請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | zh_TW |
| dc.contributor.advisor | Feipei Lai | en |
| dc.contributor.author | 吳佳東 | zh_TW |
| dc.contributor.author | Chia-Tung Wu | en |
| dc.date.accessioned | 2023-05-02T17:15:53Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-05-02 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-01-06 | - |
| dc.identifier.citation | [1]Schwaederle M, Zhao M, Lee JJ, et al. Impact of precision medicine in diverse cancers: A meta-analysis of Phase II clinical trials. J Clin Oncol. 2015;33(32):3817–3825. 10.1200/JCO.2015.61.5997
[2] David J. Duffy, Problems, challenges and promises: Perspectives on precision medicine. Briefings in Bioinformatics, Volume 17, Issue 3, May 2016, Pages 494–504, https://doi.org/10.1093/bib/bbv060 [3] Eric Hekler, PhD, Jasmin A Tiro, PhD, Christine M Hunter, PhD, Camille Nebeker, EdD, MS, Precision Health: The Role of the Social and Behavioral Sciences in Advancing the Vision Annals of Behavioral Medicine, Volume 54, Issue 11, November 2020, Pages 805–826, https://doi.org/10.1093/abm/kaaa018 [4] Møller, P. The Prospective Lynch Syndrome Database reports enable evidence-based personal precision health care. Hered Cancer Clin Pract 18, 6 (2020). https://doi.org/10.1186/s13053-020-0138-0 [5] Gambhir SS, Ge TJ, Vermesh O, et al., Toward achieving precision health. Sci Transl Med 2018;10:eaao3612. doi:10.1126/scitranslmed.aao3612 [6] Ryan JC, Viana JN, Sellak H, et al., Defining precision health: A scoping review protocol. BMJ Open 2021;11:e044663. doi: 10.1136/bmjopen-2020-044663 [7] Gambhir SS, Ge TJ, Vermesh O, Spitler R, Gold GE. Continuous health monitoring: An opportunity for precision health, Sci Transl Med. 2021 Jun 9;13(597):eabe5383. doi: 10.1126/scitranslmed.abe5383. PMID: 34108250. [8] Joshua R. Goldstein, Ronald D. Lee. Demographic perspectives on the mortality of COVID-19 and other epidemics. Proceedings of the National Academy of Sciences, Sep 2020, 117 (36) 22035-22041; DOI: 10.1073/pnas.2006392117 [9] Krausz M, Westenberg JN, Vigo D, Spence RT, Ramsey D. Emergency Response to COVID-19 in Canada: Platform Development and Implementation for eHealth in Crisis Management. JMIR Public Health Surveil 2020;6(2):e18995 [10] Andrew R. Watson, Robert Wah, and Ritu Thamman, Telemedicine and e-Health. Sep 2020.1110-1112.http://doi.org/10.1089/tmj.2020.0134 [11] Louvardi, M., Pelekasis, P., Chrousos, G., & Darviri, C. (2020), Mental health in chronic disease patients during the COVID-19 quarantine in Greece. Palliative and Supportive Care, 18(4), 394-399. doi:10.1017/S1478951520000528 [12] Alqahtani JS, Oyelade T, Aldhahir AM, Alghamdi SM, Almehmadi M, et al. (2020), Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLOS ONE 15(5): e0233147, https://doi.org/10.1371/journal.pone.0233147 [13] Kwok S, Adam S, Ho JH, et al. Obesity: A critical risk factor in the COVID-19 pandemic. Clin Obes. 2020;10(6):e12403. doi:10.1111/cob.12403 [14] Martin, Anne B., et al. National Health Care Spending In 2019: Steady Growth for The Fourth Consecutive Year: Study examines national health care spending for 2019. Health Affairs 40.1 (2021): 14–24. [15] Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative review, Prev Med Rep. 2018;12:284–293. Published 2018 Oct 19. doi:10.1016/j.pmedr.2018.10.008 [16] Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K., Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED, Am J Emerg Med 2018 Sep;36(9):1650–1654. [17] Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH., A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators. Sci Rep 2020 Feb 20;10(1):3118. [18] U. Lueken et al., Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach, Journal of Affective Disorders, vol. 184, pp. 182–192, 2015. [19] Butler, É.M., Pillai, A., Morton, S.M.B. et al., A prediction model for childhood obesity in New Zealand, Sci Rep 11, 6380 (2021). https://doi.org/10.1038/s41598-021-85557-z [20] M. Clarke, J. de Folter, V. Verma and H. Gokalp, Interoperable End-to-End Remote Patient Monitoring Platform Based on IEEE 11073 PHD and ZigBee Health Care Profile, IEEE Transactions on Biomedical Engineering, vol. 65, no. 5, pp. 1014–1025, May 2018, doi: 10.1109/TBME.2017.2732501. [21] G. Yang et al., An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning, IEEE Journal of Translational Engineering in Health and Medicine, vol. 6, pp. 1–10, 2018, Art no. 2100510, doi: 10.1109/JTEHM.2018.2822681. [22] S. Zeadally and O. Bello, Harnessing the power of Internet of Things based connectivity to improve healthcare, Internet Things, 2019. [23] Aida A, Svensson T, Svensson AK, Urushiyama H, Okushin K, Oguri G, Kubota N, Koike K, Nangaku M, Kadowaki T, Yamauchi T, Chung U., Using mHealth to Provide Mobile App Users with Visualization of Health Checkup Data and Educational Videos on Lifestyle-Related Diseases: Methodological Framework for Content Development, JMIR Mhealth Uhealth 2020;8(10):e20982 [24] McPadden J, Durant TJ, Bunch DR, Coppi A, Price N, Rodgerson K, et al., Health care and precision medicine research: analysis of a scalable data science platform. J Med Internet Res 2019 Apr 9;21(4):e13043 [25] M. Brijain, R. Patel, M. Kushik, and K. Rana, "A survey on decision tree algorithm for classification," 2014. [26] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, "How many trees in a random forest?" in International workshop on machine learning and data mining in pattern recognition, 2012: Springer, pp. 154-168. [27] S. Balakrishnama and A. Ganapathiraju, "Linear discriminant analysis-a brief tutorial," Institute for Signal and information Processing, vol. 18, no. 1998, pp. 1-8, 1998. [28] Leif E. Peterson (2009) K-nearest neighbor. Scholarpedia, 4(2):1883., revision #137311. [29] D. D. Margineantu and T. G. Dietterich, "Pruning adaptive boosting," in ICML, 1997, vol. 97: Citeseer, pp. 211-218. [30] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. [31] R. Johnson and T. Zhang, "Learning nonlinear functions using regularized greedy forest," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 5, pp. 942-954, 2013. [32] A. G. Schwing and R. Urtasun, "Fully connected deep structured networks," arXiv preprint arXiv:1503.02351, 2015. [33] A. F. Agarap, "Deep learning using rectified linear units (relu)," arXiv preprint arXiv:1803.08375, 2018. [34] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014. [35] Shapley, Lloyd S, "Notes on the n-Person Game -- II: The Value of an n-Person Game" (PDF). Santa Monica, Calif.: RAND Corporation. [36] Scott Lundberg, Su-In Lee, “A Unified Approach to Interpreting Model Predictions”. arXiv preprint arXiv:1705.07874, 2017. [37] Lozano R, et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010, The Lancet 2012; 380: 2095–2128. [38] Bandelow B, Michaelis S., Epidemiology of anxiety disorders in the 21st century, Dialogues Clin Neurosci, 2015 Sep;17(3):327-35. doi: 10.31887/DCNS.2015.17.3/bbandelow. PMID: 26487813; PMCID: PMC4610617. [39] Oh B, Yi G, Han MK, Kim JS, Lee CH, Cho B, Kang HC, Importance of Active Participation in Obesity Management Through Mobile Health Care Programs: Substudy of a Randomized Controlled Trial, JMIR Mhealth Uhealth 2018;6(1):e2 [40] Liberali R, Kupek E, Assis MAA. Dietary Patterns and Childhood Obesity Risk: A Systematic Review. Child Obes. 2020 Mar;16(2):70-85. doi: 10.1089/chi.2019.0059. Epub 2019 Nov 19. PMID: 31742427 [41] Chaput JP, Dutil C. Lack of sleep as a contributor to obesity in adolescents: impacts on eating and activity behaviors. Int J Behav Nutr Phys Act. 2016;13(1):103. Published 2016 Sep 26. doi:10.1186/s12966-016-0428-0 [42] Shankaran S, Bann C, Das A, et al. Risk for obesity in adolescence starts in early childhood. J Perinatol. 2011;31(11):711-716. doi:10.1038/jp.2011.14 [43] Shih, SF., Liu, CH., Liao, LL. et al. Health literacy and the determinants of obesity: a population-based survey of sixth grade school children in Taiwan. BMC Public Health 16, 280 (2016). https://doi.org/10.1186/s12889-016-2879-2 [44] Haas K, Hayoz S, Maurer-Wiesner S. Effectiveness and Feasibility of a Remote Lifestyle Intervention by Dietitians for Overweight and Obese Adults: Pilot Study. JMIR Mhealth Uhealth 2019;7(4):e12289 [45] Cawley J, Biener A, Meyerhoefer C, Ding Y, Zvenyach T, Smolarz BG, Ramasamy A., Direct medical costs of obesity in the United States and the most populous states, J Manag Care Spec Pharm. 2021 Mar;27(3):354–366. doi: 10.18553/jmcp.2021.20410. Epub 2021 Jan 20. PMID: 33470881. [46] Michou M, Panagiotakos DB, Costarelli V., Low health literacy and excess body weight: a systematic review, Cent Eur J Public Health. 2018 Sep;26(3):234–241, doi: 10.21101/cejph.a5172. PMID: 30419628. [47] Thomas A. Wadden, Meghan L. Butryn, Christopher Wilson, Lifestyle Modification for the Management of Obesity, Gastroenterology, Volume 132, Issue 6, 2007, Pages 2226–2238, ISSN 0016-5085, https://doi.org/10.1053/j.gastro.2007.03.051 [48] Kartiosuo, N., Ramakrishnan, R., Lemeshow, S., Juonala, M., Burns, T. L., Woo, J. G., Jacobs, D. R., Daniels, S. R., Venn, A., Steinberger, J., Urbina, E. M., Bazzano, L., Sabin, M. A., Hu, T., Prineas, R. J., Sinaiko, A. R., Pahkala, K., Raitakari, O., & Dwyer, T. (2019). Predicting overweight and obesity in young adulthood from childhood body-mass index: comparison of cutoffs derived from longitudinal and cross-sectional data. Lancet Child and Adolescent Health, 3(11), 795–802. [49] Magarey AM, Daniels LA, Boulton TJ, Cockington RA. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003 Apr;27(4):505-13. doi: 10.1038/sj.ijo.0802251. PMID: 12664084. [50] Brindal E, Freyne J, Saunders I, Berkovsky S, Smith G, Noakes M, Features Predicting Weight Loss in Overweight or Obese Participants in a Web-Based Intervention: Randomized Trial. J Med Internet Res 2012;14(6):e173 [51] Thamrin SA, Arsyad DS, Kuswanto H, Lawi A, Nasir S. Predicting Obesity in Adults Using Machine Learning Techniques: An Analysis of Indonesian Basic Health Research 2018. Front Nutr. 2021;8:669155. Published 2021 Jun 21. doi:10.3389/fnut.2021.669155 [52] Xueqin Pang, Christopher B. Forrest, Félice Lê-Scherban, Aaron J. Masino, Prediction of early childhood obesity with machine learning and electronic health record data, International Journal of Medical Informatics, Volume 150, 2021, 104454, ISSN 1386-5056, https://doi.org/10.1016/j.ijmedinf.2021.104454 [53] Butler ÉM, Derraik JGB, Taylor RW, Cutfield WS. Childhood obesity: how long should we wait to predict weight? J Pediatr Endocrinol Metab. 2018 Apr 25;31(5):497-501. doi: 10.1515/jpem-2018-0110. PMID: 29668465. [54] Manios Y, Vlachopapadopoulou E, Moschonis G, Karachaliou F, Psaltopoulou T, Koutsouki D, Bogdanis G, Carayanni V, Hatzakis A, Michalacos S. Utility and applicability of the "Childhood Obesity Risk Evaluation" (CORE)-index in predicting obesity in childhood and adolescence in Greece from early life: the "National Action Plan for Public Health". Eur J Pediatr. 2016 Dec;175(12):1989-1996. doi: 10.1007/s00431-016-2799-2. Epub 2016 Oct 29. PMID: 27796510. [55] Ohtani H, Tamamori Y, Arimoto Y, Nishiguchi Y, Maeda K, Hirakawa K. A meta-analysis of the short- and long-term results of randomized controlled trials that compared laparoscopy-assisted and open colectomy for colon cancer. J Cancer. 2012;3:49-57. PMID: 22315650. doi: 10.7150/jca.3621. [56] Delgado S, Lacy AM, Filella X, Castells A, Garcia-Valdecasas JC, Pique JM, et al. Acute phase response in laparoscopic and open colectomy in colon cancer: randomized study. Dis Colon Rectum. 2001 May;44(5):638-46. PMID: 11357021. doi: 10.1007/BF02234558. [57] Network. NCC. Colon cancer (Version 3.2021). 2021. [58] Schultz JK, Azhar N, Binda GA, Barbara G, Biondo S, Boermeester MA, et al. European Society of Coloproctology: guidelines for the management of diverticular disease of the colon. Colorectal Dis. 2020 Sep;22 Suppl 2:5-28. PMID: 32638537. doi: 10.1111/codi.15140. [59] Carmichael JC, Keller DS, Baldini G, Bordeianou L, Weiss E, Lee L, et al. Clinical Practice Guidelines for Enhanced Recovery After Colon and Rectal Surgery from the American Society of Colon and Rectal Surgeons and Society of American Gastrointestinal and Endoscopic Surgeons. Dis Colon Rectum. 2017 Aug;60(8):761-84. PMID: 28682962. doi: 10.1097/DCR.0000000000000883. [60] Sara Hosseinzadeh Kassani, Peyman Hosseinzadeh Kassani, Michal J. Wesolowski, Kevin A. Schneider, Ralph Deters, Deep transfer learning-based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models, International Journal of Medical Informatics, Volume 159, 2022, 104669, ISSN 1386-5056, https://doi.org/10.1016/j.ijmedinf.2021.104669. [61] Matthias Becker, Stefan Kasper, Britta Böckmann, Karl-Heinz Jöckel, Isabel Virchow, Natural language processing of German clinical colorectal cancer notes for guideline-based treatment evaluation, International Journal of Medical Informatics, Volume 127, 2019, Pages 141-146, ISSN 1386-5056, https://doi.org/10.1016/j.ijmedinf.2019.04.022. [62] Xu L, Walker B, Liang PI, et al. Colorectal Cancer Detection Based on Deep Learning. J Pathol Inform. 2020;11:28. Published 2020 Aug 21. doi:10.4103/jpi.jpi_68_19. [63] Daskivich TJ, Houman J, Lopez M, Luu M, Fleshner P, Zaghiyan K, et al. Association of Wearable Activity Monitors with Assessment of Daily Ambulation and Length of Stay Among Patients Undergoing Major Surgery. JAMA Netw Open. 2019 Feb 1;2(2):e187673. PMID: 30707226. doi: 10.1001/jamanetworkopen.2018.7673. [64] Sun V, Dumitra S, Ruel N, Lee B, Melstrom L, Melstrom K, et al. Wireless Monitoring Program of Patient-Centered Outcomes and Recovery Before and After Major Abdominal Cancer Surgery. JAMA Surg. 2017 Sep 1;152(9):852-9. PMID: 28593266. doi: 10.1001/jamasurg.2017.1519. [65] A Free Security Tool for Finding the Vulnerabilities in the Web Application, 2019, [online] https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. [66] Joshi, A.V. (2020). Amazon’s Machine Learning Toolkit: Sagemaker. In: Machine Learning and Artificial Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-26622-6_24 [67] Ahmadi-Assalemi, Gabriela, et al., Digital twins for precision healthcare, Cyber Defense in the Age of AI, Smart Societies and Augmented Humanity; Springer Nature Switzerland AG: Cham, Switzerland (2020): 133-158. [68] Lundberg, Scott M., and Su-In Lee, A unified approach to interpreting model predictions, Advances in Neural Information Processing Systems, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86988 | - |
| dc.description.abstract | 本研究提出一個具可擴充性之精準健康服務,主要用於慢性病患的健康促進和異常事件預防。透過整合穿戴式裝置、開放環境數據、室內空氣品質感測裝置、背景偵測定位之智慧型手機應用程序以及人工智慧輔助決策個案管理平台,實踐對慢性病患的生活型態、生活環境、生活軌跡與臨床評估資料等資訊全天候即時監測。而人工智慧輔助決策個案管理平台可提供給專業醫療人員,其照護之慢性病患最詳盡的院外整合型風險資訊,同時基於每日所蒐集之即時資料與過往疾病發展史,平台將產出個人化的異常事件風險預測值,供醫護人員決策輔助之用,期以達到對於不同慢性病族群的異常事件早期偵測與即時提醒介入之目的。
在24個月的研究期間,本研究前瞻地收集了 1,767 名慢性病患者的所有數據,蒐集之數據被用於訓練模組化的慢性疾病預測模型。機器學習為主要訓練預測模型的演算法基礎,截至目前通過驗證的模組化慢性疾病預測模型包括肥胖症、恐慌症、大腸癌和慢性阻塞性肺病,驗證後的預測模型平均準確率可達84.8%,靈敏度達75.5%,F1-score達80.6%,具備模型可信度與公平性。 與過去的研究相比,本研究建立了一種有效收集生活型態、生活環境、生活軌跡和病症記錄的方法,同時透過添加客觀的生活型態與生活環境數據,大幅提高了預測模型的預測成效。此外研究結果也闡述了生活型態和生活環境因素與慢性病患的健康與異常事件發生高度相關;全面性資料特徵項收集輔以訓練預測模型的方法相較於以往多數研究僅利用問卷數據的方法具備更好的預測能力,有較大的潛力達到準確地預測未來異常事件、提供個人化健康促進建議與照護服務。此外本研究為將模型落實於真實世界,也另建立具成本效益的預測模型,用最少特徵項完成預測任務,對於真實世界的AI預測模型部署幫助顯著。 | zh_TW |
| dc.description.abstract | This thesis proposes an integrated and scalable precision health service to prevent chronic diseases and promote overall health. Combining the wearable technology, open environmental data API, air quality sensors, an app with location provider, and an AI-based telecare platform, we implement the monitoring on the environmental and lifestyle factors continuously. The AI-based telecare platform provides in-depth analysis of patients' lifestyle, environmental and medical records and can accurately predict abnormal events of chronic diseases.
During a 24-month follow-up period, data were collected from 1,767 patients, revealing 416 abnormal episodes. Machine learning algorithms were used to train modular chronic disease models, which were externally validated and demonstrated an average accuracy of 84.8%, a sensitivity of 75.5%, and an F1 score of 80.6% for the prediction of obesity, panic disorder, colorectal cancer, and chronic obstructive pulmonary disease, respectively. Our approach effectively collects lifestyle, life trajectory, symptom records, and environmental factors compared to previous studies. Incorporating objective, comprehensive data and using feature selection techniques can improve the performance of prediction models. In addition, our results also indicate that lifestyle and environmental factors strongly correlated with patient health and may be more effective at predicting future abnormal events than using questionnaire data alone. Additionally, we have proposed a cost-effective prediction model that requires only several features to complete the prediction task, making it suitable for deploying the real-world modular prediction model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:15:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-02T17:15:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature Reviews 4 Chapter 3 Related Work 7 3.1 Machine Learning Model 7 3.1.1 Decision tree 7 3.1.2 Random forest 7 3.1.3 Linear discriminant analysis 8 3.1.4 K-Nearest neighbor classifier 8 3.1.5 Adaptive boosting 9 3.1.6 Extreme gradient boosting 9 3.1.7 Regularized greedy forest 10 3.2 Deep Neural Network 11 3.2.1 Fully-Connected layer & activation function 11 3.2.2 Loss function 12 3.2.3 Optimizer 12 3.3 SHAP (SHapley Additive exPlanations) 13 3.3.1 Shapley value 13 3.3.2 Kernel SHAP 14 Chapter 4 Methods 15 4.1 Precision Health Service Architecture Overview 15 4.2 NTU Medical Genie iOS/Android App 16 4.3 Wearable Devices 17 4.4 Indoor Air Quality Sensing Device 19 4.5 Open Environmental Data API 20 4.6 NTU Medical Genie AI-assisted Platform 20 4.7 Modular Chronic Disease Prediction Models 23 4.7.1 Acute exacerbation of chronic obstructive pulmonary disease prediction model 24 4.7.2 Panic attack prediction model 28 4.7.3 Obesity prediction model 33 4.7.4 Colorectal cancer recovery model 37 4.7.5 Cross validation and model assessment 40 4.7.6 Feature selection process 42 Chapter 5 Results 44 5.1 NTU Medical Genie AI-assisted Platform 44 5.2 Modular Chronic Disease Prediction Models for Early Prediction of Acute Exacerbation of Chronic Diseases 49 5.2.1 AECOPD prediction model 49 5.2.2 Panic attack prediction model 56 5.2.3 Obesity prediction model 63 5.2.4 Colorectal cancer recovery model 70 5.3 Location-based Smartphone Application to Deliver Real-time Personalized Health Promotion for Patients with Chronic Diseases 78 5.4 Threat Analysis and System Performance Testing for the AI-assisted Platform 83 5.4.1 Threat analysis 83 5.4.2 System performance testing for the AI-assisted platform 86 Chapter 6 Discussion 96 6.1 Principle Findings 96 6.2 Limitations 97 Chapter 7 Conclusion & Future Work 99 References 102 | - |
| dc.language.iso | en | - |
| dc.subject | 穿戴式裝置 | zh_TW |
| dc.subject | 肥胖症 | zh_TW |
| dc.subject | 精準健康 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 恐慌症 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 慢性阻塞性肺病 | zh_TW |
| dc.subject | 開放環境數據 | zh_TW |
| dc.subject | 智慧型手機應用程式 | zh_TW |
| dc.subject | precision health | en |
| dc.subject | wearable device | en |
| dc.subject | smartphone application | en |
| dc.subject | environment open data | en |
| dc.subject | machine learning | en |
| dc.subject | chronic obstructive pulmonary disease | en |
| dc.subject | obesity | en |
| dc.subject | panic disorder | en |
| dc.subject | colorectal cancer | en |
| dc.title | 運用穿戴式裝置與機器學習建構慢性病的精準健康管理服務 | zh_TW |
| dc.title | A Precision Health Service for Chronic Diseases: Development and Cohort Study Using Wearable Device and Machine Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 翁永卿;許凱平;陳啟煌;郭律成;簡意玲;趙坤茂;謝嵩淮;黃國軒 | zh_TW |
| dc.contributor.oralexamcommittee | YUNG-CHING WENG;Kai-Ping Hsu;Chi-Huang Chen;Lu-Cheng Kuo;Yi-Ling Chien;Kun-Mao Chao;Sung-huai Hsieh;Kuo-Hsuan Huang | en |
| dc.subject.keyword | 穿戴式裝置,智慧型手機應用程式,開放環境數據,機器學習,慢性阻塞性肺病,肥胖症,恐慌症,大腸癌,精準健康, | zh_TW |
| dc.subject.keyword | wearable device,smartphone application,environment open data,machine learning,chronic obstructive pulmonary disease,obesity,panic disorder,colorectal cancer,precision health, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202300028 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-01-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 6.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
