由於升溫及減壓的結果會使天然氣水合物解離而快速吸熱,產生熱導係數及低溫異常的情形,此時如使用紅外線熱像儀進行掃描即可快速研判有無天然氣水合物,估計從海床表面採集沉積物至船上的時間約需兩個小時,實驗結果顯示,顆粒狀的天然氣水合物與沉積物的比例即使非常少,經過兩個小時後仍然能發現與周圍沉積物的溫度尚有1 ℃左右的溫差。 在預定鑽井採取天然氣水合物的各測站中,四個測站顯示出熱導係數相當高並會隨時間而快速下降的異常,其中之三站在紅外線熱像中有低溫異常的出現,而且兩種異常現象出現的位置極為接近,尤其是在測站KP-7-1,出現了沉積物中含有天然氣水合物的所有前述的熱異常現象,應該是最有可能含有天然氣水合物的地點。 | zh_TW |
dc.description.abstract | From the study of gas hydrate related thermal phenomena; it is possible to estimate the base of gas hydrate stability zone (BGHS) based on the intersection of the temperature gradient and the gas hydrate stability boundary curve and detect the gas hydrate within the sediment via negative temperature anomaly induced from the dissociation of gas hydrate during temperature raising and depressurizing. The Lister-type marine heat probe has been extensively utilized to measure in situ temperature, temperature gradient and thermal conductivity.
However, the difficulty is we can only assume the thermal capacity of the probe when the data are regressed to calculate the temperature, temperature gradient and thermal conductivity of the seabed sediments, as there are currently no methods to precisely determine the probe’s heat capacity. We can only make very rough estimates of the heat capacity based on the building materials of the probes. In general, the estimated range could vary up to ±20 %. Yet we have come to understand that the heat capacity affects the calculated results greatly, especially the temperature gradient, which would further influence the estimated depth of BGHS. Here we have developed two alternative methods. One is to wrap the probe with enameled wire and observe its resistance corresponding to the temperature change. The other is to use infrared camera to scan the temperature change on the probe. After experimenting with both methods, we have found the infrared scanning method to be far better than the enameled wire method in both accuracy and convenience. Furthermore, the standard deviation of heat capacity measured by the infrared scanning method is within ±2 % which is about one order better than conventional estimate. Due to temperature raising and depressurizing as we transport the gas hydrate from the seabed toward the sea surface, it will dissociate and rapidly absorb the surrounding heat, which would produce anomalies in thermal conductivity and negative temperature. According to our experiments, even when the sediment is bearing very little granulated gas hydrate, we can still detect the negative temperature anomaly of about 1 °C after two hours which is normally the time it takes to carry the sediment from seabed to the coring vessel. In the planed drilling sites for gas hydrate investigation, four of the sites have show anomalies in thermal conductivity. Amongst them, three of the sites have also shown negative temperature anomalies in infrared thermal images. The locations of these two related anomalies were in very close proximity. Particularly at site KP-7-1, we have detected every thermal anomaly indicating the presence of gas hydrate within the sediment. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:58Z (GMT). No. of bitstreams: 1 ntu-99-R96241313-1.pdf: 4836331 bytes, checksum: 6865a11aad2cf6f1b977e471fc811c60 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 第1章 緒論 1
1.1 研究動機與目的 1 1.2 實驗測試地點 2 1.3 本文內容簡介 2 第2章 地熱探測 5 2.1 熱流值的量測 5 2.2 測量儀器 6 2.3 儀器配置與施測流程 10 2.4 資料處理 13 2.4.1 溫度校正 13 2.4.2 溫度梯度 16 2.4.3 熱導係數 18 2.5 902B航次地熱資料 20 2.6 熱容量對利氏海底熱流探針量測溫度、溫度梯度及熱導係數的影響 22 2.6.1 熱容量對求解溫度的影響 23 2.6.2 熱容量對推估BGHS的影響 24 第3章 紅外線測溫原理及儀器介紹 26 3.1 紅外線測溫原理 26 3.2 紅外線的基本理論 26 3.3 儀器介紹 31 3.4 溫度校正 34 第4章 釐定利氏海底熱流探針之熱容量 36 4.1 將探針針管纏繞漆包線並觀察其電阻之變化 37 4.2 使用紅外線熱像儀直接掃描探針表面所得之溫度 41 4.3 資料處理 45 4.4 兩種釐定利氏海底熱流探針之熱容量方法的比較 48 4.4.1 放出熱脈衝後利氏海底熱流探針的溫度分佈 51 4.5 紅外線掃描法釐定利氏海底熱流探針的結果與討論 53 第5章 紅外線熱像儀偵測沉積物之天然氣水合物 57 5.1 偵測實驗室中合成之天然氣水合物的解離時間及溫差 57 5.2 以紅外線熱像儀偵測台灣西南海域之天然氣水合物 66 5.2.1 儀器配置及施測流程 66 5.2.2 資料處理 68 5.2.3 紅外線熱像儀偵測天然氣水合物的結果 71 5.3 將紅外線熱像儀掃描而得的資料與地熱資料的比較 80 第6章 結論 84 參考文獻 86 | |
dc.language.iso | zh-TW | |
dc.title | 利用紅外線熱像儀釐定利氏海底熱流探針之熱容量及偵測沉積物中之天然氣水合物的探討 | zh_TW |
dc.title | Using the Infrared Thermal Camera to Determine the Heat Capacity of Lister-type Marine Heat Probe and Detect the Gas Hydrate in Coring Sediments | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 喬凌雲,劉家瑄,李昭興,許樹坤 | |
dc.subject.keyword | 紅外線熱像儀掃描,釐定利氏海底熱流探針之熱容量,天然氣水合物,天然氣水合物的穩定帶底部,熱異常, | zh_TW |
dc.subject.keyword | Infrared thermal scan,Heat capacity determination of Lister-type marine heat probe,Gas hydrate,Base of gas hydrate stability zone,Thermal anomaly, | en |
dc.relation.page | 89 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-02-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 4.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。