請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86805完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王儷穎 | zh_TW |
| dc.contributor.advisor | Li-Ying Wang | en |
| dc.contributor.author | 黃維羽 | zh_TW |
| dc.contributor.author | Wei-Yu Huang | en |
| dc.date.accessioned | 2023-03-29T17:01:13Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-06-02 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-09 | - |
| dc.identifier.citation | 1. World Health Organization. The top 10 causes of death. 2020. Available from: https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed March 10, 2021.
2. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10:447-458. 3. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of COPD: 2022 Report; 2022. Available from https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf. Accessed May 31, 2022. 4. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188:e13-64. 5. Dransfield MT, Kunisaki KM, Strand MJ, et al. Acute Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2017;195:324-330. 6. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157:1418-1422. 7. Vilaro J, Ramirez-Sarmiento A, Martinez-Llorens JM, et al. Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations. Respir Med. 2010;104:1896-1902. 8. Wageck B, Cox NS, Holland AE. Recovery Following Acute Exacerbations of Chronic Obstructive Pulmonary Disease - A Review. Copd. 2019;16:93-103. 9. Wedzicha JA, Miravitlles M, Hurst JR, et al. Management of COPD exacerbations: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J. 2017;49:1600791. 10. Langer D, Ciavaglia C, Faisal A, et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J Appl Physiol (1985). 2018;125:381-392. 11. Larson JL, Kim MJ, Sharp JT, Larson DA. Inspiratory muscle training with a pressure threshold breathing device in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1988;138:689-696. 12. Alahmari AD, Kowlessar BS, Patel AR, et al. Physical activity and exercise capacity in patients with moderate COPD exacerbations. Eur Respir J. 2016;48:340-349. 13. Cheng SL, Chan MC, Wang CC, et al. COPD in Taiwan: a National Epidemiology Survey. Int J Chron Obstruct Pulmon Dis. 2015;10:2459-2467. 14. 行政院衛生福利部統計處。108年死因統計結果分析。取自:https://www.mohw.gov.tw/dl-61889-aeff6df1-4a21-46ce-a37c-19600428cd35.html,取得日期:2021.3.10。 15. Iheanacho I, Zhang S, King D, Rizzo M, Ismaila AS. Economic Burden of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Literature Review. Int J Chron Obstruct Pulmon Dis. 2020;15:439-460. 16. Chen YT, Ying YH, Chang K, Hsieh YH. Study of Patients' Willingness to Pay for a Cure of Chronic Obstructive Pulmonary Disease in Taiwan. Int J Environ Res Public Health. 2016;13:273. 17. Chiang CH. Cost analysis of chronic obstructive pulmonary disease in a tertiary care setting in Taiwan. Respirology. 2008;13:689-694. 18. Kim V, Aaron SD. What is a COPD exacerbation? Current definitions, pitfalls, challenges and opportunities for improvement. Eur Respir J. 2018;52:1801261. 19. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet. 2007;370:786-796. 20. Anderson HR, Limb ES, Bland JM, Ponce de Leon A, Strachan DP, Bower JS. Health effects of an air pollution episode in London, December 1991. Thorax. 1995;50:1188-1193. 21. Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:968-975. 22. Drost EM, Skwarski KM, Sauleda J, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293-300. 23. O'Donnell DE, Parker CM. COPD exacerbations . 3: Pathophysiology. Thorax. 2006;61:354-361. 24. Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1734-1739. 25. Murphy PB, Kumar A, Reilly C, et al. Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011;66:602-608. 26. Gayan-Ramirez G, Decramer M. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol (1985). 2013;114:1291-1299. 27. Crul T, Testelmans D, Spruit MA, et al. Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. Cell Physiol Biochem. 2010;25:491-500. 28. Spruit MA, Gosselink R, Troosters T, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax. 2003;58:752-756. 29. Mastaglia FL. Adverse effects of drugs on muscle. Drugs. 1982;24:304-321. 30. Gea J, Agustí A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol (1985). 2013;114:1222-1234. 31. Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. J Thorac Dis. 2015;7:E418-438. 32. Tudorache V, Oancea C, Mlădinescu OF. Clinical relevance of maximal inspiratory pressure: determination in COPD exacerbation. Int J Chron Obstruct Pulmon Dis. 2010;5:119-123. 33. Mesquita R, Donária L, Genz IC, Pitta F, Probst VS. Respiratory muscle strength during and after hospitalization for COPD exacerbation. Respir Care. 2013;58:2142-2149. 34. Oliveira A, Afreixo V, Marques A. Enhancing our understanding of the time course of acute exacerbations of COPD managed on an outpatient basis. Int J Chron Obstruct Pulmon Dis. 2018;13:3759-3766. 35. Maltais F, Decramer M, Casaburi R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:e15-62. 36. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153:976-980. 37. Pereira M, Castello-Simões V, Heubel AD, et al. Comparing cardiac function and structure and their relationship with exercise capacity between patients with stable COPD and recent acute exacerbation: a cross-sectional study. J Bras Pneumol. 2022;48:e20220098. 38. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Physical activity and hospitalization for exacerbation of COPD. Chest. 2006;129:536-544. 39. Quadflieg K, Machado A, Haesevoets S, et al. Physical Tests Are Poorly Related to Patient-Reported Outcome Measures during Severe Acute Exacerbations of COPD. J Clin Med. 2021;11:150. 40. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T, Mishima M. Exercise capacity deterioration in patients with COPD: longitudinal evaluation over 5 years. Chest. 2005;128:62-69. 41. Mackay AJ, Donaldson GC, Patel AR, Jones PW, Hurst JR, Wedzicha JA. Usefulness of the Chronic Obstructive Pulmonary Disease Assessment Test to evaluate severity of COPD exacerbations. Am J Respir Crit Care Med. 2012;185:1218-1224. 42. Camac ER, Voelker H, Criner GJ. Impact of COPD exacerbations leading to hospitalization on general and disease-specific quality of life. Respir Med. 2021;186:106526. 43. García-Sidro P, Naval E, Martinez Rivera C, et al. The CAT (COPD Assessment Test) questionnaire as a predictor of the evolution of severe COPD exacerbations. Respir Med. 2015;109:1546-1552. 44. Kocks JW, van den Berg JW, Kerstjens HA, et al. Day-to-day measurement of patient-reported outcomes in exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2013;8:273-286. 45. Koutsokera A, Kiropoulos TS, Nikoulis DJ, et al. Clinical, functional and biochemical changes during recovery from COPD exacerbations. Respir Med. 2009;103:919-926. 46. Feliz-Rodriguez D, Zudaire S, Carpio C, et al. Evolution of the COPD Assessment Test score during chronic obstructive pulmonary disease exacerbations: determinants and prognostic value. Can Respir J. 2013;20:e92-97. 47. Fiorentino G, Esquinas AM, Annunziata A. Exercise and Chronic Obstructive Pulmonary Disease (COPD). Adv Exp Med Biol. 2020;1228:355-368. 48. Gloeckl R, Schneeberger T, Jarosch I, Kenn K. Pulmonary Rehabilitation and Exercise Training in Chronic Obstructive Pulmonary Disease. Dtsch Arztebl Int. 2018;115:117-123. 49. Rugbjerg M, Iepsen UW, Jørgensen KJ, Lange P. Effectiveness of pulmonary rehabilitation in COPD with mild symptoms: a systematic review with meta-analyses. Int J Chron Obstruct Pulmon Dis. 2015;10:791-801. 50. Machado A, Matos Silva P, Afreixo V, Caneiras C, Burtin C, Marques A. Design of pulmonary rehabilitation programmes during acute exacerbations of COPD: a systematic review and network meta-analysis. Eur Respir Rev. 2020;29:200039. 51. Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2016;12:Cd005305. 52. Troosters T, Probst VS, Crul T, et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181:1072-1077. 53. Li Y, Feng J, Li Y, Jia W, Qian H. Assessment of a Domiciliary Integrated Pulmonary Rehabilitation Program for Patients with a History of Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Retrospective 12-Month Observational Study. Med Sci Monit. 2018;24:5054-5063. 54. Deepak TH, Mohapatra PR, Janmeja AK, Sood P, Gupta M. Outcome of pulmonary rehabilitation in patients after acute exacerbation of chronic obstructive pulmonary disease. Indian J Chest Dis Allied Sci. 2014;56:7-12. 55. Machado A, Oliveira A, Valente C, Burtin C, Marques A. Effects of a community-based pulmonary rehabilitation programme during acute exacerbations of chronic obstructive pulmonary disease - A quasi-experimental pilot study. Pulmonology. 2020;26:27-38. 56. Puhan MA, Spaar A, Frey M, et al. Early versus late pulmonary rehabilitation in chronic obstructive pulmonary disease patients with acute exacerbations: a randomized trial. Respiration. 2012;83:499-506. 57. Gosselink R, De Vos J, van den Heuvel SP, Segers J, Decramer M, Kwakkel G. Impact of inspiratory muscle training in patients with COPD: what is the evidence? Eur Respir J. 2011;37:416-425. 58. Figueiredo RIN, Azambuja AM, Cureau FV, Sbruzzi G. Inspiratory Muscle Training in COPD. Respir Care. 2020;65:1189-1201. 59. Lisboa C, Villafranca C, Leiva A, Cruz E, Pertuzé J, Borzone G. Inspiratory muscle training in chronic airflow limitation: effect on exercise performance. Eur Respir J. 1997;10:537-542. 60. Sánchez Riera H, Montemayor Rubio T, Ortega Ruiz F, et al. Inspiratory muscle training in patients with COPD: effect on dyspnea, exercise performance, and quality of life. Chest. 2001;120:748-756. 61. Hill K, Cecins NM, Eastwood PR, Jenkins SC. Inspiratory muscle training for patients with chronic obstructive pulmonary disease: a practical guide for clinicians. Arch Phys Med Rehabil. 2010;91:1466-1470. 62. Lee CT, Chien JY, Hsu MJ, Wu HD, Wang LY. Inspiratory muscle activation during inspiratory muscle training in patients with COPD. Respir Med. 2021;190:106676. 63. Wang LY, Yang PY, Chen YJ, Wu HD, Huang YH, Hsieh CH. Inspiratory muscle training attenuates irradiation-induced diaphragm dysfunction. Am J Transl Res. 2019;11:5599-5610. 64. López-García A, Souto-Camba S, Blanco-Aparicio M, González-Doniz L, Saleta JL, Verea-Hernando H. Effects of a muscular training program on chronic obstructive pulmonary disease patients with moderate or severe exacerbation antecedents. Eur J Phys Rehabil Med. 2016;52:169-175. 65. Donaldson GC, Wilkinson TM, Hurst JR, Perera WR, Wedzicha JA. Exacerbations and time spent outdoors in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:446-452. 66. Mikelsons C, Wedzicha W. Pulmonary rehabilitation and the COPD exacerbation. Semin Respir Crit Care Med. 2009;30:649-655. 67. Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53:1801214. 68. American Thoracic Society, European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518-624. 69. Preston DC, Shapiro BE. 12: Basic overview of electromyography. In: Preston DC, Shapiro BE, editors. Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations. 3rd ed. Philadelphia, PA: Elsevier; 2012. 70. Criswell E. 3: Instrumentation. In: Criswell E, editor. Cram's introduction to surface electromyography. 2nd ed. Sudbury, MA: Jones & Bartlett Learning; 2010. 71. Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447-1478. 72. Onorati P, Antonucci R, Valli G, et al. Non-invasive evaluation of gas exchange during a shuttle walking test vs. a 6-min walking test to assess exercise tolerance in COPD patients. Eur J Appl Physiol. 2003;89:331-336. 73. Turner SE, Eastwood PR, Cecins NM, Hillman DR, Jenkins SC. Physiologic responses to incremental and self-paced exercise in COPD: a comparison of three tests. Chest. 2004;126:766-773. 74. Singh SJ, Jones PW, Evans R, Morgan MD. Minimum clinically important improvement for the incremental shuttle walking test. Thorax. 2008;63:775-777. 75. Doll H, Miravitlles M. Health-related QOL in acute exacerbations of chronic bronchitis and chronic obstructive pulmonary disease: a review of the literature. Pharmacoeconomics. 2005;23:345-363. 76. Barr JT, Schumacher GE, Freeman S, LeMoine M, Bakst AW, Jones PW. American translation, modification, and validation of the St. George's Respiratory Questionnaire. Clin Ther. 2000;22:1121-1145. 77. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline Leidy N. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34:648-654. 78. Sciriha A, Lungaro-Mifsud S, Scerri J, Magro R, Camilleri L, Montefort S. Health status of COPD patients undergoing pulmonary rehabilitation: A comparative responsiveness of the CAT and SGRQ. Chron Respir Dis. 2017;14:352-359. 79. Nishimura K, Nakamura S, Kusunose M, et al. Comparison of patient-reported outcomes during acute exacerbations of chronic obstructive pulmonary disease. BMJ Open Respir Res. 2018;5:e000305. 80. Kon SS, Canavan JL, Jones SE, et al. Minimum clinically important difference for the COPD Assessment Test: a prospective analysis. Lancet Respir Med. 2014;2:195-203. 81. Diggle PJ, Heagarty P, Liang KY, Zeger SL. 4: General linear models. In: Diggle PJ, Heagarty P, Liang KY, Zeger SL, editors. Analysis of longitudinal data. 2nd ed. Oxford University Press, Oxford; 2004. 82. Liguori G, Feito Y, Fountaine C, Roy B, editors. ACSM's guidelines for exercise testing and prescription. 11th ed. Philadelphia: Wolters Kluwer; 2022. 83. Catherine JH, Marta L, Francesco DA. 16: Breathing Exercises and Mucus Clearance Techniques in Pulmonary Rehabilitation. In: Enrico C, Anne EH, Fabio P, Thierry T, editors. Textbook of Pulmonary Rehabilitation. 1st ed. New York: Springer International Publishing; 2018. 84. American Thoracic Society. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111-117. 85. Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med. 1998;158:1384-1387. 86. Jones PW, Forde Y. St George’s Respiratory Questionnaire Manual. 2009. Available from: https://meetinstrumentenzorg.nl/wp-content/uploads/instrumenten/SGRQ-handl-Eng.pdf. Accessed October 2, 2020. 87. CAT Governance Board. COPD Assessment Test website for healthcare professionals/researchers. 2020. Available from: https://www.catestonline.org/hcp-homepage.html. Accessed October 15, 2020. 88. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis. 1992;145:1321-1327. 89. Kaltsakas G, Travlos A, Rovina N. Improving the process of care in chronic obstructive pulmonary disease: The COPD Assessment Test (CAT) in the armature of the tools assessing COPD. Pneumon. 2011;24:286-291. 90. Langer D, Charususin N, Jácome C, et al. Efficacy of a Novel Method for Inspiratory Muscle Training in People With Chronic Obstructive Pulmonary Disease. Phys Ther. 2015;95:1264-1273. 91. Charususin N, Gosselink R, Decramer M, et al. Randomised controlled trial of adjunctive inspiratory muscle training for patients with COPD. Thorax. 2018;73:942-950. 92. Mador MJ, Deniz O, Aggarwal A, Shaffer M, Kufel TJ, Spengler CM. Effect of respiratory muscle endurance training in patients with COPD undergoing pulmonary rehabilitation. Chest. 2005;128:1216-1224. 93. Wu W, Zhang X, Lin L, et al. Transdiaphragmatic pressure and neural respiratory drive measured during inspiratory muscle training in stable patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:773-781. 94. Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol (1985). 1998;85:2146-2158. 95. Wu W, Guan L, Li X, et al. Correlation and compatibility between surface respiratory electromyography and transesophageal diaphragmatic electromyography measurements during treadmill exercise in stable patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:3273-3280. 96. Klimathianaki M, Vaporidi K, Georgopoulos D. Respiratory muscle dysfunction in COPD: from muscles to cell. Curr Drug Targets. 2011;12:478-488. 97. Roche N, Zureik M, Soussan D, Neukirch F, Perrotin D. Predictors of outcomes in COPD exacerbation cases presenting to the emergency department. Eur Respir J. 2008;32:953-961. 98. Walterspacher S, Pietsch F, Walker DJ, Rocker K, Kabitz HJ. Activation of respiratory muscles during respiratory muscle training. Respir Physiol Neurobiol. 2018;247:126-132. 99. Segizbaeva MO, Timofeev NN, Donina Zh A, Kur'yanovich EN, Aleksandrova NP. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise. Adv Exp Med Biol. 2015;840:35-43. 100. Dekhuijzen PN, Folgering HT, van Herwaarden CL. Target-flow inspiratory muscle training during pulmonary rehabilitation in patients with COPD. Chest. 1991;99:128-133. 101. Folch Ayora A, Macia-Soler L, Orts-Cortés MI, Hernández C, Seijas-Babot N. Comparative analysis of the psychometric parameters of two quality-of-life questionnaires, the SGRQ and CAT, in the assessment of patients with COPD exacerbations during hospitalization: A multicenter study. Chron Respir Dis. 2018;15:374-383. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86805 | - |
| dc.description.abstract | 背景與目的:慢性阻塞性肺病急性惡化(acute exacerbation of chronic obstructive pulmonary disease, AECOPD)後患者常出現吸氣肌肌力降低、功能性運動受限及生活品質變差的現象。過去研究發現急性惡化後介入肺復原計畫可改善功能性運動能力及生活品質。此外,吸氣肌訓練可增加臨床狀況穩定之慢性阻塞性肺病患者的吸氣肌肌力和耐力,但在肺復原計畫中加入吸氣肌訓練是否可以改善慢性阻塞性肺病急性惡化患者的吸氣肌功能之相關研究尚缺。本研究目的為探討肺復原外加吸氣肌訓練對慢性阻塞性肺病急性惡化患者其吸氣肌功能、功能性運動能力與生活品質之效益。研究方法:受試者為經胸腔內科醫師確診為急性惡化且最大吸氣壓(maximal inspiratory pressure, PImax)小於80公分水柱(cmH2O)之慢性阻塞性肺病患者,隨機分配至實驗組(肺復原合併吸氣肌訓練)或控制組(肺復原合併假性吸氣肌訓練)進行八週之介入。基線(T0)測量包括:臨床表徵等基本資料之收集、肺功能測試、最大吸氣壓測試、六分鐘行走測試、生活品質問卷、及吸氣肌(橫膈肌與胸鎖乳突肌)負荷表現測試。吸氣肌表面肌電圖評估在最大吸氣壓測試及執行吸氣負荷任務時同步進行。八週肺復原之介入包含有氧運動訓練、肌力訓練、及相關衛教。實驗組在肺復原進行時外加吸氣肌訓練。吸氣肌訓練劑量為:強度30%之PImax、15次/回、6回/天、7天/週,為期8週,並依每週測得之PImax進行強度調整。在介入第四週(T1)、完成介入後(T2)與介入完成後一個月後(T3)重複上述所有測試來進行成效評估。表面肌電圖分析參數包括以時域分析之方均根值(root mean square, RMS)與頻域分析之中位頻率(median frequency, MF),分別用來評估吸氣負荷任務下的吸氣肌肌電活化度與中位頻率之變化。統計以廣義估計方程式(generalized estimating equation, GEE)檢定不同時間點在組間與組內各項參數之差異,顯著統計意義有效水平標準p訂為0.05。研究結果:16位(每組8位)平均最大吸氣壓為65.3公分水柱之慢性阻塞性肺病急性惡化患者參與本研究。實驗組在吸氣肌肌力、橫膈肌肌電活化度、六分鐘行走距離、聖喬治呼吸問卷(St. George’s respiratory questionnaire, SGRQ)總分、與慢性阻塞性肺病評估測試(COPD assessment test, CAT)於T1、T2、以及T3均具有顯著且持續的改善(所有p<0.05)。經過八週介入後,與控制組相比,實驗組具有較佳的吸氣肌肌力(104.3±16.9 vs. 72.3±12.8公分水柱)與較低的橫膈肌肌電活化度(吸氣負荷任務測試:32.2±9.1 vs. 53.7±14.8%)(所有p<0.001)。此外,與控制組相比,實驗組於八週介入前後在六分鐘行走測驗(+66.3 vs. +32.5公尺)與聖喬治呼吸問卷總分(-22.6 vs. -13.5)皆呈現較大進步量(所有p<0.05)。結論:相較於沒有外加吸氣肌訓練,在肺復原計劃加入吸氣肌訓練,慢性阻塞性肺病急性惡化伴隨吸氣肌無力患者之吸氣肌功能、功能性運動表現與生活品質展現較顯著的進步。此訓練方式可使慢性阻塞性肺病急性惡化的整合照護更臻周全。 | zh_TW |
| dc.description.abstract | Background and purpose: After experiencing an acute exacerbation of chronic obstructive pulmonary disease (AECOPD), patients often have decreased inspiratory muscle strength, reduced exercise capacity, and impaired quality of life (QoL). Previous studies have shown that pulmonary rehabilitation (PR) initiated after exacerbations could improve exercise capacity and QoL. It has also been demonstrated that inspiratory muscle training (IMT) can increase inspiratory muscle strength and endurance in patients with stable COPD. However, the impact of adding IMT to PR on inspiratory muscle function in patients with AECOPD has not yet been fully explored. This study aimed to evaluate the effects of IMT in addition to PR on inspiratory muscle function, functional exercise capacity, and QoL in patients with AECOPD. Methods: Patients diagnosed with AECOPD and a maximal inspiratory pressure (PImax) < 80 cmH2O were recruited and randomized into the experimental (PR+IMT) or the control (PR+sham IMT) group for an 8-week intervention. Baseline assessments (T0) included the collection of clinical data, pulmonary function test, maximal inspiratory pressure test, a six-minute walk test, quality of life (QoL) questionnaires, and inspiratory muscle (diaphragm and sternocleidomastoid) response to threshold loaded breathing test. Surface electromyography (EMG) was used during maximal inspiratory pressure and threshold loaded breathing testing to assess inspiratory muscle activation. All subjects underwent an 8-week structural PR, which included aerobic exercise training, resistance training, and education. Subjects in the experimental group received additional IMT with an intensity of 30% PImax, 15 times/set, 6 sets/day, 7 days/week, for a total of 8 weeks. At 4 weeks into the intervention (T1), after the intervention was completed (T2), and 1 month after the completion of the intervention (T3), subjects underwent all of the same test that were administered at baseline (T0). The root mean square (RMS) value and median frequency (MF) were calculated from surface EMG signals, and the inspiratory muscle activation during threshold loaded breathing test and changes of MF were analyzed. The generalized estimating equation (GEE) model was used to detect the differences in variables between and within groups. The statistical significance level was set at 0.05. Results: A total of 16 patients (n=8 per group) diagnosed with AECOPD with a mean PImax of 65.3 cmH2O participated in this study. The experimental group showed sustained and significant improvements in inspiratory muscle strength, diaphragm activation, six-minute walk distance (6MWD), St. George’s respiratory questionnaire (SGRQ) total scores, and COPD assessment test (CAT) scores at T1, T2, and T3 (all p<0.05). When compared to the control group, the experimental group had greater inspiratory muscle strength (104.3±16.9 vs. 72.3±12.8 cmH2O), and less diaphragm activation (threshold loaded breathing test: 32.2±9.1 vs. 53.7±14.8%) at T2 (both p<0.001). Compared to the control group, the experimental group showed more improvements in 6MWD (+66.3 vs. +32.5 m) and SGRQ total scores (-22.6 vs. -13.5) from T0 to T2 (both p<0.05). Conclusion: The combination of IMT and PR, compared to PR alone, provided more improvements in inspiratory muscle function, functional exercise capacity, and QoL in patients with AECOPD and inspiratory muscle weakness. The combination program might improve the overall management of AECOPD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-29T17:01:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-03-29T17:01:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract v Contents viii Figures xi Tables xii Abbreviation list 1 Chapter 1. Introduction 3 1.1 Background and purposes 3 1.2 Study hypothesis 5 1.3 Clinical relevance of the study 6 Chapter 2. Literature review 8 2.1 COPD and acute exacerbation 8 2.2 Pathogenesis and pathophysiology of AECOPD 10 2.3 Effects of AECOPD on inspiratory muscle function 13 2.4 Effects of AECOPD on peripheral muscle function 14 2.5 Effects of AECOPD on functional exercise capacity 15 2.6 Effects of AECOPD on quality of life 17 2.7 Pulmonary rehabilitation and AECOPD 19 2.8 Inspiratory muscle training and AECOPD 21 2.9 The assessment of inspiratory muscle function 26 2.10 The assessment of functional exercise capacity 28 2.11 The assessment of quality of life 29 Chapter 3. Methods 32 3.1 Study design 32 3.2 Participants 32 3.3 Sample size calculation 32 3.4 Procedures 33 3.5 Pulmonary rehabilitation 34 3.6 Inspiratory muscle training 35 3.7 Measurements 35 3.8 Variables 39 3.9 Data and statistical analysis 41 Chapter 4. Results 43 Chapter 5. Discussion 51 References 63 Appendix 84 | - |
| dc.language.iso | en | - |
| dc.subject | 肺復原 | zh_TW |
| dc.subject | 吸氣肌訓練 | zh_TW |
| dc.subject | 表面肌電圖 | zh_TW |
| dc.subject | 慢性阻塞性肺病 | zh_TW |
| dc.subject | 急性惡化 | zh_TW |
| dc.subject | acute exacerbation | en |
| dc.subject | inspiratory muscle training | en |
| dc.subject | pulmonary rehabilitation | en |
| dc.subject | Chronic obstructive pulmonary disease | en |
| dc.subject | surface electromyography | en |
| dc.title | 吸氣肌訓練對慢性阻塞性肺病患者急性惡化後之療效探討 | zh_TW |
| dc.title | Effectiveness of inspiratory muscle training in patients with chronic obstructive pulmonary disease after exacerbations | en |
| dc.title.alternative | Effectiveness of inspiratory muscle training in patients with chronic obstructive pulmonary disease after exacerbations | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳惠東;許妙如;簡榮彥 | zh_TW |
| dc.contributor.oralexamcommittee | Huey-Dong Wu;Miao-Ju Hsu;Jung-Yien Chien | en |
| dc.subject.keyword | 慢性阻塞性肺病,急性惡化,吸氣肌訓練,肺復原,表面肌電圖, | zh_TW |
| dc.subject.keyword | Chronic obstructive pulmonary disease,acute exacerbation,inspiratory muscle training,pulmonary rehabilitation,surface electromyography, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202300378 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-09 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 物理治療學研究所 | - |
| dc.date.embargo-lift | 2024-02-14 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
