請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86791| 標題: | 拓樸量子修正碼 Topological Quantum Code |
| 作者: | Chin-Bin Hsu 徐溍玢 |
| 指導教授: | 謝銘倫(Ming-Lun Hsieh) |
| 關鍵字: | 量子科技,錯誤修正,拓樸,圖論,同調代數, Quantum Mechanics,Error Correction,Topology,Graph Theory,Homological Algebra, |
| 出版年 : | 2022 |
| 學位: | 碩士 |
| 摘要: | 眾所皆知,量子電腦的運算能力與速度均優於傳統電腦,因此在電腦科學的發展中佔有舉足輕重的地位。然而,由於粒子的不穩定性,錯誤修正也成為量子演算法中十分關鍵的一環,且與傳統的錯誤修正不同,量子位元的高自由度使得錯誤修正的難度上升。1996年Gottesman以穩定子的方式定義量子修正碼,給出了量子糾錯碼的純數學構造,隨後Kitaev於1997年使用拓樸的概念發明環面碼,開創了拓樸量子修正碼的研究,後來不斷被推廣與優化。本文我們將對量子錯誤修正進行完整的介紹,並著重於拓樸量子修正碼使用的數學工具。 Quantum computer is known of being more efficient in computation than classical computer, and hence plays a crucial role in computer science. However, due to the instability of physical particles, error correction becomes an important issue when running quantum algorithms. In contrast to classical error correction, quantum error correction has its difficulty because of the freedom of quantum bits. In 1996, Gottesman invented the stabilizer formalism , which established a purely mathematical construction for quantum codes. In 1997, Kitaev first used topological ideas to construct the toric code, which then generalized to the theory of topological quantum codes. In this article we will introduce various constructions of quantum error correction codes and emphasize mainly on the mathematical idea. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86791 |
| DOI: | 10.6342/NTU202201694 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2022-07-29 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2507202214383100.pdf | 1.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
