請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁國源 | |
| dc.contributor.author | Chen-Hui Yen | en |
| dc.contributor.author | 顏承暉 | zh_TW |
| dc.date.accessioned | 2021-05-20T19:59:51Z | - |
| dc.date.available | 2015-02-22 | |
| dc.date.available | 2021-05-20T19:59:51Z | - |
| dc.date.copyright | 2010-02-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-12 | |
| dc.identifier.citation | A’Hearn, B. and U. Woitek (2001), “More International Evidence on the Historical Properties of Business Cycles”, Journal of Monetary Economics, 47, 321-326.
Abramovitz, M. (1968), “The Passing of the Kuznets Cycle”, Economica, 35, 349-367. Adams, F. G. and V. G. Duggals (1974), “Anticipations Variables in an Econometric Model: Performance of the Anticipations Version of the Wharton Mark III”, International Economic Review, 47, 367-378. Adams, F. G. and L. R. Klein (1972), “Anticipations Variables in Macro-Economic Models”, in Strumpel, B. et al. (eds), Human Behavior in Economic Affairs, New York: Elsevier. Agresti, Alan (2002), Categorical Data Analysis, New York : Wiley. Ayres, L. P. (1939), Turning Points in Business Cycles, New York: Macmillan. Baxter, M. and R. G. King (1999), “Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series”, Review of Economics and Statistics, 81-4, 575-593. Becker, G. (1988), “Family Economics and Macro Behavior”, American Economic Review, 78-1, 1-13. Berry, B. J. L. (1991), Long-wave Rhythms in Economic Development and Political Behavior, Baltimore: John Hopkins University Press. Bird, R.C., Desai, M.J., Enzler, J.J. and P. J. Taubman (1965), “‘Kuznets Cycles’ in Growth Rates: the Meaning”, International Economic Review, 6-2, 229–239. Bowley, A. L. (1907), Elements of Statistics. London : P. S. King. Bowley, A. L. (1911), “The Measurement of the Accuracy of an Average”, Journal of the Royal Statistical Society, 75, 77-88. Bowley, A. L. (1919), “The Measurement of Changes in the Cost of Living”, Journal of the Royal Statistical Society, 82, 343-372. Bowley, A. L. (1926), “The Influence on the Precision of Index-Numbers of Correlation between the Prices of Commodities”, Journal of the Royal Statistical Society, 89, 300-319. Bowley, A. L. (1928), “Notes on Index Numbers”, The Economic Journal, 38, 216-237. Brocato, J. and S. Steed (1998), “Optimal Asset Allocation over the Business Cycle”, The Financial Review, 33, 129-148. Burns, A. F. and W. C. Mitchell (1946), Measuring Business Cycles, New York: National Bureau of Economic Research. Canova. (1996), “Three Tests for the Existence of Cycles in Time Series”, Ricerche Economiche, 50, 135-162. Carlson, J. B. and J. M. McIntire (1995), “Monetary Policy and the Federal Funds Futures Market”, Federal Reserve Bank of Cleveland Economic Commentary, July. Chang, E. C.. and J. W. Cheng (2000), “Further Evidence on the Variability of Inflation and Relative Price Variability”, Economics Letters, 66-1, 71-77. Charlton, W. T. and J. H. Earl (2006), “The State of Technical Analysis in Practice and in College Curriculums: A Survey of Technical Analysts”, Journal of Technical Analysis, Summer. Christiano, L. J. and T. J. Fitzgerald (2003), “The Band Pass Filter”, International Economic Review, 44-2, 435-465. Clarida, R. H. and G. J. Gertler (1998), “Monetary Policy Rules in Practice: Some International Evidence”, European Economic Review, 42, 1033-1067. Clarida, R.H. and G. J, Gertler (2000), “Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory”, Quarterly Journal of Economics, 115, 147-180. Clarida, R. H., Taylor, S. L. and M. P. Valente (2006), “The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates”, Journal of Business, 79-3, 1193-1224. Clements, K. W. and H. Y. Izan (1987), “The Measurement of Inflation: A Stochastic Approach”, Journal of Business and Economic Statistics, 5-3, 339-350. Crompton, P. (2000), “Extending the Stochastic Approach to Index Numbers”, Applied Economics Letters, 7, 367-371. Debelle, G. and O. Lamont (1997), “Relative Price Variability and Inflation: Evidence from US Cities”, Journal of Political Economy, 105-1, 132-152. Duijn, Jacob J. van. (1983), The Long Wave in Economic Life, Boston : Allen & Unwin. Edgeworth, F. Y. (1888), “Some New Methods of Measuring Variation in General Prices”, Journal of the Royal Statistical Society, 51, 346-368. Enders, W. and C. W. J. Granger (1998), “Unit-Root Test and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates”, Journal of Business and Economic Statistics, 16, 304-311. Easterlin, R. (1987), Birth and Fortune: the Impact of Numbers on Personal Welfare, Chicago: University of Chicago Press. Fielding, D. and P. Mizen (2000), “Relative Price Variability and Inflation in Europe”, Economica, 67-265, 57-78. Fisher, I. (1927), The Making of Index Number, Boston: Houghton Muffin. Frisch, R. (1933), “Propagation Problems and Impulse Problems in Dynamic Economics”, In Economic Essays in Honor of Gustav Cassel, London: George Allen & Unwin. Kondratieff, N.D. (1926), “Die langen Wellen der Kunjunktor”, Archiv fur Sozalwissenschaft and Sozialpolitik, 56, 573-609. Fuller, W. (1976), Introduction to Statistical Time Series, New York: Wiley. Gorton, G. and K. G. Rouwenhorst (2006), “Facts and Fantasies about Commodity Futures”, Financial Analysis Journal, 62-2, 47-68. Granger, C. W. J and O. Morgenstern (2001), Essays in Econometrics: Spectral Analysis, Seasonality, Nonlinearity, Methodology, and Forecasting, Cambridge: Cambridge University Press. Granger, C. W. J. (1966), “The Typical Spectral Shape of an Economic Variable”, Econometrica, 34-1, 150-161. Granger, C. W. J. and M. Hatanaka (1964), Spectral Analysis of Economic Time Series, New Jersey: Princeton University Press. Granger, C.W. J. (1969), “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods”, Econometrica, 37-3, 424-438. Hansen, B. E. and B. Seo (2002), “Testing for Two-regime Threshold Cointegration in Vector Error-correction Models”, Journal of Econometrics, 110, 293-318. Harvey, A.C. (1985), “Trends and Cycles in Macroeconomic Time Series”, Journal of Business and Economic Statistics, 3-3, 216–227. Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press. Henriksson, R. D. and R. C. Merton (1981), “On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills”, Journal of Business, 54-4, 513-533. Hillinger, C. (1992), “Paradigm Change and Scientific Method in the Study of Economic Fluctuations”, In: Hillinger, C. (Ed.): Cyclical Growth in Market and Planned Economies, London: Oxford University Press. Hodrick, R. and E. Prescott (1997), “Post-War Business Cycles: An Empirical Investigation”, Journal of Money, Credit and Banking, 29-1, 1-16. Jevons, W.S. (1863), A Serious Fall in the Value of Gold Ascertained and Its Social Effects Set Forth, London: E. Stanford. Jevons, W.S. (1865), “On the Variation of Prices and the Value of the Currency since 1782”, Journal of the Statistical Society of London, 28, 294-320. Jevons, W.S. (1869), “The Depreciation of Gold”, Journal of the Statistical Society of London, 32, 445-449. Juglar, C.(1862), Des Crisis Commerciales et leur Retour Periodique en France, en Angleterre et aux WEtats Unis, France: Librarie GUullaumin et cie. Kehoe, T. J. and E. C. Prescott (2002), “Great Depressions of the 20th Century”, Review of Economic Dynamics, 5, 1–18. Keynes, J. M. (1930), A Treatise of Money, New York: Harcourt, Brace and Co. Kitchin, J. (1923), “Cycles and Trends in Economic Factors”, Review of Economic Statistics, 5, 10-16. Klotz, B. P. and L. Neal (1973), “Spectral and Cross-spectral Analysis of the Long-swing Hypothesis”, Review of Economics and Statistics, 55, 291-298. Kondratieff, N. D. (1926), “Die langen Wellen der Kunjunktor”, Archiv fur Sozalwissenschaft and Sozialpolitik, 56, 573-609. Krueger, J. T. and K. N. Kuttner (1996), “The Fed Funds Futures Rate as a Predictor of Federal Reserve Policy”, Journal of Futures Markets, 16-8, 865-879. Kuznets, S. (1930), Secular Movements in Production and Prices, Wilmington: Houghton Mifflin. Lange, J., Sack, B. and W. Whitesell (2003), “Anticipations of Monetary Policy in Financial Markets”, Journal of Money, Credit and Banking, 35, 889-910. Liang, K.Y. and S.X. Chen (2000), “An Analysis of Taiwan's CPI: A Stochastic Approach”, Taiwan Economic Forecast and Policy (Academia Sinica), 31:1, 77-110 (in Chinese). Maddison, A. (1991), “Business Cycles, Long Waves and Phases of Capitalist Development”, available at http://www.ggdc.net/Maddison/ARTICLES/Business_Cycles.pdf. Maddison, A. (2009), The World Economy-A Millennial Perspective, Paris: Organization for Economic Cooperation and Development. McIntosh, C. S. and J. H. Dorfman (1992), “Qualitative Forecast Evaluation: A Comparison of Two Performance Measures”, Journal of American Agricultural Economics, 74, 209-214. Mills, F. C. (1927), The Behavior of Prices, New York: National Bureau of Economic Research. Moore, G. (1975), “Stock Prices and the Business Cycle”, Journal of Portfolio Management, 1, 59-64. Moore, G. (1983), Business Cycles, Inflation, and Forecasting, New York: National Bureau of Economic Research. Moore, G. (1990), Leading Indicators for the 1990s, Chicago: Irwin Professional Pub. Munchau, W. (2007), “The Problem with Inflation indices”, Financial Times, May, 14. Murphy, J. (2004), Intermarket Analysis, New York: Wiley. Nosal, E. (2001), “How Well Does the Federal Funds Futures Rate Predict the Future Federal Funds Rate?”, Federal Reserve Bank of Cleveland Economic Commentary, October. Oppenlander, K. H. (1997), Business Cycle Indicators, England: Ashgate Publishing. Owens, R. and R. Webb (2001), “Using the Federal Funds Futures Market to Predict Monetary Policy Actions”, Federal Reserve Bank of Richmond Economic Quarterly, 87-2, 69-77. Parsley, D. C. (1996), “Inflation and Relative Price Variability in the Short and Long Run: New evidence from the United States”, Journal of Money, Credit and Banking, 28-3, 323-341. Pesaran, M. H. and A. G. Timmermann (1994), “A Generalization of the Non-Parametric Henriksson-Merton Test of Market Timing”, Economics Letters, 44, 1-7. Pesaran, M. H. and A. G. Timmermann (1992), “A Simple Non-Parametric Test of Predictive Performance”, Journal of Business and Economic Statistics, 10, 461-465. Poole, W. and R. H. Rasche (2000), “Perfecting the Market’s Knowledge of Monetary Policy”, Journal of Financial Services Research, 18-2, 255-298. Poole, W. and R. H. Rasche (2003), “The Impact of Changes in FOMC Disclosure Practices on the Transparency of Monetary Policy: Are Markets and the FOMC Better “Synched”?”, Federal Reserve Bank of St Louis Review, 2003-1, 1-10. Priestley, M. (1981), Spectral Analysis and Time Series, New York: Academic Press. Pring, M. J. (1992), The All-season Investor: Successful Strategies for Every Stage in the Business Cycle, New York : Wiley. Pring, M. J. (2002), Technical Analysis Explained, New York: McGraw-Hill. Reinsdorf, M. (1994), “New Evidence on the Relation between Inflation and Price Dispersion”, American Economic Review, 84-3, 720-31. Reiter, M. and Woitek U. (1999), “Are there Classical Business Cycles?”, University of Glasgow, Discussion Papers in Economics No. 9905. Review, 2-1, 17-33. Robertson, J. C. and D. L. Thornton (1997), “Using Federal Funds Futures Rates to Predict Federal Reserve Actions”, Federal Reserve Bank of St Louis Review, 79-6, 45-53. S¨oderstr¨om, U. (2001), “Predicting Monetary Policy with Federal Funds Futures Prices”, Journal of Futures Markets, 21-4, 377–391. Sack, B. (2004), “Extracting the Expected Path of Monetary Policy from Futures Rates”, Journal of Futures Markets, 24-8, 733-754. Sargent, T. J. (1987), Macroeconomic Theory, Boston: Academic Press. Sarno, L. and D. L. Thornton (2003), “The Dynamic Relationship between the Federal Funds Rate and the Treasury Bill Rate: An Empirical Investigation”, Journal of Banking and Finance, 27, 1079-1107. Schumpeter, J. A. (1939), Business Cycles, New York: McGraw-Hill. Seigel, J. (1991), “Does It Pay Stock Investors to Forecast the Business Cycles?” Journal of Portfolio Management, 18, 27-31. Selvanathan, E. A. and D. S. Prasada Rao (1994), Index Numbers : A Stochastic Approach, Hampshire : Macmillan. Sen, S. R. (1997), “Kondratieff and Other Cycles in Market, Command and Mixed Economies”, Economic and Political Weekly, 27-23, 1189-1190. Shinohara, M. (1996), “Cyclical Dynamics of the 50 Years of Postwar Japan-Interplay among Different Cycles”, Japanese Economic Review, 47-1, 62-78. Solomou, S. N. (1998), Economic Cycles, Manchester: Manchester University Press. Soper, J. C. (1975), “Myth and Reality in Economic Time Series: the Long Swing Revisited”, Southern Economic Journal, 45, 570-579. Stock, J. and M. Watson (1999), “Business Cycles Fluctuations in US Macroeconomic Time Series”, Handbook of Macroeconomics, Elsevier. Swanson, E. T. (2006), “Have Increases in Federal Reserve Transparency Improved Private Sector Interest Rate Forecasts?” Journal of Money, Credit and Banking, 38-3, 791-818. Taylor, J. B. (1993), “Discretion versus Policy Rules in Practice”, Carnegie-Rochester Conf Ser Public Pol, 39, 195-214. Turhan-Sayan, G. and S. Sayan (2002), “Use of Time-Frequency Representations in the Analysis of Stock Market Data”, in: E. Kontoghiorghes, B. Rustem and S. Siokos (eds.): Computational Methods in Decision-making, Economics and Finance, Kluwer Applied Optimization Series. Vining, Daniel R., Jr. and Thomas C. Elwertowski (1976), “The Relationship between Relative Prices and the General Price Level”, American Economic Review, 66-4, 699-708. Warner, R. (1998), Spectral Analysis of Time-series Data, New York: Guilford Press. White, Halbert. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity”, Econometrica, 48-4, 817-838. Wilson, P. and Zurbruegg, R. (2003), “Trends and Spectral Response: an Examination of the US Realty Market”, Discussion Papers in Economics No. 0315 University of Adelaide, Australia. Zarnowitz, V. (1992), “Has Macro-Forecasting Failed?”, Cato Journal, 12-1, 129-161. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8696 | - |
| dc.description.abstract | 研究總體時間序列資料並據以提供其實務上的應用及意涵是總體經濟學家的重要工作。然而,和其他領域實證研究相較,景氣循環在投資組合上的應用、Kitchin、Juglar以及Kuznets循環間的交互作用、通貨膨脹衡量以及聯邦資金利率期貨對美國貨幣政策的預測能力等方面的研究在文獻中屬於相對少數。基於此原因,本論文將針對這些實務上重要的總體經濟議題從實證的角度分析,並據此提出其意涵。
本論文第一章應用頻譜分析(spectral analysis)來探討景氣循環以及資產價格的循環現象。第一節將介紹頻譜分析如何應用在景氣循環研究上。第二節則探討景氣循環對不同類別資產價格的意涵。首先,本節將利用Canova (1996)所提出的檢定方法驗證債券市場、股票市場、商品市場是不是具有相似的循環現象。其次,本節還應用Fuller (1996)的檢定方法,透過交叉頻譜分析驗證各資產價格與景氣循環的領先落後關係。研究顯示:(1) 債券、股票以及商品市場具有和景氣循環相似的循環週期,週期介在3.5~7.5年間;(2)債券、股票、景氣循環以及商品市場間存在四個具統計上顯著的領先或落後的關係:分別是景氣循環領先商品市場,然而卻同時落後債券市場以及股票市場,又債券市場領先商品市場。此外,本節還透過實際的資料指出,應用這樣的領先落後關係,在不同景氣循環階段持有相對強勢的資產類別,有助於增加投資組合的獲利。 第三節則更進一步分析九大類的共同基金報酬是否也具備有循環上的關連性。研究結果指出:(1) 不同種類的基金類別的確也存在類似的循環現象;(2) 其中存在三種領先或落後的關係,分別是債券型基金領先股票型基金、股票型基金領先能源型基金;債券型基金領先科技型基金、科技型基金領先能源型基金;貨幣型基金領先地產型基金。 第四節將利用1870至2008年15個OECD國家的資料,並應用Canova (1996)所提出的檢定方法證明,除了大家所熟悉的3~5年Kitchin循環外,這段期間大多數的OECD國家同時也經歷具有規律性的7~11年之Juglar循環,以及15~25年的Kuznets循環。除此之外,本節還比對歷次OECD所認定的景氣循環高峰與谷底日期以及其所處Juglar循環以及Kuznets循環的該當階段發現,當經濟同時處於Juglar及Kuznets循環的上升階段時,OECD所認定的循環擴張期通常會比較長。而當經濟同時處於Juglar及Kuznets循環的下降階段時,OECD所認定的短循環景氣收縮期通常會較長。值得注意的是,這一節還指出Kitchin、Juglar及Kuznets循環同時進入收縮期是造成1930年經濟大蕭條以及2008年全球金融海嘯的共同原因之一。 鑑於通貨膨脹是總體經濟學的重要議題,而近年來各電子及平面媒體經常出現官方公布之通貨膨脹與一般民眾生活經驗顯不相當的輿論。因此本論文的第二章將探討如何衡量消費者物價指數(CPI)的可靠度。本章試圖建構一個新的迴歸模型,透過模型的估計結果來衡量CPI的可靠性。更進一步來說,該模型是文獻上指數隨機方法(the stochastic approach to index numbers)的擴充。本文認為,傳統上的指數隨機方法中關於相對價格間系統性改變的機制應該要隨時間作改變。因此,在這一章的模型中,將加入一般通貨膨脹率以及景氣循環階段等虛擬變數來解決文獻上的不足。而這樣的延伸也更能夠回答凱因斯對於指數隨機方法的批判。此外,本章還應用澳洲以及美國的資料,比對本論文與傳統設定方法的實證差別,結果顯示,這一章的設定較傳統的方法更合適用來衡量CPI的可靠度。 聯邦資金利率期貨是否具有未來聯邦資金利率走勢的預測能力是文獻上重要的議題之一,然而過去的研究對於這個議題大多以量化的預測能力來衡量,對於質化(方向性)預測能力的討論則相對有限。但從1989年起聯邦資金利率的變動即以0.25%及其倍數的幅度調整,因此傳統文獻上的量化預測能力評估並不適當。有鑑於此,本論文第三章將應用Pesaran及Timmermann (1992, 1994)所提出的無母數一般化Henriksson-Merton (H-M)檢定驗證聯邦資金利率期貨對未來聯邦資金利率走向是否具有方向性預測能力。主要實證結果表明,聯邦資金利率期貨對於 (1)貨幣政策緊縮、寬鬆或中立,或(2)目前貨幣政策升息或降息循環的轉折點至少在1週之前就具有預測能力。此外,本章亦驗證,隨著1994年2月美國貨幣政策制定過程更趨透明化,聯邦資金利率期貨的預測能力是否有所改善。結果顯示,利率期貨的預測能力的確隨著聯準會政策制定過程的更為透明化而有所增進。 | zh_TW |
| dc.description.abstract | Macroeconomists carry the duty of providing insights and creating application value for practitioners based on studying macroeconomic time series data. However, compared with empirical studies in other areas, application of the business cycle concept on investment portfolios, the interplay between the Kitchin, Juglar and Kuznets cycles, the measurement of inflation rates, and the predictability of Fed Funds futures on U.S. monetary policy are all relatively underrepresented in literature. To bridge the gap in literature, this dissertation aims to study these practically important issues with a formal statistical procedure.
The first chapter applies the spectral analysis to discuss the cyclical patterns of business cycles and asset prices. Section 1 briefly introduces the application of spectral analysis on the study of business cycles. Section 2 uses spectral analysis to discuss the implication of the business cycle concept on the investment of multiple asset classes. In this section, Canova’s (1996) test is applied to test whether if the bonds market, stock market and commodities market have similar cyclical features as the business cycle. Moreover, the test in Fuller (1996) is applied to verify if lead or lag relationships exist between asset prices of the three markets, respectively, and the business cycle with cross spectrum analysis. Empirical results indicate that (1) Bond, stock and commodity markets all have similar cyclical patterns as the business cycles, which are about 3.5~7.5 years in length. (2) There are four statistically significant pairs of lead or lag relationships among the bonds, stocks and commodities market, respectively, and the business cycle, they are: the business cycle leads the commodities market, and lags both the bonds market and stock market, respectively, and the bonds market leads the commodities market. In addition, we have verified through actual data that applying such lead or lag relationship to hold the relative stronger asset class in each corresponding phase of the business cycle can help improve the returns of a portfolio. Then, section 3 analyzes whether 9 types of mutual funds also possess similar connections in their cyclical patterns. Empirical results indicate that (1) These mutual fund types exhibit similar cyclical patterns. (2) Among them, there are three types of lead or lag relationships, in which bond funds lead stock market funds, stock market funds lead energy funds; bond funds lead technology funds, technology funds lead energy funds; and money market funds lead real estate funds. Section 4 uses data from 15 OECD countries from 1870 thru 2008 and apply Canova’s (1996) test to prove that, other than the well recognized 3~5 year Kitchin cycle, most OECD countries have experienced regular 7~11 year Juglar cycles and 15~25 year Kuznets cycles as well during the same period. In addition, as we compare the business cycle peaks and troughs dates recognized by the OECD with the Juglar cycle and Kuznets cycle patterns identified in our model, we found that when the economy is in the upswing of Juglar and Kuznets cycles, the expansions of the short cycle identified by the OECD are usually longer. Also, when the economy is in the downswing of Juglar and Kuznets cycles, the contractions of the short cycle identified by the OECD are usually longer. This section further points out that the joint downswing of the Kitchin, Juglar and Kuznets cycle is one of the common causes of the 1930 Great Depression and the 2008 global financial crisis. Inflation has always been a core issue in macroeconomics. Recent media highlighted the issue that the official inflation rates may not match public experience. Therefore in Chapter II, we shall discuss the measurement of the reliability of CPI. Here we try to construct a new regression model that can measure the reliability of CPI, which model is an extension of the stochastic approach to index numbers. Therefore, the mechanism of systematic change in relative prices in the literature of stochastic approach to index numbers is allowed to vary with time in this chapter. Then we included inflation rate and phases of business cycle dummies in our model to allow for time varying. Such an extension can answer the Keynes’s critic on stochastic approach to index numbers. Moreover, we used US and Australian data, and compared the results from our setting with those from the traditional setting, and further confirmed that our setting was more appropriate than the conventional. Whether the Fed Funds rate futures have the ability to predict future Fed Funds rates is a significant issue in literature. However, most past research evaluates predictive ability with quantitative measurements, while its qualitative (directional) accuracy was less emphasized. Since changes in Fed Funds rates were in multiples of 0.25% since 1989, therefore the quantitative evaluation used in traditional literature may not be adequate. Hence in Chapter III, the non-parametric generalized Henriksson-Merton (H-M) test proposed by Pesaran and Timmermann (1992, 1994) is applied to verify the directional predictive ability of FF futures on FF rates. The major empirical results are (1) predicting the tightening, easing, or maintaining of monetary policy (2) when the monetary policy reaches a probable turning point, the futures based predictors are reliable for at least one week. In this chapter, we also investigate the effects of practice changes of the US monetary policy process made in February 1994. The results show that the reliability of futures based predictors have improved since then, which was marked a time when the FOMC decisions were made more open and transparent. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:51Z (GMT). No. of bitstreams: 1 ntu-99-F91323023-1.pdf: 988589 bytes, checksum: 97c605a4174879c1cfe5fd1dbae32b49 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書..........................................I
誌謝.....................................................II 中文摘要................................................III 英文摘要..................................................V 目 錄.................................................VIII 圖目錄...................................................XI 表目錄..................................................XII Introduction..............................................1 Chapter 1 Dissecting of Business Cycles: Applications of Spectral Analysis.........................................4 I. Introduction to the Spectral Analysis on Analyzing Business Cycle............................................4 1.1 Introduction..........................................4 1.2 Univariate Spectral Analysis..........................5 1.2.1 Detrending and Signal Extraction....................5 1.2.2 Testing for Business Cycle..........................8 1.3 Multivariate Spectral Analysis........................9 II. An Intermarket Investigation and its Implications to Portfolio Reallocation...................................11 2.1 Introduction.........................................11 2.2 A Review of Earlier Studies..........................13 2.2.1 The Relationship between Different Asset Prices and the Business Cycle .......................................13 2.2.2 The Applicability of Intermarket Framework.........15 2.3 Rationales and Empirical Verification of the Existence of Intermarket Relationships.............................17 2.3.1 Rationales of the intermarket relationships........17 2.3.2 Data...............................................20 2.3.3 The existence of cyclical behavior.................21 2.3.4 Lead-lag relationship between markets..............23 2.4 Portfolio Return within Business Cycles..............26 2.5 Conclusions and Remarks..............................31 III.Cycle and Performance of Mutual Funds................33 3.1 Introduction.........................................33 3.2 Data and methodology.................................33 3.2.1 Data...............................................33 3.2.2 Uni-spectral analysis..............................34 3.2.3 Cross-spectral analysis............................35 3.3 Empirical results....................................36 IV.Interplay among Business Cycles Reconsidered: Implications for the 2008 Global Recession...............40 4.1 Introduction.........................................40 4.2 Early Inquiry of Interplay Between Business Cycles...41 4.3 Data.................................................45 4.4 The Existence of Kitchin, Juglar, and Kuznets Cycles.47 4.5 Phases of the Kitchin, Juglar, Kuznets, and Kondratieff Cycle........................................51 4.5.1 Interplay Between Business Cycles..................51 4.5.2 Experience in the Great Depression and this Time Recession................................................56 4.6 Concluding Remarks...................................59 Appendix 1.1.............................................60 Chapter 2 Measuring CPI’s Reliability: the Stochastic Approach to Index Numbers Revisited......................64 I. Introduction.........................................64 II Brief Introduction of Stochastic Approach to Index Numbers..................................................67 III Specification of the Full model.....................72 IV Empirical Evidence...................................75 V Concluding Remarks....................................84 Appendix 2.1: Estimated Standard Errors of CPI of Australia and US by Crompton’s Method...................85 Appendix 2.2: Estimated Standard Errors of CPI of Australia and US by Adding Economic Environment Dummies..87 Chapter 3 An Application of Henriksson-Merton Test: Are Fed Funds Rate Futures Valuable in Predicting US Monetary Policy?..................................................89 I. Introduction..........................................89 II. A Review of Earlier Studies..........................92 2.1. Rationality Testing and Forecasting Accuracy Evaluation...............................................92 2.2. Importance of Directional Accuracy..................93 2.3. Monetary Policy Cycle...............................94 2.4. Changes in FOMC Disclosure Practices................94 III. Silent Features of the FF Future Rate...............96 IV. Usefulness of Futures for Predicting Fed Funds Rate..98 V. Concluding Remarks..................................104 Appendix 3.1. Contingency tables regarding “tighten, ease or unchanged”..........................................105 Appendix 3.2. Contingency tables regarding the turning point of the monetary policy cycle......................108 References..............................................111 | |
| dc.language.iso | en | |
| dc.title | 景氣循環、通貨膨脹衡量及聯邦資金利率期貨三論 | zh_TW |
| dc.title | Three Essays on Business Cycles,Inflation Measurement and Fed Funds Rate Futures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 于宗先,李庸三,周文林,黃朝熙,余士迪 | |
| dc.subject.keyword | 景氣循環,投資組合管理,頻譜分析,指數隨機方法,聯邦資金利率期貨,方向性預測準確性, | zh_TW |
| dc.subject.keyword | Business cycles,portfolio management,spectral analysis,stochastic approach to index numbers,Fed Funds futures,directional forecasting accuracy, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-02-22 | |
| dc.contributor.author-college | 社會科學院 | zh_TW |
| dc.contributor.author-dept | 經濟學研究所 | zh_TW |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 965.42 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
