Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡振國zh_TW
dc.contributor.advisorJenn-Gwo Hwuen
dc.contributor.author林彥瑜zh_TW
dc.contributor.authorYen-Yu Linen
dc.date.accessioned2023-05-02T17:10:42Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2023-
dc.date.submitted2023-01-09-
dc.identifier.citation[1] G. E. Moore, “Cramming more components onto integrated circuits,” IEEE Solid-State Circuits Soc. Newslett., vol. 11, no. 3, pp. 33-35, Jan. 2006.
[2] C. S. Liao and J. G. Hwu, "Subthreshold Swing Reduction by Double Exponential Control Mechanism in an MOS Gated-MIS Tunnel Transistor," IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 2061-2065, June 2015.
[3] S. Yen-Hao and H. Jenn-Gwo, “An on-chip temperature sensor by utilizing a MOS tunneling diode,” IEEE Electron Device Letters, vol. 22, no. 6, pp. 299-301, 2001.
[4] T. M. Wang, C. H. Chang and J. G. Hwu, “Enhancement of Temperature Sensitivity of Metal-Oxide-Semiconductor (MOS) Tunneling Temperature Sensors by Utilizing Hafnium Oxide (HfO2) Film Added on Silicon Dioxide (SiO2),” IEEE Sens. J., vol. 6, no. 6, pp. 1468-1472, Dec. 2006.
[5] D. Beckmeier and H. Baumgärtner, “Metal-Oxide-Semiconductor Diodes Containing C60 Fullerenes for Non-volatile Memory Applications,” J. Appl. Phys., vol. 113, no. 4, pp. 044520, Jan. 2013.
[6] T. Y. Chen and J. G. Hwu, “Two States Phenomenon in the Current Behavior of Metal-Oxide-Semiconductor Capacitor Structure with Ultra-Thin SiO2,” Appl. Phys. Lett., vol. 101, no. 7, pp. 073506, Aug. 2012.
[7] W. C. Chen, C. F. Yang and J. G. Hwu, “Enhanced Two States Current in MOS-Gated MIS Separate Write/Read Storage Device by Oxide Soft Breakdown in Remote Gate,” IEEE Trans Nanotechnol, vol. 18, pp. 62-67, Nov. 2018.
[8] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Device Letters, vol. 21, no. 6, pp. 307-309, 2000.
[9] P. F. Schmidt and W. Michel, “Anodic Formation of Oxide Films on Silicon,” J. Electrochem. Soc., vol. 104, pp. 230-236, 1957.
[10] C. C. Ting, Y. H. Shih, and J. G. Hwu, “Ultralow Leakage Characteristics of Ultrathin Gate Oxides (~3nm) Prepared by Anodization Followed by High-Temperature Annealing,” IEEE transactions on Electron Devices, vol. 49, no. 1, January 2002.
[11] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” John Wiley & Sons, New York, 1981, ch. 3.
[12] R. Tsu, L. Esaki, “Tunneling in a Finite Superlattice”, Appl. Phys. Lett., vol. 22, no.11, pp.562, March 1973.
[13] C. H. Chen, K. C. Chuang, J. G. Hwu, “Characterization of Inversion Tunneling Current Saturation Behavior for MOS (p) Capacitors with Ultrathin Oxides and High-k Dielectrics,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp.1262-1268, June 2009.
[14] N. Yang, W. K. Henson, J. R. Hauser and J. J. Wortman, “Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1464-1471, Jul. 1999.
[15] Wen-Chin Lee and Chenming Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling,” IEEE Transactions on Electron Devices, vol. 48, no. 7, pp. 1366-1373, Jul. 2001.
[16] Y. P. Lin and J. G. Hwu, “Oxide-Thickness-Dependent Suboxide Width and Its Effect on Inversion Tunneling Current,” J. Electrochem. Soc., vol. 151, no. 12, pp. G853–G857, Oct. 2004.
[17] Y. K. Lin and J. G. Hwu, “Role of lateral diffusion current in perimeter-dependent current of MOS(p) tunneling temperature sensors,” IEEE Trans. Electron Devices, vol. 61, no. 10, pp. 3562–3565, Oct. 2014.
[18] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2007.
[19] Y. K. Lin and J. G. Hwu, “Photosensing by Edge Schottky Barrier Height Modulation Induced by Lateral Diffusion Current in MOS(p) Photodiode,” IEEE Transactions on Electron Devices, vol. 61, no. 9, pp. 3217-3222, Sept. 2014.
[20] W. T. Hou and J. G. Hwu, “Photo response enhancement in MIS(p) tunnel diode via coupling effect by controlling neighboring device inversion level,” ECS J. Solid State Sci. Technol., vol. 6, no. 10, pp. Q143–Q147, Nov. 2017, doi: 10.1149/2.0031712jss.
[21] C. Y. Huang and J. G. Hwu, “Enhanced Photo Sensing and Lowered Power Consumption in Concentric MIS Devices by Monitoring Outer Ring Open-Circuit Voltage With Biased Inner Gate,” IEEE Transactions on Electron Devices, vol. 68, no. 7, pp. 3417-3423, July 2021.
[22] P. J. Price and J. M. Radcliffe, "Esaki Tunneling," IBM Journal of Research and Development, vol. 3, no. 4, pp. 364-371, Oct. 1959.
[23] W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev., vol. 87, no. 5, pp. 835–842, Sep. 1952.
[24] R. N. Hall, “Electron-Hole Recombination in Germanium,” Phys. Rev., vol. 87, no. 2, p. 387, July 1952.
[25] J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett., vol. 31, no. 5, pp. 346–348, Sep. 1977.
[26] G. Iannaccone, G. Curatola, and G. Fiori, “Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport,” in Simulation of Semiconductor Processes and Devices. Vienna, NY, USA: Springer, 2004, pp. 275–278.
[27] J. C. Lin (2022). “Study of Nonvolatile Memory in Coupled MIS(p) TD with Anodization-Compensated Al2O3 Dielectric,” Unpublished Master Thesis, National Taiwan University, Taipei, Taiwan.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86974-
dc.description.abstract本篇論文探討了氧化鋁鈍化層對於金屬絕緣層半導體(MIS)穿隧二極體的電性表現的影響,此元件的結構為在MIS穿隧二極體外圍成長上氧化鋁層作為鈍化層,我們發現到這樣的元件有著對於周圍少數載子變化十分敏感的特性,因此將其應用於感光上。在第二章中,我們對於其電容對電壓與電流對電壓兩種電性行為進行量測,發現到氧化鋁鈍化層會使得一般MIS穿隧二極體的深空乏行為被抑制,並且在相同氧化層厚度的情況下其在反轉區可以得到較大的電流,我們認為這樣的行為源自於鈍化層會強化元件周邊電場,使得在氧化層的壓降提升,穿隧電流因此增加。第三章中我們則對於此元件在感光上的表現進行探討,發現此元件因為外圍電場的增強可以對於周邊載子的變化變得更為敏感,無論是在電容、電流在不同光強度下相較於單純的對照組穿隧二極體有更明顯的反應,因此我們透過氧化鋁鈍化層可以進一步提升MIS穿隧二極體元件對於光偵測的敏感度,使其成為一個更好的感光元件選擇。zh_TW
dc.description.abstractIn the thesis, the influence of aluminum oxide passivation (AOP) layer on the electrical characteristics of metal-insulator-semiconductor tunnel diodes (MISTD) is investigated. The structure of this device contains an AOP layer surrounding MISTD. It is observed that AOP-MIS device is sensitive to the minority carrier change, and therefore we propose to use it as a light sensor. In Chapter 2, the capacitance versus gate voltage and current versus gate voltage are measured. It was found that the deep depletion behavior happening in MISTD device would be suppressed. Furthermore, larger current in inversion region is also observed in AOP-MIS device. We consider the reason of this behavior is originated from the enhancement of fringing field caused by AOP layer. Therefore, the voltage drop on the oxide layer becomes larger and leads to increase of tunneling current. In Chapter 3, light sensing performance of this device is studied and discussed. It is found that due to the larger fringing field, the sensitivity of the variation of extra carriers is increased. The differences of both capacitance and current show more obvious change than MISTD under light and dark condition. Consequently, it is considered that we can further increase the light sensitivity of MISTD with the help of AOP layer, and make it a better choice of light sensing.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:10:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:10:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
ABSTRACT II
CONTENTS III
Figure Captions V
Chapter 1 Introduction 1
1-1 Motivation and Thesis Organization 2
1-2 Anodization System 3
1-3 Oxide Thickness Determination 4
1-4 Characteristics of p-type MIS Devices 6
1-4-1 SBH Modulation and Oxide Thickness Dependency 6
1-4-2 Additional Minority Charges Supply 7
1-5 Light Sensing Application of MIS Devices 7
1-6 Summary 9
Chapter 2 Characteristics of Al2O3 Passivated Metal-Insulator-Semiconductor (AOP-MIS) Devices 16
2-1 Introduction 17
2-2 Experimental and Device Structure 17
2-3 C-V and I-V Characteristics 18
2-4 Mechanism Discussion 21
2-5 Summary 23
Chapter 3 Application of Al2O3 Passivated Metal-Insulator-Semiconductor (AOP-MIS) Devices as Light Sensors 35
3-1 Introduction 36
3-2 Overview of I-V and C-V Characteristics 36
3-3 Mechanism Discussions of MIS Devices and AOP-MIS Devices 38
3-4 Representative Parameters of Light Sensing Performance 40
3-5 Summary 42
Chapter 4 Conclusion and Future Work 55
4-1 Conclusion 56
4-2 Future Work 57
4-2-1 Thickness Dependence of Al2O3 Layer and Mechanism Analysis 57
4-2-2 IGOS Operating AOP-MIS Device 58
Reference 60
-
dc.language.isoen-
dc.subject陽極氧化技術zh_TW
dc.subject金氧半穿隧元件zh_TW
dc.subject高介電常數zh_TW
dc.subject光感測器zh_TW
dc.subjecthigh-k materialen
dc.subjectMIS tunneling diodesen
dc.subjectlight sensoren
dc.subjectanodization methoden
dc.title氧化鋁鈍化層對金屬絕緣層半導體穿隧二極體的影響與其在感光應用之研究zh_TW
dc.titleEffect of Al2O3 Passivation (AOP) on the Characteristics of Metal-Insulator-Semiconductor (MIS) Tunnel Diodes and Its Application on Light Sensingen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡璧合;吳幼麟zh_TW
dc.contributor.oralexamcommitteeVita Pi-Ho Hu ;You-Lin Wuen
dc.subject.keyword金氧半穿隧元件,高介電常數,陽極氧化技術,光感測器,zh_TW
dc.subject.keywordMIS tunneling diodes,high-k material,anodization method,light sensor,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202300048-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-01-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf3.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved