Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86986
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許源浴zh_TW
dc.contributor.advisorYuan-Yih Hsuen
dc.contributor.author邱炳貴zh_TW
dc.contributor.authorBing-Kuei CHIUen
dc.date.accessioned2023-05-02T17:15:11Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2022-
dc.date.submitted2023-01-08-
dc.identifier.citationG. W. E. Council, "GWEC global wind report," Global Wind Energy Council (GWEC): Brussels, Belgium, 2021.
經濟部能源局. "風力發電4年推動計畫." https://www.moeaboe.gov.tw/ (accessed 中華民國106年8月).
London summit, 9, September, 2017, Bloomberg New Energy Finance, https://data.bloomberglp.com/bnef/sites/14/2017/09/BNEF-Summit-London-2017-Michael-Liebreich-State-of-the-Industry.pdf.
M. Shahabi, M. R. Haghifam, M. Mohamadian and S. A. Nabavi-Niaki, "Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction Wind Generator," IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 137-145, March 2009.
J. Van de Vyver, J. D. M. De Kooning, B. Meersman, L. Vandevelde and T. L. Vandoorn, "Droop Control as an Alternative Inertial Response Strategy for the Synthetic Inertia on Wind Turbines," IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1129-1138, March 2016.
Z. Wu, D. W. Gao, H. Zhang, S. Yan and X. Wang, "Coordinated Control Strategy of Battery Energy Storage System and PMSG-WTG to Enhance System Frequency Regulation Capability," IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1330-1343, July 2017.
S. Zhang, Y. Mishra and M. Shahidehpour, "Fuzzy-Logic Based Frequency Controller for Wind Farms Augmented With Energy Storage Systems," IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1595-1603, March 2016.
S. K. Salman and A. L. J. Teo, "Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator," IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 793-802, May 2003.
F. Fateh, W. N. White and D. Gruenbacher, "Torsional Vibrations Mitigation in the Drivetrain of DFIG-Based Grid-Connected Wind Turbine," IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5760-5767, Nov.-Dec. 2017.
M. A. M. Manaz and C. -N. Lu, "Design of Resonance Damper for Wind Energy Conversion System Providing Frequency Support Service to Low Inertia Power Systems," IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4297-4306, Nov. 2020.
S. Ghosh and N. Senroy, "Electromechanical Dynamics of Controlled Variable-Speed Wind Turbines," IEEE Systems Journal, vol. 9, no. 2, pp. 639-646, June 2015.
G. Mandic, A. Nasiri, E. Muljadi and F. Oyague, "Active Torque Control for Gearbox Load Reduction in a Variable-Speed Wind Turbine," IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2424-2432, Nov.-Dec. 2012.
陳翊瑋, "雙饋式感應風力發電機之粒子群優法自調式頻率控制器設計," 國立臺灣大學電機所碩士論文, 2019.
莊承翰, "雙饋式感應風力發電機於轉軸振盪時之模態分析及阻尼器設計," 國立臺灣大學電機所碩士論文, 2022.
G. R. Energy. "Wind Turbine Technologies." http://www.greenrhinoenergy.com/renewable/wind/wind_technology.php.
M. Hansen, Aerodynamics of wind turbines. Routledge, 2015.
Paul M. Anderson; A. A. Fouad, "The Mechanical Torque Power System Control and Stability," Power System Control and Stability, IEEE, 2003.
鄭林合, "電力系統振盪穩定度之研究," 國立臺灣大學電機所博士論文, 1996.
洪郁翔, "利用粒子群優法設計與電網併聯之風機有效與無效電粒自調式控制器," 國立臺灣大學電機所碩士論文, 2019.
Al-Hamadan, Haider. (2018). System Dynamic Modelling of Wind Turbine Gearbox Under Normal and Transient Operating Conditions.
K. V. Vidyanandan and N. Senroy, "Primary frequency regulation by deloaded wind turbines using variable droop," IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 837-846, May 2013.
M. Garmroodi, G. Verbič and D. J. Hill, "Frequency Support From Wind Turbine Generators With a Time-Variable Droop Characteristic," IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 676-684, April 2018.
楊智翔, "用於改善微電網頻率之雙饋式感應風力發電機粒子群優法自調式控制器," 國立臺灣大學電機所碩士論文, 2018.
L. Sun, K. Liu, J. Hu and Y. Hou, "Analysis and Mitigation of Electromechanical Oscillations for DFIG Wind Turbines Involved in Fast Frequency Response," IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4547-4556, Nov. 2019.
Ackermann T. Wind Power in Power Systems. Second ed. Hoboken: John Wiley & Sons; 2012.
Y. N. Yu, Electric Power System Dynamics. London, U.K.: Academic Press, 1983.
P. M. Anderson, B. L. Agrawal, and J. E. Van Ness, Subsynchronous Resonance in Power System. New York, NY, U.S.A.: IEEE Press, 1990
"First benchmark model for computer simulation of subsynchronous resonance," IEEE Transactions on Power Apparatus and Systems, vol. 96, no. 5, pp. 1565-1572, Sept. 1977.
F. Mei and B. Pal, "Modal Analysis of Grid-Connected Doubly Fed Induction Generators," IEEE Transactions on Energy Conversion, vol. 22, no. 3, pp. 728-736, Sept. 2007.
Al-Hamadan, Haider & Long, Hui & Cartmell, Matthew. (2016). Effects of model complexity on torsional dynamic responses of NREL 750 kw wind turbine drivetrain.
Jianxiang Yang, Anle Mu, Nailu Li, "Dynamical Analysis and Stabilization of Wind Turbine Drivetrain via Adaptive Fixed-Time Terminal Sliding Mode Controller", Mathematical Problems in Engineering, vol. 2019, Article ID 8982028, 14 pages, 2019.
Lin, Chi Hsiang. 2022. "Comparison of Impact on Turbine Shafts Torsional Behavior for Integration of Two Types of Wind Farm into a Series-Compensated Transmission System" Energies 15, no. 18: 6796.
Lin, Hsiang Hsi. & Liou, Chuen-Huei. & Lewis Research Center. (1998). A parametric study of spur gear dynamics. [Cleveland, Ohio] : [Springfield, Va : National Aeronautics and Space Administration, Lewis Research Center ; National Technical Information Service, distributor
F. González-Longatt, P. Regulski, H. Novanda and V. Terzija, "Effect of the shaft stiffness on the inertial response of the fixed speed wind turbines and its contribution to the system inertia," 2011 International Conference on Advanced Power System Automation and Protection, 2011, pp. 1170-1175.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86986-
dc.description.abstract本論文之主要目的在於透過極點指定法設計風機傳動系統之轉軸振盪阻尼器,以改善風機傳動系統因負載擾動或風速擾動所帶來的轉軸振盪現象,藉此減緩齒輪箱所需承受之機械應力,延長其使用壽命。

為了設計轉軸振盪阻尼器,首先推導微電網頻率控制非線性數學模型,並將其線性化後進行小訊號分析。透過模態分析瞭解風機傳動系統在不同特徵頻率時的動態行為,驗證時域模擬結果之正確性,同時驗證風機傳動系統模行簡化之過程。接著利用極點指定法選定特定頻率之阻尼器參數並制定設計流程圖,使傳動系統能有更好的頻率響應。最後利用特徵值分析釐清輔助頻率控制器與阻尼器加入前後對於頻率控制模式及轉軸振盪模式特徵值的影響。

本論文將使用MATLAB®/Simulink軟體進行模擬風速擾動與負載擾動下之頻率響應,驗證所提出之轉軸振盪阻尼器的可行性與有效性。
zh_TW
dc.description.abstractIn order to inhibit the mechanical vibration of the five-mass drivetrain, a damper is designed to adjust the generator torque at the end of five-mass drivetrain in a doubly-fed induction generator (DFIG) in this thesis. The high frequency components in the drivetrain will be inhibit by adding the damper that designed by pole assignment method. The mechanical stress of the drivetrain will be effectively reduced so that the life of the gearbox can extend.

A linearized model for the microgrid including five-mass drivetrain and damper is first derived and small signal stability analysis is conducted. The dynamic response of five-mass drivetrain at different eigenfrequencies is analyzed by modal analysis. It can validate the correctness of the time domain simulation results and the process of order simplification of drivetrain. Then, the parameters of the damper are chosen by pole assignment method and formulate a design flow chart so that the drivetrain of wind turbine have a better frequency response. Finally, the eigenvalue analysis is used to clarify the influence of the auxiliary frequency controller and dampers on the eigenvalue of the system before and after the addition of them.

Finally, the effectiveness of the designed mechanical vibration damper is validated with the dynamic frequency responses in time-domain under wind speed turbulent and load disturbance by using MATLAB®/Simulink.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:15:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:15:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.3 研究目的與方法 6
1.4 論文內容概述 8
第二章 微電網頻率控制數學模型 9
2.1 前言 9
2.2 同步發電機頻率控制數學模型 10
2.3 雙饋式感應風力發電機頻率控制數學模型 10
2.3.1 風力發電原理 10
2.3.2 五質量傳動模型 14
2.3.3 轉軸振盪阻尼器 20
2.4 微電網頻率控制非線性數學模型 22
第三章 微電網穩定度分析 24
3.1 前言 24
3.2 微電網之小訊號穩定度分析 25
3.2.1 微電網線性數學模型推導 25
3.2.2 風機傳動系統之轉軸振盪起因 41
3.2.3 五質量傳動系統之特徵值分析與模態分析 45
第四章 轉軸振盪阻尼器設計 50
4.1 前言 50
4.2 極點指定法[14] 51
4.3 轉軸振盪阻尼器之參數設計 52
4.3.1 定阻尼比下阻尼器參數之計算 52
4.3.2 阻尼器參數之選定策略 61
4.3.3 微電網加入阻尼器後之特徵值分析 64
第五章 模擬結果與分析 67
5.1 前言 67
5.2 模擬架構 67
5.3 負載步階變動之模擬結果 69
5.4 風速擾動之模擬結果 75
5.4.1 風速加入步階變動1m/s 75
5.4.2 風速加入2.95Hz弦波擾動 81
5.4.3 風速加入292Hz弦波擾動 86
5.4.4 風速加入371.5Hz弦波擾動 92
5.4.5 風速加入1974Hz弦波擾動 98
5.5 模擬結果之頻譜分析 102
第六章 以電池儲能系統作為阻尼器 107
6.1 前言 107
6.2 具有BESS阻尼器之數學模型 109
6.2.1 BESS阻尼器控制數學模型 109
6.2.2 微電網頻率控制非線性數學模型 111
6.2.3 微電網頻率控制線性數學模型 113
6.3 BESS阻尼器參數設計 125
6.3.1 定阻尼比下BESS阻尼器參數之計算 125
6.3.2 BESS阻尼器參數之選定策略 128
6.3.3 微電網加入BESS阻尼器後之特徵值分析 130
6.4 模擬結果與分析 132
6.4.1 模擬架構 132
6.4.2 微電網加入BESS阻尼器前,負載步階變動之模擬結果 134
6.4.3 微電網加入BESS且裝置容量為系統1/10時,負載步階變動之模擬結果 137
6.4.4 微電網加入BESS且裝置容量為系統1/10時,風速步階變動之模擬結果 140
6.4.5 微電網加入BESS且裝置容量為系統1/5時,負載步階變動之模擬結果 143
第七章 結論與未來方向 147
7.1 結論 147
7.2 未來方向 150
參考文獻 151
-
dc.language.isozh_TW-
dc.subject微電網zh_TW
dc.subject五質量模型zh_TW
dc.subject阻尼器zh_TW
dc.subject雙饋式感應風力發電機zh_TW
dc.subject極點指定法zh_TW
dc.subject電池儲能系統zh_TW
dc.subject模態分析zh_TW
dc.subject振盪zh_TW
dc.subjectBESSen
dc.subjectDoubly-fed induction wind turbineen
dc.subjectdamperen
dc.subjectfive-mass modelen
dc.subjectmicrogriden
dc.subjectmechanical vibrationen
dc.subjectpole assignment methoden
dc.subjectmodal analysisen
dc.title具有五質量傳動系統之雙饋式感應風力發電機模態分析與阻尼器設計應用於微電網zh_TW
dc.titleModal Analysis and Damper Design in the Five-Mass Drivetrain of Doubly-fed Induction Wind Turbine for a Microgriden
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張忠良;劉運鴻;吳進忠;蒲冠志zh_TW
dc.contributor.oralexamcommitteeZhong-Liang Zhang;Yun-Hong Liu;Chin-Chung Wu ;Guan-Zhi Puen
dc.subject.keyword雙饋式感應風力發電機,阻尼器,五質量模型,振盪,極點指定法,微電網,模態分析,電池儲能系統,zh_TW
dc.subject.keywordDoubly-fed induction wind turbine,damper,five-mass model,microgrid,mechanical vibration,pole assignment method,modal analysis,BESS,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202300022-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-01-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved