Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝zh_TW
dc.contributor.advisorGen-Huey Chenen
dc.contributor.author王柏元zh_TW
dc.contributor.authorPo-Yuan Wangen
dc.date.accessioned2023-05-02T17:08:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2022-
dc.date.submitted2022-12-09-
dc.identifier.citation[1] M. S. Chang, S. Y. Hsieh, and G. H. Chen. Dynamic programming on distancehereditary graphs. In Proceedings of the International Symposium on Algorithms and Computation, pages 344–353. Springer, 1997.
[2] M. S. Chang, S. C. Wu, G. J. Chang, and H. G. Yeh. Domination in distancehereditary graphs. Discrete Applied Mathematics, 116(1-2):103–113, 2002.
[3] L. Chen, C. H. Lu, and Z. B. Zeng. Hardness results and approximation algorithms for (weighted) paired-domination in graphs. Theoretical Computer Science, 410(47-49):5063–5071, 2009.
[4] E. J. Cockayne, R. Dawes, and S. T. Hedetniemi. Total domination in graphs. Networks, 10(3):211–219, 1980.
[5] M. Damian-Iordache and S. V. Pemmaraju. Hardness of approximating independent domination in circle graphs. In Proceedings of the International Symposium on Algorithms and Computation, pages 56–69. Springer, 1999.
[6] M. Damian-Iordache and S. V. Pemmaraju. A (2+ ε)-approximation scheme for minimum domination on circle graphs. Journal of Algorithms, 42(2):255–276, 2002.
[7] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.
[8] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorithmica, 20(4):374–387, 1998.
[9] T. W. Haynes and P. J. Slater. Paired-domination in graphs. Networks, 32(3):199–206, 1998.
[10] S. Y. Hsieh, C. W. Ho, T. S. Hsu, M. T. Ko, and G. H. Chen. Characterization of efficiently parallel solvable problems on distance-hereditary graphs. SIAM Journal on Discrete Mathematics, 15(4):488–518, 2002.
[11] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9(3):256–278, 1974.
[12] J. M. Keil. The complexity of domination problems in circle graphs. Discrete Applied Mathematics, 42(1):51–63, 1993.
[13] D. Kratsch and L. Stewart. Total domination and transformation. Information Processing Letters, 63(3):167–170, 1997.
[14] C. C. Lin, K. C. Ku, and C. H. Hsu. Paired-domination problem on distancehereditary graphs. Algorithmica, 82(10):2809–2840, 2020.
[15] H. G. Yeh and G. J. Chang. Weighted connected domination and steiner trees in distance-hereditary graphs. Discrete Applied Mathematics, 87(1-3):245–253, 1998.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86968-
dc.description.abstract支配問題是在給定的圖中尋找該圖點集的一個最小子集,使得圖上所有不屬於該子集的點,皆有至少一鄰居屬於該子集。完全支配問題則是在圖上尋找該圖點集的一個最小子集,使得圖上所有點皆有至少一鄰居屬於該子集。此二問題在圓形圖上皆為 NP-complete。Mirela 和 Sriram 為支配問題提出了一時間複雜度為 O(n^2) 的 8 倍近似演算法和時間複雜度為 O(n^3+(6/ε)n^(⌈1+6/ε⌉)m) 的 (2+ε) 倍近似演算法,亦為完全支配問題提出了時間複雜度為 O(n^4+(6/ε)n^(⌈1+6/ε⌉)m) 的 (3+ε) 倍近似演算法。本篇論文則在此基礎上為完全支配問題提出了時間複雜度為 O(n+m) 的 10 倍近似演算法,並利用 Kratsch 和 Stewart 所提出的轉換方式提出時間複雜度為 O(n^3+(6/ε)n^(⌈1+6/ε⌉)m) 的 (2+ε) 倍近似演算法。zh_TW
dc.description.abstractGiven a graph, the domination problem is to find a minimum cardinality vertex subset of the graph, such that each vertex not in the subset has at least one neighbor in the subset. Similarly, the total domination problem is to find a minimum cardinality vertex subset of the graph, such that each vertex of the graph have at least one neighbor in the subset. These two problems are both NP-complete on circle graphs. Mirela and Sriram proposed an 8-approximation algorithm with O(n^2) time complexity and a (2+ε)-approximation algorithm with O(n^3+(6/ε)n^(⌈1+6/ε⌉)m) time complexity for the domination problem. They also proposed a (3+ε)-approximation algorithm with O(n^4+(6/ε)n^(⌈1+6/ε⌉)m) time complexity for the total domination problem. Based on their results, we further proposed a 10-approximation algorithm for the total domination problem with O(n+m) time complexity in this thesis. With the transformation proposed by Kratsch and Stewart, we also proposed a (2+ε)-approximation algorithm with O(n^3+(6/ε)n^(⌈1+6/ε⌉)m) time complexity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:08:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:08:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
Chapter 1 Introduction 1
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 A 10-Approximation Algorithm 6
2.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Finding Cf1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Finding C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Finding C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Algorithm Correctness and Time Complexity . . . . . . . . . . . . . 10
2.5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 3 A (2 + ε)-Approximation Algorithm 16
3.1 A Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 A (2 + ε)-Approximation Algorithm . . . . . . . . . . . . . . . . . . 17
Chapter 4 Conclusion and Future Work 20
References 22
-
dc.language.isoen-
dc.subject圓形圖zh_TW
dc.subject支配問題zh_TW
dc.subject完全支配問題zh_TW
dc.subject近似演算法zh_TW
dc.subjectapproximation algorithmsen
dc.subjectdomination problemen
dc.subjectcircle graphen
dc.subjecttotal domination problemen
dc.title圓形圖上完全支配問題的近似演算法zh_TW
dc.titleApproximation Algorithms for the Total Domination Problem on Circle Graphsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.coadvisor林清池zh_TW
dc.contributor.coadvisorChing-Chi Linen
dc.contributor.oralexamcommittee傅榮勝;張貴雲zh_TW
dc.contributor.oralexamcommitteeJung-Sheng Fu;Guey-Yun Changen
dc.subject.keyword支配問題,完全支配問題,圓形圖,近似演算法,zh_TW
dc.subject.keyworddomination problem,total domination problem,circle graph,approximation algorithms,en
dc.relation.page23-
dc.identifier.doi10.6342/NTU202210104-
dc.rights.note未授權-
dc.date.accepted2022-12-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
728.9 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved