Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅世強zh_TW
dc.contributor.advisorShyh-Chyang Luoen
dc.contributor.author馬天儷zh_TW
dc.contributor.authorTien-Li Maen
dc.date.accessioned2023-05-02T17:09:56Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2022-
dc.date.submitted2023-01-10-
dc.identifier.citation1. K. M. Jürgen, P. George, The human nervous system. Acad. Press., 2012, 3, 1375-1415.
2. A. Butt, A. Verkhratsky, Neuroglia: realising their true potential. Brain. Neurosci. Adv., 2018, 2, 239821281881749.
3. S. Stierli, V. Imperatore, A. C. Lloyd, Schwann cell plasticity-roles in tissue homeostasis, regeneration, and disease. Glia., 2019, 67, 2203-2215.
4. M. Li, Z. Zhao, G. Yu, J. Zhang, Epidemiology of traumatic brain injury over the world: a systematic review. Austin. Neurol. & Neurosci., 2016, 1, 2.
5. S. T. Carmichael, Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann. Neurol., 2016, 79, 895-906.
6. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics. CA. Cancer. J. Clin., 2018, 68, 7-30.
7. L. Bertram, R. E.Tanzi, The genetic epidemiology of neurodegenerative disease. J. Clin. Invest., 2005, 115, 1449-1457.
8. H. Checkoway, J. I. Ludin, S. N. Kelada, Neurodegenerative diseases. IARC. Sci. Publ., 2011, 163, 407-419.
9. V. M. Sofroniew, Astrogliosis. Cold Spring Harb Perspect Biol., 2015, 7, 2.
10. C. Philips, M. Cornelissen, V. Carriel, Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J. Neural. Eng., 2018, 15, 2.
11. C. Cardoso Diogo, J. A. Camassa, J. E. Pereira, L. Maltez da Costa, V. Filipe, P. A. Couto, S. Geuna, A. C. Maurício, A. S. Varejão, The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Neurol. Res., 2017, 39, 926-39.
12. M. Siemionow, G. Brzezicki, Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol., 2009, 87(C), 141-72.
13. P. Sensharma, G. Madhumathi, R. D. Jayant, A. K. Jaiswal, Biomaterials and cells for neural tissue engineering: Current choices. Mater. Sci. Eng. C Mater. Biol. Appl. , 2017, 77, 1302-1315.
14. E. O. Johnson, A. B. Zoubos, P. N. Soucacos, Regeneration and repair of peripheral nerves. Inj., 2005, 36S, 24-29.
15. S. Shamash, F. Reichert, S. Rotshenker, The cytokine network of wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J. Neurosci., 2002, 22, 3052-3060.
16. K. R. Jessen, R. Mirsky, The repair schwann cell and its function in regenerating nerves. J. Physiol., 2016, 594, 3521-3531.
17. I. B. Wanner, P. M. Wood, N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat schwann cells. J. Neurosci., 2002, 22, 4066-4079.
18. P. Dubový, I. Klusáková, I. Hradilová Svíženská, Inflammatory profiling of schwann cells in contact with growing axons distal to nerve injury. Biomed Res. Int., 2014, 2014, 691041.
19. S. David, A. Aguayo, Axonal elongation into peripheral nervous system bridges after central nervous system injury in adult rats. Science., 1981, 214, 931-933.
20. M. T. Fitch, J. Silver, CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol., 2008, 209, 294-301.
21. M. Curcio, F. Bradke, Axon regeneration in the central nervous system: facing the challenges from the inside. Annu. Rev. Cell Dev. Biol., 2018, 34, 495-521.
22. L. R. Doblado, M. R. Cristina, P. M. Monleón, Biomaterials for neural tissue engineering. Front. Nanotechnol., 2021, 3, 2673-3013.
23. T. Dvir, B. P. Timko, D. S. Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol., 2011, 6(1), 13-22.
24. T. B. Alma, C. S. Iwuji, N. C. Iheaturu, Application of biomaterials in tissue engineering: a review. J. Chem. Pharm. Res., 2019, 11, 1-16.
25. K. Klimek, G. Ginalska, Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications—a review. Polymers., 2020, 12, 844.
26. J. Correale, M. F. Farez, A. E. Cardona, The role of astrocytes in multiple sclerosis progression. Front. Neurol., 2015, 6, 1-12.
27. D. Walma, K. M. Yamada, The extracellular matrix in development. Development., 2020, 147(10), 175596.
28. W. Xue, W. Shi, Y. Kong, M. Kuss, B. Duan, Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact. Mater., 2021, 6(11), 4141-4160.
29. Y. Wang, C. Zhou, M. Yao, Y. Li, Y. Liu, W. Zheng, Biodegradable parallel and porous HSPG/collagen scaffolds for the in vitro culture of NSCs for the spinal cord tissue engineering. J. Porous. Mater., 2012, 19(2), 173-180.
30. S. Jana, S.K.L. Levengood, M. Zhang, Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater., 2016, 28(48), 10588-10612.
31. X. Gu, F. Ding, Y. Yang, J. Liu, Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol., 2011, 93 (2), 204-230.
32. D. F. Williams, Challenges with the development of biomaterials for sustainable tissue engineering. Front. Bioeng. Biotechnol., 2019, 7, 1-10.
33. D. L. Puhl, J. L. Funnell, D. W. Nelson, M. K. Gottipati, R. J. Gilbert, Electrospun fiber scaffolds for engineering glial cell behavior to promote neural regeneration. Bioengineering., 2020, 8(1), 4.
34. H. K. Frost, T. Andersson, S. Johansson, U. Englund-Johansson, P. Ekström, L. B. Dahlin, F. Johansson, Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Sci. Rep. 2018, 8, 16716.
35. E. Meco, K. Lampe, Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior. Front. Mater., 2018, 5, 1-15.
36. D. L. Puhl, J. L. Funnell, D. W. Nelson, M. K. Gottipati, R. J. Gilbert, Electrospun fiber scaffolds for engineering glial cell behavior to promote neural regeneration. Bioengineering., 2021, 8, 4.
37. S. Alcantara, Neurogenesis and vascularization in the damaged brain trough lactate-releasing biomimetic materials. J. Neurochem., 2015, 134, 88.
38. J. Qian, Z. Lin, Y. Liu, Z. Wang, Y. Lin, C. Gong, R. Ruan, J. Zhang, H. Yang, Functionalization strategies of electrospun nanofibrous scaffolds for nerve tissue engineering. Smart Materials in Medicine, 2021, 2, 260-279.
39. L. Ning, H. Sun, T. Lelong, R. Guilloteau, N. Zhu, D.J. Schreyer, X. Chen, 3D bioprinting of scaffolds with living schwann cells for potential nerve tissue engineering applications. Biofabrication., 2018, 10(3), 35014.
40. G. Ehrenstein, H. Lecar, The mechanism of signal transmission in nerve axons. Annu Rev Biophys Bioeng., 1972, 1, 347-368.
41. E. B. Malarkey, K. A. Fisher, E. Bekyarova, W. Liu, R. C. Haddon, V. Parpura, Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett., 2009, 9(1), 264-268.
42. F. M. Chen, X. Liu, Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci., 2016, 53, 86-168.
43. S. S. Mahdavi, M. J. Abdekhodaie, S. Mashayekhan, A. Baradaran-Rafii, A. R. Djalilian, Bioengineering approaches for corneal regenerative medicine. Tissue Eng Regen Med., 2020, 17(5), 567-593.
44. J. Wu, Y. Du, S. C. Watkins, J. L. Funderburgh, W. R. Wagner, The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials., 2012, 33, 1343-52.
45. T. J. Deming, Prog. Polym. Sci., Synthetic polypeptides for biomedical applications. 2007, 32, 858-875.
46. W. Tansey, S. Ke, X. Y. Cao, M. J. Pasuelo, S. Wallace, C. Li, Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J. Control. Release., 2004, 94, 39-51.
47. J. Ding, C. Xiao, X. Zhuang, C. He, X. Chen, Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Mater. Lett., 2012, 73, 17-20.
48. M. Pechar, J. Strohalm, K. Ulbrich, E. Schacht, Biodegradable drug carriers based on poly(ethylene glycol) block copolymers. Macromol. Chem. Phys., 1997, 198, 1009-1020.
49. X. Xu, C. Li, H. Li, R. Liu, C. Jiang, Y. Wu, B. He, Z. Gu, Polypeptide dendrimers: self-assembly and drug delivery. Sci. China Chem., 2011, 54, 326-333.
50. B. Cao, J. Yin, S. Yan, L. Cui, X. Chen, Y. Xie, Porous scaffolds based on cross-linking of poly(L-glutamic acid). Macromol Biosci., 2011, 11, 427-434.
51. L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, L. W. Seymour, Poly-L-glutamic acid derivatives as vectors for gene therapy. J. Control. Release., 2000, 65, 187-202.
52. J. Ding, C. Xiao, C. He, M. Li, D. Li, X. Zhuang, X. Chen, Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology., 2011, 22, 494012.
53. Z. Song, Z. Han, S. Lv, C. Chen, L. Chen, L. Yin and J. Cheng, Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev., 2017, 46, 6570-6599.
54. K. Numata, Poly (amino acid) s/polypeptides as potential functional and structural materials. Polym. J., 2015, 47, 537-545.
55. M. Zelzer, A. Heise, Determination of copolymerisation characteristics in the N-carboxy anhydride polymerisation of two amino acids. Polym. Chem., 2013, 4, 3896.
56. M. Rad-Malekshahi, L. Lempsink, M. Amidi, W. E. Hennink, E. Mastrobattista, Biomedical applications of self-assembling peptides. Bioconjug. Chem., 2016, 27, 3-18.
57. P. Salas-Ambrosio, A. Tronnet, P. Verhaeghe, and C. Bonduelle, Synthetic polypeptide polymers as simplified analogues of antimicrobial peptides, biomacromolecules. Biomacromolecules, 2021, 22, 57-75.
58. F. Zha, W. Chen, L. Zhang, D. Yu, Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. J. Biomater. Sci. Polym. Ed., 2020, 31, 519-548.
59. Y. Fang, X. Zhu, N. Wang, X. Zhang, D. Yang, J. Nie, G. Ma, Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur. Polym. J., 2019, 116, 30-37.
60. L. Zhu, S. Jia, T. Liu, L. Yan, D. Hao, Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv. Funct. Mater., 2020, 30, 2002610.
61. J. Cheng, T. J. Deming, Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Top. Curr. Chem., 2012, 310, 1-26.
62. Y. Ma, Y. Shen, Z. Li, Different cell behaviors induced by stereochemistry on polypeptide brush grafted surfaces. Mater. Chem. Front., 2017, 1(5), 846-857.
63. J. Qian, X. Yong, W. Xu and X. Jin, Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2013, 33, 4587-4593.
64. J. Han, J. Ding, Z. Wang, S. Yan, X. Zhunag, X. Chen and J. Yin, The synthesis, deprotection and properties of poly(γ-benzyl-L-glutamate). Sci. China Chem., 2013, 56, 729-738.
65. S. Bu, S. Yan, R. Wang, P. Xia, K. Zhang, G. Li, J. Yin, In situ precipitation of cluster and acicular hydroxyapatite onto porous poly(γ-benzyl-l-glutamate) microcarriers for bone tissue engineering. ACS Appl. Mater. Interfaces., 2020, 12(11), 12468-12477.
66. M. Song, S. P. Yu, O. Mohamad, W. Cao, Z. Z. Wei, X. Gu, M. Q. Jiang, L. Wei, Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol. Dis., 2017, 98, 9-24.
67. T. C. Chen, P. Y. She, D. F. Chen, J. H. Lu, C. H. Yang, D. S. Huang, P. Y. Chen, C. Y. Lu, K. S. Cho, H. F. Chen, W. F. Su, Polybenzyl glutamate biocompatible scaffold promotes the efficiency of retinal differentiation toward retinal ganglion cell lineage from human-induced pluripotent stem cells. Int. J. Mol. Sci., 2019, 20, 178.
68. Z. H. Wang, Y. Y. Chang, J. G. Wu, C. Y. Lin, H. L. An, S. C. Luo, T. K. Tang, W. F. Su, Novel 3D neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue. Macromol. Biosci., 2018, 18, 1700251.
69. B. Wiatrak, A. Kubis-Kubiak, A. Piwowar, E. Barg, PC12 cell line: cell types, coating of culture vessels, differentiation and other culture conditions. Cells, 2020, 9(4), 958.
70. C. Y. Lin, S. C. Luo, J. S. Yu, T. C. Chen, W. F. Su, Peptide-based polyelectrolyte promotes directional and long neurite outgrowth. ACS Appl. Bio Mater., 2019, 2, 518-526.
71. C. M. Low, K. S. Wee, New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol. Pharmacol., 2010, 78(1), 1-11.
72. J. P. Pin, R. Duvoisin, The metabotropic glutamate receptors: structure and functions, Neuropharmacology, 1995, 34(1), 1-26.
73. M. Zheng, M. Pan, W. Zhang, H. Lin, S. Wu, C. Lu, S. Tang, D. Liu, J. Cai, Poly(α-L-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact. Mater., 2021, 6, 1878-1909.
74. N. Ardjomandi, C. Klein, K. Kohler, A. Maurer, H. Kalbacher, J. Niederländer, D. Alexander, Indirect coating of RGD peptides using a poly-L-lysine spacer enhances jaw periosteal cell adhesion, proliferation, and differentiation into osteogenic tissue. J. Biomed. Mater. Res. Part A., 2012, 100, 2034-2044.
75. A. Sharma, A. Goring, K. A. Staines, R. J. H. Emery, A. A. Pitsillides, R. O. C. Oreffo, S. Mahajan, C. E. Clarkin, Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential. Matrix Biol. Plus., 2019, 5, 100018.
76. A. Orlowska, P. T. Perera, M. A. Kobaisi, A. Dias, H. K. D. Nguyen, S. Ghanaati, V. Baulin, R. J. Crawford, E. P. Ivanova, The effect of coatings and nerve growth factor on attachment and differentiation of pheochromocytoma cells. Mater., 2017, 11, 60.
77. P. Yu, L. Y. Santiago, Y. Katagiri, H. M. Geller, Myosin II activity regulates neurite outgrowth and guidance in response to chondroitin sulfate proteoglycans. J. Neurochem., 2012, 120(6), 1117-1128.
78. B. Kong, Z. Zhu, H. Li, Q. Hong, C. Wang, Y. Ma, W. Zheng, F. Jiang, Z. Zhang, T. Ran, Y. Bian, N. Yang, T. Lu, J. Zhu, W. Tang, Y. Chen, Discovery of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy. Eur. J. Med. Chem., 2022, 227, 113953.
79. M. Mota, V. Porrini, E. Parrella, M. Benarese, A. Bellucci, S. Rhein, M. Schwaninger, M. Pizzi, Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. J. Neuroinflammation., 2020, 17(1), 361.
80. T. Kondoh, M. Kameishi, H. N. Mallick, T. Ono, K. Torii, Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats. Front. Integr. Neurosci., 2010, 4, 18.
81. X. Qin, Y. Wu, S. Liu, L. Yang, H. Yuan, S. Cai, J. Flesch, Z. Li, Y. Tang, X. Li, Y. Zhuang, C. You, C. Liu, C. Yu, Surface modification of polycaprolactone scaffold with improved biocompatibility and controlled growth factor release for enhanced stem cell differentiation. Front. Bioeng. Biotechnol., 2022, 9, 802311.
82. Y. Ma, Y. Shen, Z. Li, Different cell behaviors induced by stereochemistry on polypeptide brush grafted surfaces. Mater. Chem. Front., 2017, 1, 846-851.
83. W. H. Lang, G. Calloni, R. M. Vabulas, Polylysine is a proteostasis network-engaging structural determinant. J. Proteome. Res., 2018, 17, 1967-1977.
84. G. Liu, D. Zhang, C. Feng, Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem. Int. Ed., 2014, 53, 7789-7793.
85. L. D. Riccardis, A. Ferramosca, A. Danieli, G. Trianni, V. Zara, F. D. Robertis, M. Maffia, Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA Clin., 2016, 6, 131-137.
86. V. Dmitrovic, G. J. M. Habraken, M. M. R. M. Hendrix, W. J. E. M. Habraken, A. Heise, G. De With, N. A. J. M. Sommerdijk, Random poly (amino acid) s synthesized by ring opening polymerization as additives in the biomimetic mineralization of CaCO3. Polymers, 2012, 4, 1195-1210.
87. X. Chen, G. Lv, J. Zhang, S. Tang, Y. Yan, Z. Wu, J. Su, J. Wei, Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int. J. Nanomedicine., 2014, 9, 1957-1965.
88. S. Zheng, Y.Guan, H. Yu, G. Huang, C. Zheng, Poly(L-lysine)-coated PLGA/poly(amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. New J. Chem., 2019, 43(25), 9989-10002.
89. H. Liu, X. Zhang, Z. Zhao, F. Yang, R. Xue, L. Yin, Z. Song, J. Cheng, S. Luan, H. Tang, Efficient synthesis and excellent antimicrobial activity of star-shaped cationic polypeptides with improved biocompatibility. Biomater. Sci., 2021, 9(7), 2721-2731.
90. Y. Zhang, W. Song, I. Kim, Nano aggregate formation through self-assembly of poly(L-lysine)-block-poly(γ-benzyl-L-glutamate)-graft-poly(ethylene glycol) copolymer. J. Nanosci. Nanotechnol., 2020, 20(11), 6968-6974.
91. M. Piatkovsky, H. Acar, A. B. Marciel, M. Tirrell, M. Herzberg, A zwitterionic block-copolymer, based on glutamic acid and lysine, reduces the biofouling of UF and RO membranes. Journal of Membrane Science, 2018, 549, 507-514.
92. C. Ziemba, M. Khavkin, D. Priftis, H. Acar, J. Mao, M. Benami, M. Gottlieb, M. Tirrell, Y. Kaufman, M. Herzberg, Antifouling properties of a self-assembling glutamic acid-lysine zwitterionic polymer surface coating. Langmuir., 2019, 35(5), 1699-1713.
93. M. Khuphe, N. Ingram, P. D. Thornton, Exploiting poly(α-hydroxy acids) for the acid-mediated release of doxorubicin and reversible inside-out nanoparticle self-assembly. Nanoscale., 2018, 10(29), 14201-14206.
94. Y. Huang, Z. Tang, X. Zhang, H. Yu, H. Sun, X. Pang, X. Chen, pH-Triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation. Biomacromolecules., 2013, 14(6), 2023-2032.
95. S. Hanski, N. Houbenov, J. Ruokolainen, D. Chondronicola, H. Iatrou, N. Hadjichristidis, O. Ikkala, Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes. Biomacromolecules, 2006, 7(12), 3379-3384.
96. J. Foerster, I. Green, J. P. Lamelin, B. Benacerraf, Transfer of responsiveness to hapten conjugates of poly-L-lysine and of a copolymer of L-glutamic acid and L-lysine to lethally irradiated nonresponder guinea pigs by bone marrow or lymph node and spleen cells from responder guinea pigs. J. Exp. Med., 1969, 130(5), 1107-1122.
97. R. H. S. Westerink, A. G. Ewing, The PC12 cell as model for neurosecretion. Acta Physiologica, 2008, 192(2), 273-285.
98. L. A. Greene, A. S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc Natl. Acad. Sci. U. S. A., vol. 73, 1976, 7, 2424-2428.
99. G. Cohen, K. Ettinger, S. Lecht, P. I. Lelkes, P. Lazarovici, Transcriptional down-regulation of epidermal growth factor (EGF) receptors by nerve growth factor (NGF) in PC12 cells. J. Mol. Neurosci., 2014, 54(3), 574-585.
100. D. Barbosa, J. Capela, M. Lourdes Bastos , F. Carvalho, In vitro models for neurotoxicology research. Toxicol. Res., 2015, 4(4), 801-842.
101. K. C. Dunn, A. E. Aotaki-Keen, F. R. Putkey, L. M. Hjelmeland, ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye. Res., 1996, 62(2), 155-169.
102. S. Binder, B. V. Stanzel, I. Krebs, C. Glittenberg, Transplantation of the RPE in AMD, Prog. Retin. Eye. Res., 2007, 26(5), 516-554.
103. W. Samuel, C. Jaworski, O. A. Postnikova, R. K. Kutty, T. Duncan, L. X. Tan, E. Poliakov, A. Lakkaraju, T. M. Redmond, Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol. Vis., 2017, 23, 60-89.
104. J. A. Kim, N. Lee, B. H. Kim, W. J. Rhee, S. Yoon, T. Hyeon, T. H. Park, Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 2011, 32(11), 2871-2877.
105. B. Zhu, S. C. Luo, H. Zhao, H. A. Lin, J. Sekine, A. Nakao, C. Chen, Y. Yamashita, H. Yu, Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat Commun., 2014, 5(1), 4523.
106. M. Marcus, H. Skaat, N. Alon, S. Margel, O. Shefi, NGF-conjugated ion oxide nanoparticles promote differentiation and outgrowth of PC12 cells. Nanoscale., 2014, 7(3), 1058-1066.
107. M. B. Taskin, R. Xu, H. Zhao, X. Wang, M. Dong, F. Besenbacher, M. Chen, Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Phys. Chem. Chem. Phys., 2015, 17(14), 9446-9453.
108. M. Hoop, X. Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, S. Pané, Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep., 2017, 7(1), 4028.
109. K. J. Lynch, O. Skalli, F. Sabri, Growing neural PC-12 cell on crosslinked silica aerogels increases neurite extension in the presence of an electric field. J. Funct. Biomater., 2018, 9(2), 30.
110. Y. Wu, L. Wang, T. Hu, P. X. Ma, B. Guo, Conductive micropatterned polyurethane films as tissue engineering scaffolds for schwann cells and PC12 cells. J. Colloid. Interface. Sci., 2018, 518, 252-262.
111. S. Aznar-Cervantes, A. Pagán, J. G. Martínez, A. Bernabeu-Esclapez, T. F. Otero, L. Meseguer-Olmo, J. I. Paredes, J. L. Cenis, Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 79, 315-325.
112. K. J. Lynch, O. Skalli, F. Sabri, Growing neural PC-12 cell on crosslinked silica aerogels increases neurite extension in the presence of an electric field. J. Funct. Biomater., 2018, 9(2), 30.
113. Y. Sun, X. Liu, M. N. George, S. Park, B. Gaihre, A. Terzic, L. Lu, Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J. Biomed. Mater. Res. A, 2021, 109(2), 193-206.
114. N. Nazeri, R. Karimi, H. Ghanbari, The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J. Biomed. Mater. Res. A, 2021, 109(2), 159-169.
115. C. Liu, X. Li, Q. Zhao, Y. Xie, X. Yao, M. Wang, F. Cao, Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. J. Mater. Sci. Mater. Med., 2021, 32(1), 9.
116. W. Sun, C. S. Taylor, Y. Zhang, D. A. Gregory, M. A. Tomeh, J. W. Haycock, P. J. Smith, F. Wang, Q. Xia, X. Zhao, Cell guidance on peptide micropatterned silk fibroin scaffolds. J. Colloid. Interface. Sci., 2021, 603, 380-390.
117. S. Grossemy, P. P. Y. Chan, P. M. Doran, Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integr. Biol. (Camb)., 2019, 11(6), 264-279.
118. M. D. Tyona, A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment. Adv. Mater. Res., 2013, 2(4), 181-193.
119. Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 2001, 42(25), 9955-9967.
120. H. Esfahani, R. Jose, S. Ramakrishna, Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials., 2017, 10, 1238.
121. B. L. Apostol, A. Kazantsev, S. Raffioni, K. Illes, J. Pallos, L. Bodai, N. Slepko, J. E. Bear, F. B. Gertler, S. Hersch, D. E. Housman, J. L. Marsh, L. M. Thompson, A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl. Acad. Sci. USA, 2003, 100, 5950-5955.
122. J. O'Brien, I. Wilson, T. Orton, F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., 2000, 267(17), 5421-5426.
123. S. N. Rampersad, Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 2012, 12(9), 12347-12360.
124. K. Puchałowicz, M. Tarnowski, I. Baranowska-Bosiacka, D. Chlubek, V. Dziedziejko, P2X and P2Y receptors—role in the pathophysiology of the nervous system. Int. J. Mol. Sci., 2014, 15(12), 23672-23704.
125. R. Burnett, Y. Guichard, E. Barale, Immunohistochemistry for light microscopy in safety evaluation of therapeutic agents: an overview, Toxicology, 1997, 119(1), 83-93.
126. S. Wilk, A. Benko, Advances in fabricating the electrospun biopolymer-based biomaterials. J. Funct. Biomater., 2021, 12(2), 26.
127. R. S. Prakash, B. M. Trimbak, G. B. Ramakrishna, A convenient protocol for the deprotection of N-benzyloxycarbonyl (Cbz) and benzyl ester groups. Tetrahedron Letters., 2015. 56(16), 2067-2070.
128. E. Kaiser, F. Picart, T. Kubiak, J. Tam, R. Merrifield, ChemInform abstract: selective deprotection of the Nα‐tert‐butyloxycarbonyl group in solid phase peptide synthesis with chlorotrimethylsilane and phenol. J. Org. Chem., 1993, 58, 5167-5175.
129. W. F. Su, Principles of polymer design and synthesis. Springer., 2013, 3, 4, 27-87.
130. P. H. Chen, H. C. Liao, S. H. Hsu, R. S. Chen, M. C. Wu, Y. F. Yang, C. C. Wu, M. H. Chen, W. F. Su, A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv., 2015, 5, 6932-6939.
131. J. Pagonabarraga, M. Tinazzi, C. Caccia, W. H. Jost, The role of glutamatergic neurotransmission in the motor and non-motor symptoms in Parkinson's disease: Clinical cases and a review of the literature. J. Clin. Neurosci., 2021, 90, 178-183.
132. Z. Zhou, P. Yu, H. M. Geller, C. K. Ober, The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. Biomaterials., 2012, 33 (8), 2473-2481.
133. J. Xie, W. Liu, M. R. MacEwan, P. C. Bridgman, Y. Xia, Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS nano., 2014, 8(2), 1878-1885.
134. S. H. Bhang, S. I. Jeong, T. J. Lee, I. Jun, Y. B. Lee, B. S. Kim, H. Shin, Electroactive electrospun polyaniline/poly[(L-lactide)-co-(ε-caprolactone)] fibers for control of neural cell function. Macromol. Biosci., 2012, 12(3), 402-411.
135. X. Su, Y. Huang, R. Chen, Y. Zhang, M. He, X. Lu, Metabolomics analysis of poly(l-lactic acid) nanofibers' performance on PC12 cell differentiation. Regen. Biomater. 2021, 8(4), rbab031.
136. Y. Yu, X. Lu, F. Ding, Influence of poly(L-lactic acid) aligned nanofibers on PC12 differentiation. J. Biomed. Nanotechnol., 2015, 11(5), 816-827.
137. T. K. Dash, V. B. Konkimalla, Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release., 2012, 158(1), 15-33.
138. S. Amini, H. Salehi, M. Setayeshmehr, M. Ghorbani, Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: advantages and disadvantages. Polym. Adv. Technol., 2021, 32(6), 2267-2289.
139. S. Vijayavenkataraman, Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta. Biomater., 2020, 106, 54-69.
140. C. Yang, W. Huang, L. Chen, N. Liang, H. Wang, J. Lu, X. Wang, T. Wang, Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. J. Mater. Chem. B, 2021, 9(3), 567-584.
141. J. A. Apablaza, M. F. Lezcano, A. Lopez Marquez, K. Godoy Sánchez, G. H. Oporto, F. J. Dias, Main morphological characteristics of tubular polymeric scaffolds to promote peripheral nerve regeneration—a scoping review. Polymers, 2021, 13(15), 2563.
142. J. I. Kim, J. Y. Kim, C. H. Park, Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci. Rep., 2018, 8(1), 3424.
143. S. Omer, R. Zelko, A systematic review of drug-loaded electrospun nanofiber-based ophthalmic inserts. Pharmaceutics, 2021, 13(10), 1637.
144. R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V. Amutha Barathi, K. H. Lim, S. Ramakrishna, Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev., 2015, 44(3), 790-814.
145. A. Morie, T. Garg, A. K. Goyal, G. Rath, Nanofibers as novel drug carrier--an overview. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 135-143.
146. A. Luraghi, F. Peri, L. Moroni, Electrospinning for drug delivery applications: a review. J. Control. Release., 2021, 334, 463-484.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86972-
dc.description.abstract神經組織工程為神經損傷和疾病引起的功能障礙或疼痛帶來了前景。許多肽基底生物醫學支架需要額外的生物活性因子和特殊塗層來滿足細胞附著、細胞活性(包括細胞生長和分化)的要求。功能性支架非常適合滿足這些雙重功能的需求:同時具有良好的細胞附著和細胞活性。而且也希望它們可以很容易地由單一種材料製成。我們開發了具有良好生物相容性和無細胞毒性的雙功能性新穎共聚肽高分子。其含有谷氨酸和賴氨酸衍生物的化學結構組成通過開環聚合設計和合成。共聚肽的賴氨酸部分增強細胞貼附,而神經刺激的谷氨酸部分提高細胞活性。因此,單一共聚物可以具有兩種均聚物的優點和特性。且在無需增加額外細胞貼附處理的情況下,也可有效地讓細胞附著、生長、擴散並分化。
而為了找到對於細胞生長之最理想單體比例共聚物,首先合成出不同莫耳比例單體的共聚物並將其製備成薄膜,並鑑定它們的表面特性及評估細胞培養特性。更進一步探討不同化學組成的共聚物所造成不同的薄膜表面特徵與細胞表現之間的影響與關聯性。使用的賴氨酸衍生物包含叔丁氧羰基賴氨酸(BOCL)和羧基芐基賴氨酸(CBZL)。賴氨酸上BOC側鏈的尺寸比CBZ大,這導致薄膜表面粗糙且疏水,細胞貼附降低。由於賴氨酸側鏈上的酰胺鍵,通過增加賴氨酸的組成來增強薄膜親水性及細胞活性。當這些影響因素達到平衡時,可增強細胞生長。因此CBZL和BG在等莫耳比組成的共聚物在嗜鉻細胞瘤(PC-12)神經細胞培養中表現出最佳性能。而共聚物部分水解成聚電解質時,由於存在電荷且增加親水性和細胞識別,進一步可更增強細胞粘附和生長。而人類視網膜色素上皮細胞(ARPE-19) 培養在共聚物薄膜上亦有良好的貼附及活性。ARPE-19 細胞培養在平坦的共聚肽薄膜上的時間拉長到兩個多月後,它可以形成密集排列的單層細胞排列,這證明了它們在視網膜修復組織工程中的潛力。
將最佳組成的共聚肽使用靜電紡絲製程製備成具有對齊纖維排列的纖維支架。PC-12細胞培養在等比例谷氨酸和賴氨酸的共聚物支架上相較於在均聚物支架上展現最好的神經細胞活性和最長的軸突長度,且神經軸突受到基材引導沿著電紡纖維的方向生長並延長。在支架被部分水解而帶正電荷並增加親水性後,細胞活性和神經突生長都進一步增加。這證明了共聚肽不但同時可增加神經細胞貼附力也能讓神經傳導物質谷氨酸有效發揮功能來刺激神經細胞生長並分化。
使用聚谷氨酸纖維支架的體內動物實驗與台大醫院陳偉勵醫師進行合作,初步結果顯示了谷氨酸可刺激角膜神經生長且聚肽高分子支架不會造成兔子眼角膜的發炎反應。聚谷氨酸製成的仿生支架被探索為角膜神經再生和神經營養性角膜炎治療的候選材料。此新穎設計之共聚肽材料有望成為神經組織工程領域的一盞明燈。
zh_TW
dc.description.abstractNeural tissue engineering brings prospective landscapes for dysfunction or pain caused by nerve damage and disease. Many peptide-based biomedical scaffolds require additional bioactive factors and special coatings to satisfy the requirements of cell attachment, cell viability including the growth and differentiation of cells. Functional scaffolds are highly desirable to meet the demands of these dual function: good cell attachment and cell viability simultaneously. And they are also desirable can be made from a single material easily. We develope the dual-function co-polypeptide which can achieve desired properties simultaneously with good biocompatibility and none cytotoxicity. Novel co-polypeptides containing glutamate and lysine derivative moieties are designed and synthesized by ring-opening polymerization. The lysine moeity of co-polypeptide enhances cell adhesion while the glutamate moiety of neural stimulate improves cell viability. Thus, a single copolymer can have the advantages and characteristics of two homopolymers. And it can effectively allow cells to attach, grow, spread and differentiate without additional treatments to enhanced cell adhesion.
In order to find the optimal monomer ratio copolymers for cell growth, the copolymers of different molar ratio of monomers are first synthesized and prepared into thin films, and their surface properties are examined and cell culture properties are evaluated. The influence and correlation between different film surface characteristics and cell performances caused by copolymers with different chemical compositions are explored. The lysine derivatives used in co-polypeptides include tert-butoxycarbonyl lysine (BOCL) and carboxybenzyl lysine (CBZL). The size of the BOC side chain on lysine is larger than that of CBZ, which causes the film surface to be rough and hydrophobic, and cell adhesion is reduced. Due to the amide linkage on the side chain of lysine, the hydrophilicity of the film and cell activity are enhanced by increasing the composition of lysine. When these influencing factors reached equilibrium, cell growth is enhanced. Therefore, the copolymer composed of CBZL and BG in equal molar ratio showed the best performance in pheochromocytoma (PC-12) nerve cell culture. When the copolymer is partially hydrolyzed, it can further enhance cell adhesion and growth due to the presence of electric charge and increase the hydrophilicity and cell recognition. The copolymer film also exhibits good adhesion and activity on adult retinal pigment epithelial (ARPE-19) cells. The ARPE-19 cells cultured on flat co-polypeptide films can form densely packed monolayer cell arrangements for more than two months, demonstrating their potential in tissue engineering for retinal repair.
Then, the optimal composition of co-polypeptide is further used to prepare fibrous scaffold with aligned fiber by electrospinning. PC-12 cells cultured on copolymer scaffolds with equal ratios of glutamate and lysine exhibit the best neuronal activity and longest neurite length as compared to their respective homo-polypeptide scaffolds. And the neurites are guided by the substrate to grow and elongate along the direction of the fibers. After the scaffold is partially hydrolyzed to contain positive charge and increase hydrophilicity, both cell viability and neurite growth are further increased. The lysine moiety of co-polypeptide enhances cell attachment while its glutamic acid moiety stimulates neurogenesis effectively.
The in vivo animal experiments using poly(γ-benzyl-L-glutamate) (PBG) fibrous scaffold are collaborated with Dr. Wei-Li Chen from National Taiwan University Hospital. The results show that glutamate can stimulate corneal nerve growth and the polypeptide scaffolds did not cause inflammation of the cornea. PBG made biomimic scaffold is explored as candidate material for corneal nerve regeneration and neurotrophic keratopathy treatment. This novel designed co-polypeptide materials are expected to be bright light in the field of neural tissue engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:09:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:09:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract III
Table of Contents VI
List of Figures IX
List of Tables XXII
Chapter 1 Introduction 1
1.1 Human nervous system 1
1.1.1 Injuries and diseases of the nervous system 2
1.1.2 Regenerative capacity of the nervous system 4
1.2 Neural tissue engineering 7
1.3 Desired properties for scaffolds in neural tissue engineering 10
1.4 The biomedical applications of synthetic polypeptide 16
1.4.1 Poly(γ-benzyl-L-glutamate) for biomedical applications 18
1.4.2 Poly-L-lysine for biomedical applications 22
1.5 Multifunctional copolymers 24
1.6 The introduction of PC-12, ARPE-19 cells 27
1.6.1 PC-12 cells 27
1.6.2 ARPE-19 cells 29
1.7 Recent studies on the PC-12 cell differentiation of scaffolds 32
1.8 Motivation, Objective, Hypothesis and Approaches 35
Chapter 2 Materials and Methods 38
2.1 Chemicals 38
2.2 Instruments and equipment 41
2.3 Nomenclature 44
2.4 Synthesis and characterization of NCA monomer 45
2.4.1 BG-NCA 45
2.4.2 CBZL-NCA 47
2.4.3 BOCL-NCA 48
2.5 Synthesis and characterization of P((CBZL)m-co-(BG)n) copolymer 51
2.6 Synthesis and characterization of P((BOCL)m-co-(BG)n) copolymer 54
2.7 Synthesis and characterization of hydrolyzed copolymer 57
2.8 Characterization methods for chemical structures of materials 58
2.9 Molecular model of protecting groups of lysine 60
2.10 Preparation of polymer films 60
2.11 Preparation of aligned polymer electrospun fibers 62
2.12 Characterization of the morphology, density and fiber alignment of polymer scaffolds 66
2.13 Characterization method for hydrophilicity and roughness of materials 67
2.14 Characterization of thermal properties of polypeptides 68
2.15 Measurement of transparency of polymer fibrous scaffolds 69
2.16 Measurement of mechanical properties of fibrous scaffolds 69
2.17 Cell culture 70
2.12.1 PC-12 cell 70
2.12.2 ARPE-19 cell 74
2.12.3 Mouse trigeminal ganglion cells 75
2.18 Cytotoxicity test of polymer scaffolds 75
2.19 Cell viability test of polymer scaffolds 77
2.20 Immunofluorescence staining of nerve cells 80
2.21 Analysis of neurite length and angle characteristics 85
2.22 Characterization method for cell morphology on scaffolds 86
2.23 Western Blot analysis of PC-12 cells 87
2.24 RNA extraction and Real-time PCR analysis of PC-12 cells 88
2.25 In vivo confocal microscopy (IVCM) 89
2.26 Implantation of PBG fibrous scaffolds into animal cornea for preclinical testing 89
Chapter 3 Results and Discussion 91
3.1 Synthesis and characterization of polypeptide 91
3.2 Effect of copolymer monomer ratios, protecting group structures, and hydrolysis time on the hydrolysis rate of copolymers 104
3.3 Surface characteristics of polypeptide films 114
3.4 Characteristics of aligned polypeptide scaffolds 119
3.5 Characterization of thermal stability of polypeptide materials 131
3.6 Characteristics of polymer fibrous scaffolds 135
3.7 Cell viability and cytotoxicity of polypeptide films 141
3.8 Comparison of PC-12, ARPE-19 cell viability and cytotoxicity between copolymer film of 5CBZL5BG and partially hydrolyzed 5CBZL5BG 154
3.9 Cell viability and cytotoxicity of polypeptide scaffolds 166
3.10 Neural cell differentiation on polymer scaffolds 173
3.11 Investigation of aligned polypeptide scaffolds for corneal nerve regeneration 191
3.11.1 In vitro biocompatibility assay 193
3.11.2 Intracorneal implantation of polymer fibrous scaffolds 200
Chapter 4 Conclusions 208
Chapter 5 Recommendation for future work 211
References 213
-
dc.language.isoen-
dc.subject組織工程zh_TW
dc.subject神經zh_TW
dc.subject角膜神經zh_TW
dc.subject賴氨酸zh_TW
dc.subject薄膜zh_TW
dc.subject靜電紡絲纖維zh_TW
dc.subject水解zh_TW
dc.subject谷氨酸zh_TW
dc.subject共聚肽zh_TW
dc.subjectcorneal nerveen
dc.subjectneural tissue engineeringen
dc.subjectco-polypeptideen
dc.subjectglutamateen
dc.subjectlysineen
dc.subjectfilmen
dc.subjectaligned fiberen
dc.subjectneuriteen
dc.title新穎特殊的共聚肽分子之設計、合成、鑑定及其在神經組織工程上的應用zh_TW
dc.titleDesign, synthesis, characterization of novel polypeptide copolymers for neural tissue engineeringen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee林唯芳;游佳欣;吳明忠;黃裕清zh_TW
dc.contributor.oralexamcommitteeWei-Fang Su;Jia-Shing Yu;Ming-Chung Wu;Yu-Ching Huangen
dc.subject.keyword神經,組織工程,共聚肽,谷氨酸,賴氨酸,水解,薄膜,靜電紡絲纖維,角膜神經,zh_TW
dc.subject.keywordneural tissue engineering,co-polypeptide,glutamate,lysine,film,aligned fiber,neurite,corneal nerve,en
dc.relation.page235-
dc.identifier.doi10.6342/NTU202300059-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-01-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved