Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡孟勳(Meng-Shiun Tsai)
dc.contributor.authorZhu-Jun Hongen
dc.contributor.author洪櫧鈞zh_TW
dc.date.accessioned2023-03-20T00:16:49Z-
dc.date.copyright2022-08-04
dc.date.issued2022
dc.date.submitted2022-07-27
dc.identifier.citation參考文獻 [1]B. M. Imani, M. H. Sadeghi, and M. A. Elbestawi, “An improved process simulation system for ball-end milling of sculptured surfaces,” Int. J. Mach. Tools Manuf., vol. 38, no. 9, pp. 1089–1107, 1998. [2]B. M. Imani and M. A. Elbestawi, “Geometric simulation of ball-end milling operations,” J. Manuf. Sci. Eng. Trans. ASME, vol. 123, no. 2, pp. 177–184, 2001. [3]K. Weinert, S. Du, P. Damm, and M. Stautner, “Swept volume generation for the simulation of machining processes,” Int. J. Mach. Tools Manuf., vol. 44, no. 6, pp. 617–628, 2004. [4]Y. Boz, H. Erdim and I. Lazoglu, “Modeling Cutting Forces for Five Axis Milling of Sculptured Surfaces”, Advanced Materials Research, vol. 223, pp. 701-712, 2011. [5]Y. Boz, H. Erdim, and I. Lazoglu, “A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three- and five-axis virtual milling,” Int. J. Adv. Manuf. Technol., vol. 81, no. 5, pp. 811–823, 2015. [6]A. D. Spence and Y. Altintas, “A Solid Modeller Based Milling Process Simulation and Planning System,” J. Eng. Ind., vol. 116, no. 1, pp. 61–69, 1994. [7]T. Surmann and D. Enk, “Simulation of milling tool vibration trajectories along changing engagement conditions,” Int. J. Mach. Tools Manuf., vol. 47, no. 9, pp. 1442–1448, 2007. [8]W. p. Wang and K. k. Wang, “Geometric Modeling for Swept Volume of Moving Solids,” IEEE Comput. Graph. Appl., vol. 6, no. 12, pp. 8–17, 1986. [9]T. V. Hook, “Real-time shaded NC milling display,” ACM SIGGRAPH Comput. Graph., vol. 20, no. 4, pp. 15–20, 1986. [10]M. Inui, Mitsuhiro Kaneda, and R. Kakio, “Fast Simulation of Sculptured Surface Milling with 3-Axis NC Machine,” Machining Impossible Shapes, Springer US. 97-108, 1998. [11]Y. Huang and J. H. Oliver, “Integrated simulation, error assessment, and tool path correction for five-axis NC milling,” J. Manuf. Syst., vol. 14, no. 5, pp. 331–344, Jan. 1995. [11]Z. Milojević, S. Tabaković, M. Bojanić, and M. Zeljković, “Multi axis NC code simulation based on three-dexel model representation and GPU,” J. Prod. Eng., vol. 18, pp. 73–76, 2015. [13]Y.-J. Sun, C. Yan, S.-W. Wu, H. Gong, and C.-H. Lee, “Geometric simulation of 5-axis hybrid additive-subtractive manufacturing based on Tri-dexel model,” Int. J. Adv. Manuf. Technol., vol. 99, no. 9–12, pp. 2597–2610, 2018. [14]童宇辰, “適應性的多軸實體加工模擬,” 國立中正大學, 2004. [15]楊雲鈞, “五軸工具機實體切削模擬,” 國立臺灣大學, 2008. [14]K. P. Karunakaran and R. Shringi, “A solid model-based off-line adaptive controller for feed rate scheduling for milling process,” J. Mater. Process. Technol., vol. 204, no. 1, pp. 384–396, 2008. [17]謝恩平, “應用八元樹法於銑削力預估之五軸虛擬工具機系統,” 國立成功大學, 2013. [18]Z. Nie, R. Lynn, T. Tucker, and T. Kurfess, “Voxel-based analysis and modeling of MRR computational accuracy in milling process,” CIRP J. Manuf. Sci. Technol., vol. 27, pp. 78–92, 2019. [16]F. Koenigsberger and A. J. P. Sabberwal, “An investigation into the cutting force pulsations during milling operations,” Int. J. Mach. Tool Des. Res., vol. 1, no. 1, pp. 15–33, 1961. [17]I. Yellowley, “Observations on the mean values of forces, torque and specific power in the peripheral milling process,” Int. J. Mach. Tool Des. Res., vol. 25, no. 4, pp. 337–346, 1985. [18]Y. Altintas and I. Yellowley, “The identification of radial width and axial depth of cut in peripheral milling,” Int. J. Mach. Tools Manuf., vol. 27, no. 3, pp. 367–381, 1987. [19]S. Engin and Y. Altintas, “Mechanics and dynamics of general milling cutters.: Part I: helical end mills,” Int. J. Mach. Tools Manuf., vol. 41, no. 15, pp. 2195–2212, 2001. [20]E. Ozturk and E. Budak, “Modeling of 5-axis milling processes,” Mach. Sci. Technol. - MACH SCI TECHNOL, vol. 11, pp. 287–311, 2007. [21]W. B. Ferry and Y. Altintas, “Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling,” J. Manuf. Sci. Eng., vol. 130, no. 1, 2008. [22]G. Yu¨cesan and Y. Altıntas¸, “Prediction of Ball End Milling Forces,” J. Eng. Ind., vol. 118, no. 1, pp. 95–103, 1996. [23]E. Budak, Y. Altintas¸, and E. J. A. Armarego, “Prediction of Milling Force Coefficients From Orthogonal Cutting Data,” J. Manuf. Sci. Eng., vol. 118, no. 2, pp. 216–224, 1996. [24]O. Gonzalo, J. Beristain, H. Jauregi, and C. Sanz, “A method for the identification of the specific force coefficients for mechanistic milling simulation,” Int. J. Mach. Tools Manuf., vol. 50, no. 9, pp. 765–774, 2010. [28]Z.-Y. Wu and M.-S. Tsai, “Online prediction of cutting force in milling,” p. 4. [29]葉家秀, “靜態負載下五軸虛擬工具機之體積誤差分析,” 國立成功大學, 2011. [26]H.-C. Tseng, M.-S. Tsai, B.-C. Yeh, and K.-M. Li, “Analysis of Tool Wear by Using a Cutting Bending Moment Model for Milling Processes,” Int. J. Precis. Eng. Manuf., 2022. [28]T. Akenine-Möllser, “Fast 3D Triangle-Box Overlap Testing,” J. Graph. Tools, vol. 6, no. 1, pp. 29–33, 2001. [29]“The CLSF.”http://www2.me.rochester.edu/courses/ME204/nx_help/index.html#uid:clsf_mgr_clsfmgr_clsf (accessed Jul. 02, 2022). [30]J. P. Davim, Ed., Machining of Complex Sculptured Surfaces. London: Springer London, 2012. [31]“台中精機立式加工中心機Vcenter-P76.”https://www.victortaichung.com/machine-tools/tw/Vcenter-P106.html#parentHorizontalTab3 (accessed Jul. 04, 2022). [32]“永進機械五軸加工機NFX400A.”https://www.ycmcnc.com/product/1532483513218/1533204778416/1576484021219 (accessed Jul. 04, 2022). [33]“KISTLER官網.” https://www.kistler.com/zh/products/components/force-sensors/?pfv_metrics =metric (accessed Jul. 04, 2022). [34]“promicron官網,”https://www.pro-micron.de/spike/?lang=en (accessed Jul. 04,2022).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86773-
dc.description.abstract銑削中的切削力及切削彎矩對於切削穩定性及工件表面之輪廓精度、尺寸公差具有極大影響,在業界通常以試誤法進行切削路徑及切削參數的調整以減少切削力的過度變化,使切削狀態及精度控制趨於穩定,而這往往需仰賴人員的過往經驗及耗時測試,在學界通常藉由昂貴的動力計及智慧刀桿於切削中進行切削力及彎矩的量測,以切削後數據為依據調整路徑,而受限於動力計的大小及儀器費用,實際導入業界應用端有限。為使切削路徑的調整有參考依據並減少實驗架設及測試的時間耗費,本研究開發一估測切削路徑上切削力及切削彎矩變化之技術,在實際切削前即可觀察負載變化,提早對切削路徑進行調整。 本研究以八元樹法進行實體建模,以碰撞檢查及隱函數判斷進行切削模擬,並整合切削力模型及改良後彎矩模型,估測加工路徑上的切削力及切削彎矩變化。本文以UG(Siemens Unigraphics)進行路徑規劃,並輸出CLSF(Cutter Location Source File)檔及零件模型STL(STereoLithography)檔,其中CLSF檔包含切削路徑、刀具尺寸、空間座標轉換等資訊,而STL檔在經過轉換後成為待切削素材,兩種檔案類型最後皆匯入Matlab軟體進行切削模擬及力學估測。 本論文最終以動力計與智慧刀桿於三軸及五軸工具機進行檢驗,於三軸部分的驗證,實驗及估測結果上之輪廓及幅值皆十分相近,而五軸部分則於整合TNCscope各軸位置及刀尖點速度資訊後,有效修正進給速率及模擬切削力,使輪廓更加接近真實切削行為,可供業界做為調整切削路徑之可靠參考依據,並可做為未來設計等彎矩切削之速度控制器的依據。zh_TW
dc.description.abstractThe cutting force and bending moment in milling operation have a great influence on cutting stability, contour accuracy and dimensional tolerance of cutting surface. In the industry, the cutting path and cutting data adjustment are usually carried out by trial and error method to reduce the excessive change of cutting force. In academic community, the cutting force and bending moment are usually measured by expensive dynamometers and sensory toolholder during cutting, and the path is adjusted based on the cutting data. Since the size of the dynamometer and the cost of the instrument, the actual introduction of the industry application is limited. To provide a reference for the adjustment of machining path, this research develops a technology to estimate cutting force changes and bending moment on the machining path, the load changes can be observed before actual cutting, and the machining path can be adjusted in advance. In this thesis, the octree method is used for solid modeling. Collision detection and implicit function judgment are used for cutting simulation. The cutting force model and the improved bending moment model are integrated to estimate the changes of cutting force and bending moment on machining path. In this thesis, UG (Siemens Unigraphics) is used for path planning, and outputs CLSF (Cutter Location Source File) files and STL (Stereolithography) files. The CLSF file contains machining path, tool size, spatial coordinate conversions and other information. STL files are converted into materials to be cut, and both file types are finally imported into Matlab software for cutting simulation and mechanical estimation. This thesis is finally tested on three-axis and five-axis machine tools with dynamometer and sensory toolholder. In the verification of the three-axis part, the contours and amplitudes of the experimental and estimated results are very similar. In the five-axis part, after integrating the information of each axis position and tool tip speed of the TNCscope, it can effectively correct the feed rate and simulated cutting force, so that the contour is closer to the real cutting behavior, which can be used as a reliable reference for the industry to adjust the machining path, and can be used as the basis for the future design of the speed controller for equal bending moment cutting.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:16:49Z (GMT). No. of bitstreams: 1
U0001-2707202210231600.pdf: 6866685 bytes, checksum: b06557323acab19e08759bb6c51b51e9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 論文口試委員審定書 I 致謝 II 摘要 III Abstract IV 目錄 VI 表目錄 IX 圖目錄 X 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.2.1 實體建模與切削模擬 2 1.2.2 切削力計算模式 4 1.2.3 切削力係數鑑別 5 1.3 研究動機與目的 5 1.4 論文總覽 6 第 2 章 理論模型 7 2.1 齊次座標轉換 7 2.2 一般化端銑刀之輪廓與切刃模型 10 2.3 三軸切削力模型 17 2.4 五軸切削力模型 22 2.5 切削彎矩模型 26 2.5.1 智慧刀桿架構 26 2.5.2 四刃端銑平刀彎矩模型 27 2.5.3 一般化端銑刀彎矩模型 28 2.6 切削力係數鑑別方法 30 2.6.1 切削週期法 31 2.6.2 零相位低通濾波器 33 2.6.3 快速傅立葉轉換濾波器 34 第 3 章 實體建模 36 3.1 資料儲存結構 36 3.1.1 體素簡介 36 3.1.2 樹狀結構簡介 37 3.1.3 適應性八元樹簡介與實作架構 38 3.2 STL檔轉體素檔 40 3.2.1 STL格式 40 3.2.2 STL模型表面體素化 41 3.2.3 模型內部體素化與尺寸修整 46 3.3 UG STL匯出前處理 47 第 4 章 切削模擬與力學估測 48 4.1 UG前處理路徑 48 4.2 路徑位置插補 50 4.2.1 刀尖點線性插補 51 4.2.2 刀軸向量線性插補 52 4.2.3 刀尖點圓弧插補 54 4.3 實體切削模擬 55 4.3.1 快速碰撞檢查 55 4.3.2 隱函數干涉判斷 58 4.4 切削範圍陣列 59 4.4.1 體素橫跨角初始化 61 4.4.2 建立切削範圍表格 64 4.4.3 模型更新方式與切削流程 66 4.5 切削力與切削彎矩估測 67 第 5 章 實驗與模擬 71 5.1 實驗設備及軟體儀器介紹 71 5.1.1 實驗機台 71 5.1.2 動力計 72 5.1.3 智慧刀桿 73 5.1.4 TNCscope 74 5.2 切削力係數鑑別 74 5.2.1 係數鑑別實驗條件與原始數據 74 5.2.2 動力計訊號處理 76 5.2.3 切削週期法係數鑑別 78 5.3 三軸切削力及彎矩驗證 79 5.3.1 平銑刀變切深雙軸路徑檢驗 79 5.3.2 球銑刀波浪路徑檢驗 83 5.4 五軸切削力及彎矩驗證 85 5.4.1 實驗設計與切削條件 86 5.4.2 工件重力項修正 87 5.4.3 實驗及模擬結果 89 5.4.4 TNCscope資料擷取與降採處理 91 5.4.5 速度修正後實驗與模擬結果 93 第 6 章 結論與未來工作 96 6.1 結論 96 6.2 未來工作 97 參考文獻 98 表目錄 表 2 1運動型式及其轉換矩陣 9 表 2 2一般化銑刀中各輪廓參數含意 11 表 2 3切削力係數鑑別法比較表[28] 32 表 4 1 CLSF 命令名稱與參數 49 表 5 1平刀路徑切削條件及材料條件 75 表 5 2最佳化切削力係數 78 表 5 3球刀路徑切削條件及材料條件 83 表 5 4平刀路徑切削條件及材料條件 86   圖目錄 圖 2 1不同座標系下對點P之描述[29] 8 圖 2 2一般化刀具輪廓幾何[22] 11 圖 2 3常見刀具輪廓形式[22] 12 圖 2 4錐型球銑刀切刃形式[22] 13 圖 2 5一般化端銑刀幾何模型[22] 14 圖 2 6空間中座標系定義 17 圖 2 7水平進給時的切屑厚度示意圖 19 圖 2 8微小切刃示意圖[17] 20 圖 2 9斜向進給時的切屑厚度示意圖 21 圖 2 10線性進給向量示意圖 23 圖 2 11旋轉進給向量示意圖 24 圖 2 12總進給向量示意圖 25 圖 2 13智慧刀桿示意圖 27 圖 2 14刀尖點受力情形圖 28 圖 2 15一般化彎矩計算方式示意圖 30 圖 3 1體素頂點關係圖 37 圖 3 2樹的尋訪示意圖 38 圖 3 3一般八元樹與適應性八元樹於實體轉換之差異 39 圖 3 4節點編碼與節點內資訊 40 圖 3 5 STL檔讀取後資訊示意 41 圖 3 6 AABB/AABB判斷法則示意 42 圖 3 7 Fast Plane/AABB判斷法則示意 43 圖 3 8 SAT判斷前處理及元素示意 44 圖 3 9 STL模型體素化流程圖 45 圖 3 10 STL模型轉體素模型後示意 46 圖 3 11 STL模型劃分網格差異 47 圖 3 12體素化後零件 47 圖 4 1 CLSF範例 48 圖 4 2位置插補前後路徑差異 51 圖 4 3刀尖點線性插補示意 52 圖 4 4刀軸角度線性插補示意 53 圖 4 5圓弧線性插補示意 55 圖 4 6各形式包圍盒於五軸側傾刀具之差異[15] 56 圖 4 7刀具以AABB包圍盒進行快速干涉判斷 56 圖 4 8刀具以OBB包圍盒進行快速干涉判斷 57 圖 4 9刀具輪廓隱函數判斷結果 58 圖 4 10刀具輪廓隱函數向量定義 59 圖 4 11球銑刀CWE幾何示意[33] 60 圖 4 12切削範圍表格示意[17] 60 圖 4 13網格中心角與相交弧長差異 61 圖 4 14初始化橫跨角受進給座標系之影響示意 62 圖 4 15刀具半徑對體素橫跨角影響示意 62 圖 4 16體素與刀具圓周相交示意 63 圖 4 17體素橫跨角查詢表示意圖 63 圖 4 18切削範圍表格建立流程圖[17] 64 圖 4 19形態學操作後切削範圍表格 66 圖 4 20判斷流程與模型更新流程圖 67 圖 4 21每刃進給計算流程 69 圖 4 22切削力及切削彎矩模擬流程 70 圖 5 1三軸實驗用機台[34] 71 圖 5 2五軸實驗用機台[35] 72 圖 5 3動力計組合[36] (a)動力計,(b)放大器,(c)DAQ擷取卡,(d)DynoWare 73 圖 5 4智慧刀桿[37] 73 圖 5 5 TNCscope軟體介面 74 圖 5 6三軸平刀驗證路徑 75 圖 5 7鑑別段動力計訊號 76 圖 5 8零相位濾波處理後訊號 77 圖 5 9快速傅立葉濾波處理後訊號 77 圖 5 10模擬與實驗切削力比對 79 圖 5 11實驗設計圖 (a)2D切削輪廓,(b)切削距離對應切削深度 80 圖 5 12平刀三軸銑削力模擬與實驗對照 (a)X軸,(b)Y軸,(c)Z軸 80 圖 5 13實驗及模擬彎矩時域圖(未調相位) 82 圖 5 14實驗及模擬彎矩極座標圖 (a)未調相位前,(b)已調相位後 82 圖 5 15實驗及模擬彎矩時域圖(已調相位) (a)X軸(局部),(b)Y軸(局部) 83 圖 5 16三軸球刀驗證路徑 (a)零件本體與切削路徑,(b)胚料形狀 83 圖 5 17球刀三軸銑削力模擬與實驗對照 (a)X軸,(b)Y軸,(c)Z軸 84 圖 5 18球刀三軸實驗及模擬彎矩極座標圖 (a)未調相位前,(b)已調相位後 85 圖 5 19實驗及模擬彎矩時域圖(已調相位) (a)X軸(全域),(b)Y軸(全域) 85 圖 5 20實驗架設圖與路徑規劃 (a)動力計與工件架設情形,(b)側銑路徑規劃 86 圖 5 21實驗數據與空跑數據間運算 (a)X軸,(b) Y軸,(c)Z軸 89 圖 5 22平刀五軸銑削力模擬與實驗對照 (a)X軸,(b)Y軸,(c)Z軸 90 圖 5 23真實加工中TCP速度變化 90 圖 5 24模擬流程之比較 91 圖 5 25實際速度與降採方式比較 (a)等時降採,(b)變時降採 92 圖 5 26變時降採流程圖 93 圖 5 27模擬與實驗切削力對照(速度修正後) (a)X軸,(b)Y軸,(c)Z軸 94 圖 5 28實驗及模擬彎矩時域圖(已調相位) (a)X軸(全域),(b)Y軸(全域) 95
dc.language.isozh-TW
dc.subject銑削加工zh_TW
dc.subject切削彎矩模型zh_TW
dc.subject八元樹法zh_TW
dc.subject八元樹法zh_TW
dc.subject切削彎矩模型zh_TW
dc.subject銑削加工zh_TW
dc.subject切削力模型zh_TW
dc.subject切削力模型zh_TW
dc.subjectCutting force modelen
dc.subjectmillingen
dc.subjectoctree methoden
dc.subjectbending moment modelen
dc.subjectCutting force modelen
dc.subjectmillingen
dc.subjectoctree methoden
dc.subjectbending moment modelen
dc.title基於八元樹法之五軸切削力及切削彎矩估測zh_TW
dc.titleEstimation of five-axis cutting force and bending moment based on octree methoden
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李貫銘(Kuan-Ming Li),林明宗(Ming-Tzong Lin)
dc.subject.keyword切削力模型,切削彎矩模型,八元樹法,銑削加工,zh_TW
dc.subject.keywordCutting force model,bending moment model,octree method,milling,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202201762
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2027-07-27-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202210231600.pdf
  此日期後於網路公開 2027-07-27
6.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved