請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王尚禮(Shan-Li Wang) | |
| dc.contributor.author | Ying-Ren Lai | en |
| dc.contributor.author | 賴映任 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:15:38Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-28 | |
| dc.identifier.citation | Adio, S.O., Asif, M., Mohammed, A.-R.I., Baig, N., Al-Arfaj, A.A., Saleh, T.A., 2019. Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: statistical analysis and regeneration. Process Safety and Environmental Protection 121, 254-262. Adriano, D.C., 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer. Aguilera, N.H., Jackson, M.L., 1953. Iron oxide removal from soils and clays. Soil Science Society of America Journal 17, 359-364. Aharoni, C., Sparks, D.L., 1991. Kinetics of soil chemical reactions—a theoretical treatment. Rates of Soil Chemical Processes 27, 1-18. Alloway, B.J., 2012. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media. Anagboso, M.U., Turner, A., Braungardt, C., 2013. Fractionation of thallium in the Tamar estuary, south west England. Journal of Geochemical Exploration 125, 1-7. Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H.-J., Savić, D., Ličina, V., Rinklebe, J., 2017. Redox-controlled release dynamics of thallium in periodically flooded arable soil. Chemosphere 178, 268-276. Asami, T., Mizui, C., Shimada, T., Kubota, M., 1996. Determination of thallium in soils by flame atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry 356, 348-351. Bačeva, K., Stafilov, T., Šajn, R., Tănăselia, C., Makreski, P., 2014. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia. Environmental Research 133, 77-89. Bear, J., 2012. Hydraulics of groundwater. Courier Corporation. Behroozi, A., Arora, M., Fletcher, T.D., Western, A.W., 2020. Sorption and transport behavior of zinc in the soil; Implications for stormwater management. Geoderma 367, 114243. Belzile, N., Chen, Y.-W., 2017. Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry 84, 218-243. Bidoglio, G., Gibson, P., O'Gorman, M., Roberts, K., 1993. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica et Cosmochimica Acta 57, 2389-2394. Birungi, Z., Chirwa, E., 2015. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. Journal of Hazardous Materials 299, 67-77. Bolt, G., 1979. Movement of solutes in soil: Principles of adsorption/exchange chromatography. Developments in Soil Science. Elsevier, pp. 285-348. Bouchard, D., Wood, A., Campbell, M., Nkedi-Kizza, P., Rao, P., 1988. Sorption nonequilibrium during solute transport. Journal of Contaminant Hydrology 2, 209-223. Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59, 39-46. Brusseau, M.L., Larsen, T., Christensen, T., 1991. Rate‐limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials. Water Resources Research 27, 1137-1145. Cameron, D., Klute, A., 1977. Convective‐dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resources Research 13, 183-188. Casiot, C., Egal, M., Bruneel, O., Verma, N., Parmentier, M., Elbaz-Poulichet, F., 2011. Predominance of aqueous Tl (I) species in the river system downstream from the abandoned Carnoulès mine (Southern France). Environmental Science & Technology 45, 2056-2064. Chassary, P., Vincent, T., Marcano, J.S., Macaskie, L.E., Guibal, E., 2005. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76, 131-147. Cheam, V., 2001. Thallium contamination of water in Canada. Water Quality Research Journal 36, 851-877. Cheam, V., Garbai, G., Lechner, J., Rajkumar, J., 2000. Local impacts of coal mines and power plants across Canada. I. Thallium in waters and sediments. Water Quality Research Journal 35, 581-608. Cheam, V., Lechner, J., Desrosiers, R., Sekerka, I., Lawson, G., Mudroch, A., 1995. Dissolved and total thallium in Great Lakes waters. Journal of Great Lakes Research 21, 384-394. Chiang, W.-H., 2005. 3D-Groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and transport processes. Springer Science & Business Media. Chomat, L., Bouyer, F., Gin, S., Roux, S., 2012. Effect of leaching-driven flow on the alteration kinetics of an ideal crack in SON68 glass. Journal of Nuclear Materials 426, 160-172. Coats, K., Smith, B., 1964. Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineers Journal 4, 73-84. Cornelissen, G., Gustafsson, Ö., Bucheli, T.D., Jonker, M.T., Koelmans, A.A., van Noort, P.C., 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology 39, 6881-6895. Cruz-Hernández, Y., Villalobos, M., Marcus, M.A., Pi-Puig, T., Zanella, R., Martínez-Villegas, N., 2019. Tl (I) sorption behavior on birnessite and its implications for mineral structural changes. Geochimica et Cosmochimica Acta 248, 356-369. Danckwerts, P.V., 1953. Continuous flow systems: distribution of residence times. Chemical Engineering Science 2, 1-13. Delvalls, T., Saenz, V., Arias, A.M., Blasco, J., 1999. Thallium in the marine environment: first ecotoxicological assessments in the guadalquivir estuary and its potential adverse effect on the doñana european natural reserve after the. Ciencias Marinas 25, 161-175. Dmowski, K., Kozakiewicz, A., Kozakiewicz, M., 2002. Bioindykacyjne poszukiwania talu na terenach południowej Polski. Kosmos 51, 151-163. Downs, A.J., 1993. Chemistry of aluminium, gallium, indium and thallium. Springer Science & Business Media. Duchesne, J.-C., Rouhart, A., Schoumacher, C., Dillen, H., 1983. Thallium, nickel, cobalt and other trace elements in iron sulfides from Belgian lead-zinc vein deposits. Mineralium Deposita 18, 303-313. Durrant, P.J., Durrant, B., 1970. Introduction to Advanced Inorganic Chemistry. Elrick, D., French, L., 1966. Miscible displacement patterns on disturbed and undisturbed soil cores. Soil Science Society of America Journal 30, 153-156. Emers, U., 1988. Environmental exposure to thallium. Science of the Total Environment 71, 285-292. Emsley, J., 1978. The trouble with thallium. New Scientist 79, 392-394. Ettler, V., Mihaljevič, M., Šebek, O., Grygar, T., 2007. Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—analytical and thermodynamic approaches. Analytica Chimica Acta 602, 131-140. Fan, Z., Casey, F.X., Hakk, H., Larsen, G.L., Khan, E., 2011. Sorption, fate, and mobility of sulfonamides in soils. Water, Air, & Soil Pollution 218, 49-61. Fetter, C.W., Boving, T.B., Kreamer, D.K., 1999. Contaminant hydrogeology. Prentice hall Upper Saddle River, NJ. Fleischer, M., 1997. Thallium. Anal Hazard Subst Biol Mater 5, 163-179. Freeze, R.A., Cherry, J.A., 1979. Groundwater Prentice-Hall Inc. Eaglewood Cliffs, NJ. Gaber, H., Inskeep, W., Comfort, S., Wraith, J., 1995. Nonequilibrium transport of atrazine through large intact soil cores. Soil Science Society of America Journal 59, 60-67. Galván-Arzate, S., Santamarı́a, A., 1998. Thallium toxicity. Toxicology Letters 99, 1-13. Gao, Y., Leermakers, M., Elskens, M., Billon, G., Ouddane, B., Fischer, J.-C., Baeyens, W., 2007. High resolution profiles of thallium, manganese and iron assessed by DET and DGT techniques in riverine sediment pore waters. Science of the Total Environment 373, 526-533. Gee, G.W., Or, D., 2002. 2.4 Particle-size analysis. Methods of Soil Analysis. Part 4, 255-293. Gist, G., Thompson, A., Katz, A., Higgins, R., 1990. Hydrodynamic dispersion and pore geometry in consolidated rock. Physics of Fluids A: Fluid Dynamics 2, 1533-1544. Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., 2005. Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. Journal of Hazardous Materials 125, 211-220. Gómez-González, M.A., García-Guinea, J., Laborda, F., Garrido, F., 2015. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain). Science of the Total Environment 536, 268-278. Grathwohl, P., Susset, B., 2009. Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Management 29, 2681-2688. Grösslová, Z., Vaněk, A., Mihaljevič, M., Ettler, V., Hojdová, M., Zádorová, T., Pavlů, L., Penížek, V., Vaněčková, B., Komárek, M., 2015. Bioaccumulation of thallium in a neutral soil as affected by solid-phase association. Journal of Geochemical Exploration 159, 208-212. Hassler, C.S., Chafin, R.D., Klinger, M.B., Twiss, M.R., 2007. Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton. Environmental Toxicology and Chemistry: An International Journal 26, 1139-1145. Hillel, D., 2012. Applications of soil physics. Elsevier. Hinz, C., Selim, H., 1994. Transport of zinc and cadmium in soils: Experimental evidence and modeling approaches. Soil Science Society of America Journal 58, 1316-1327. Huang, X., Li, N., Wu, Q., Long, J., Luo, D., Huang, X., Li, D., Zhao, D., 2018. Fractional distribution of thallium in paddy soil and its bioavailability to rice. Ecotoxicology and Environmental Safety 148, 311-317. Huang, X., Li, N., Wu, Q., Long, J., Luo, D., Zhang, P., Yao, Y., Huang, X., Li, D., Lu, Y., 2016. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage. Environmental Science and Pollution Research 23, 24912-24921. Jacobson, A.R., Klitzke, S., McBride, M.B., Baveye, P., Steenhuis, T.S., 2005a. The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water, Air, and Soil Pollution 160, 41-54. Jacobson, A.R., McBride, M.B., Baveye, P., Steenhuis, T.S., 2005b. Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment 345, 191-205. Jakubowska, M., Pasieczna, A., Zembrzuski, W., Świt, Z., Lukaszewski, Z., 2007. Thallium in fractions of soil formed on floodplain terraces. Chemosphere 66, 611-618. Jellali, S., Diamantopoulos, E., Kallali, H., Bennaceur, S., Anane, M., Jedidi, N., 2010. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes. Journal of Environmental Management 91, 897-905. Jia, R., Qu, Z., You, P., Qu, D., 2018. Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels. Science of the Total Environment 612, 223-230. Jia, Y., Xiao, T., Zhou, G., Ning, Z., 2013. Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): soil–plant transfer and influencing factors. Science of the Total Environment 450, 140-147. Kabata-Pendias, A., 2000. Trace elements in soils and plants. CRC press. Kamra, S., Lennartz, B., Van Genuchten, M.T., Widmoser, P., 2001. Evaluating non-equilibrium solute transport in small soil columns. Journal of Contaminant Hydrology 48, 189-212. Karbowska, B., 2016. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment 188, 1-19. Karbowska, B., Zembrzuski, W., Jakubowska, M., Wojtkowiak, T., Pasieczna, A., Lukaszewski, Z., 2014. Translocation and mobility of thallium from zinc–lead ores. Journal of Geochemical Exploration 143, 127-135. Kaya, A., Ören, A.H., 2005. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials 125, 183-189. Kazantzis, G., 2000. Thallium in the environment and health effects. Environmental Geochemistry and Health 22, 275-280. Kersten, M., Xiao, T., Kreissig, K., Brett, A., Coles, B.J., Rehkämper, M., 2014. Tracing anthropogenic thallium in soil using stable isotope compositions. Environmental Science & Technology 48, 9030-9036. Koch, S., Flühler, H., 1993. Solute transport in aggregated porous media: Comparing model independent and dependent parameter estimation. Water, Air, and Soil Pollution 68, 275-289. Kookana, R.S., Naidu, R., Tiller, K., 1994. Sorption non-equilibrium during cadmium transport through soils. Soil Research 32, 635-651. Kreft, A., Zuber, A., 1978. On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science 33, 1471-1480. Kreft, A., Zuber, A., 1979. On the use of the dispersion model of fluid flow. The International Journal of Applied Radiation and Isotopes 30, 705-708. Lee, A.G., 1971. Chemistry of Thallium. Lee, J., Park, S.-M., Jeon, E.-K., Baek, K., 2017. Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry 85, 188-193. Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., 2017. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials 333, 179-185. Li, Y., Ghodrati, M., 1997. Preferential transport of solute through soil columns containing constructed macropores. Soil Science Society of America Journal 61, 1308-1317. Lin, H.-Y., Chuang, T.-J., Yang, P.-T., Guo, L.-Y., Wang, S.-L., 2021. Adsorption and desorption of Thallium (I) in soils: The predominant contribution by clay minerals. Applied Clay Science 205, 106063. Lin, T.-S., Nriagu, J., 1998. Revised hydrolysis constants for thallium (I) and thallium (III) and the environmental implications. Journal of the Air & Waste Management Association 48, 151-156. Lindstorm, F., Narasimham, M., 1973. Mathematical theory of a kinetic model for dispersion of previously distributed chemicals in a sorbing porous medium. SIAM Journal on Applied Mathematics 24, 496-510. Lindstrom, F., 1976. Pulsed dispersion of trace chemical concentrations in a saturated sorbing porous medium. Water Resources Research 12, 229-238. Lindstrom, F., Stone, W., 1974. On the start up or initial phase of linear mass transport of chemicals in a water saturated sorbing porous medium. I. SIAM Journal on Applied Mathematics 26, 578-591. Lis, J., Pasieczna, A., Karbowska, B., Zembrzuski, W., Lukaszewski, Z., 2003. Thallium in soils and stream sediments of a Zn− Pb mining and smelting area. Environmental Science & Technology 37, 4569-4572. Liu, C.-L., Chang, T.-W., Wang, M.-K., Huang, C.-H., 2006. Transport of cadmium, nickel, and zinc in Taoyuan red soil using one-dimensional convective–dispersive model. Geoderma 131, 181-189. Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D.C., Sun, Y., Luo, X., Zheng, W., Wang, J., Xu, G., 2019a. Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution 248, 906-915. Liu, J., Lippold, H., Wang, J., Lippmann-Pipke, J., Chen, Y., 2011. Sorption of thallium (I) onto geological materials: influence of pH and humic matter. Chemosphere 82, 866-871. Liu, J., Luo, X., Sun, Y., Tsang, D.C., Qi, J., Zhang, W., Li, N., Yin, M., Wang, J., Lippold, H., 2019b. Thallium pollution in China and removal technologies for waters: A review. Environment International 126, 771-790. Liu, J., Wang, J., Chen, Y., Qi, J., Lippold, H., Wang, C., 2010. Thallium distribution in sediments from the Pearl River Basin, China. Clean–Soil, Air, Water 38, 909-915. Liu, J., Wang, J., Chen, Y., Xie, X., Qi, J., Lippold, H., Luo, D., Wang, C., Su, L., He, L., 2016. Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environmental Pollution 212, 77-89. Liu, W., Zhang, P., Borthwick, A.G., Chen, H., Ni, J., 2014. Adsorption mechanisms of thallium (I) and thallium (III) by titanate nanotubes: ion-exchange and co-precipitation. Journal of Colloid and Interface Science 423, 67-75. Lopez-Arce, P., Garcia-Guinea, J., Garrido, F., 2017. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite. Chemosphere 181, 447-460. Lukaszewski, Z., Karbowska, B., Zembrzuski, W., Siepak, M., 2012. Thallium in fractions of sediments formed during the 2004 tsunami in Thailand. Ecotoxicology and Environmental Safety 80, 184-189. Magorian, T., 1974. Water pollution by thallium and related metals. Calspan Corporation. Marafatto, F.F., Dähn, R., Grolimund, D., Göttlicher, J., Voegelin, A., 2021. Thallium sorption by soil manganese oxides: Insights from synchrotron X-ray micro-analyses on a naturally thallium-rich soil. Geochimica et Cosmochimica Acta 302, 193-208. Marinova, S., 2003. Distribution and forms of heavy metals in some agricultural soils. Marsh, H., Reinoso, F.R., 2006. Activated carbon. Elsevier. Martin, H., Kaplan, D., 1998. Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water, Air, and Soil Pollution 101, 399-410. Martin, L.A., Wissocq, A., Benedetti, M., Latrille, C., 2018. Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta 230, 1-16. Maskall, J., Whitehead, K., Gee, C., Thornton, I., 1996. Long-term migration of metals at historical smelting sites. Applied Geochemistry 11, 43-51. McLean, E., 1965. Aluminum. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties 9, 978-998. McLean, E., 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and Microbiological Properties 9, 199-224. Mehra, O., Jackson, M., 1960. Clays and Clay Minerals (A, Swineford, editor). Pergamon Press, London. Mellah, A., Chegrouche, S., 1997. The removal of zinc from aqueous solutions by natural bentonite. Water Research 31, 621-629. Merian, E., Clarkson, T.W., 1991. Metals and their compounds in the environment. Vch. Mulkey, J., Oehme, F., 1993. A review of thallium toxicity. Veterinary and Human Toxicology 35, 445-453. Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 31-36. Nelson, D.W., Sommers, L., 1974. A rapid and accurate procedure for estimation of organic carbon in soils. Proceedings of the Indiana Academy of Science, pp. 456-462. Nielsen, D., Biggar, J., 1962. Miscible displacement: III. Theoretical considerations. Soil Science Society of America Journal 26, 216-221. Nielsen, D., Th. Van Genuchten, M., Biggar, J., 1986. Water flow and solute transport processes in the unsaturated zone. Water Resources Research 22, 89S-108S. Nkedi‐Kizza, P., Biggar, J., Selim, H., Van Genuchten, M.T., Wierenga, P., Davidson, J., Nielsen, D., 1984. On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resources Research 20, 1123-1130. Nriagu, J.O., 1998. Thallium in the Environment. Wiley. Nriagu, J.O., Nieboer, E., 1971. Advances in environmental science and technology. Wiley & Sons. O'Shea, T.A., Mancy, K.H., 1978. The effect of pH and hardness metal ions on the competitive interaction between trace metal ions and inorganic and organic complexing agents found in natural waters. Water Research 12, 703-711. Pan, B., Wan, S., Zhang, S., Guo, Q., Xu, Z., Lv, L., Zhang, W., 2014. Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl (I) removal from water. Science China Chemistry 57, 763-771. Pang, L., Close, M.E., 1999. Non-equilibrium transport of Cd in alluvial gravels. Journal of Contaminant Hydrology 36, 185-206. Park, C.W., Kim, B.H., Yang, H.-M., Seo, B.-K., Moon, J.-K., Lee, K.-W., 2017. Removal of cesium ions from clays by cationic surfactant intercalation. Chemosphere 168, 1068-1074. Park, S.-M., Lee, J., Jeon, E.-K., Kang, S., Alam, M.S., Tsang, D.C., Alessi, D.S., Baek, K., 2019. Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. Geoderma 340, 49-54. Parker, J., Van Genuchten, M.T., 1984. Flux‐averaged and volume‐averaged concentrations in continuum approaches to solute transport. Water Resources Research 20, 866-872. Patel, H., 2019. Fixed-bed column adsorption study: a comprehensive review. Applied Water Science 9, 1-17. Pavlickova, J., Zbiral, J., Smatanova, M., Habarta, P., Houserova, P., Kuban, V., 2006. Uptake of thallium from artificially contaminated soils by kale (Brassica oleracea L., var. acephala). Plant Soil and Environment 52, 544. Peter, A.J., Viraraghavan, T., 2005. Thallium: a review of public health and environmental concerns. Environment International 31, 493-501. Plavšií, M., Ćosović, B., 1994. Influence of surface-active substances on the redox processes of metal ions: a contribution to the speciation analysis of metals in aquatic systems. Analytica Chimica Acta 284, 539-545. Porro, I., Newman, M.E., Dunnivant, F.M., 2000. Comparison of batch and column methods for determining strontium distribution coefficients for unsaturated transport in basalt. Environmental Science & Technology 34, 1679-1686. Ptacek, C., Gillham, R., 1992. Laboratory and field measurements of non-equilibrium transport in the Borden aquifer, Ontario, Canada. Journal of Contaminant Hydrology 10, 119-158. Rader, S.T., Maier, R.M., Barton, M.D., Mazdab, F.K., 2019. Uptake and fractionation of Thallium by Brassica juncea in a geogenic Thallium-amended substrate. Environmental Science & Technology 53, 2441-2449. Ramsden, D., 2002. Thallium. Molecules of Death. World Scientific, pp. 304-311. Reynolds, T.D., Richards, P.A.C., 1995. Unit operations and processes in environmental engineering. PWS Publishing Company. Rodríguez-Mercado, J.J., Altamirano-Lozano, M.A., 2013. Genetic toxicology of thallium: a review. Drug and Chemical Toxicology 36, 369-383. Sabermahani, F., Mahani, N.M., Noraldiny, M., 2017. Removal of thallium (I) by activated carbon prepared from apricot nucleus shell and modified with rhodamine B. Toxin Reviews 36, 154-160. Sauvé, S., Adriano, D., 2006. MECHANISMS AND PATHWAYS OF TRACE ELEMENT MOBILITY IN SOILS. Schwartz, R., McInnes, K., Juo, A., Wilding, L., Reddell, D., 1999. Boundary effects on solute transport in finite soil columns. Water Resources Research 35, 671-681. Selim, H., Davidson, J., Mansell, R., 1976. Evaluation of a two-site adsorption-desorption model for describing solute transport in soils. Proc. Summer Computer Simulation Conf., Washington, DC, pp. 444-448. Serrano, S.E., 2003. Propagation of nonlinear reactive contaminants in porous media. Water Resources Research 39. Shand, P., Edmunds, W.M., Ellis, J., 1998. The hydrogeochemistry of thallium in natural waters. Water–Rock Interaction” Proceedings of the 9th International Symposium on Water–Rock Interaction—WRI-9. Taupo, New Zealand, pp. 75-78. Siegel, B., Siegel, S., 1976. Effect of potassium on thallium toxicity in cucumber seedlings: further evidence for potassium-thallium ion antagonism. Bioinorganic Chemistry 6, 341-345. Šimůnek, J., van Genuchten, M.T., 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal 7, 782-797. Simunek, J., Van Genuchten, M.T., Sejna, M., 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports 3, 1-240. Skopp, J., Gardner, W.R., Tyler, E.J., 1981. Solute movement in structured soils: Two‐region model with small interaction. Soil Science Society of America Journal 45, 837-842. Smith, I.C., Carson, B.L., 1977. Trace metals in the environment. Sterckeman, T., Douay, F., Proix, N., Fourrier, H., 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution 107, 377-389. Tamura, K., Sato, H., Yamagishi, A., 2015. Desorption of Cs+ ions from a vermiculite by exchanging with Mg2+ ions: effects of Cs+-capturing ligand. Journal of Radioanalytical and Nuclear Chemistry 303, 2205-2210. Tatsi, K., Turner, A., Handy, R.D., Shaw, B.J., 2015. The acute toxicity of thallium to freshwater organisms: implications for risk assessment. Science of the Total Environment 536, 382-390. Thomas, G.W., Page, A., Miller, R., Keeney, D., 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. Exchangeable Cations: Soil Science Society of America. Toride, N., Leij, F., Van Genuchten, M.T., 1995a. The CXTFIT Code for Estimating transport parameters from laboratory or field tracer experiments. Version 2.1, Research Report No. 137. Agricultural Research Service, US Department of Agriculture, Riverside, California. Toride, N., Leij, F., Van Genuchten, M.T., 1995b. The CXTFIT code for estimating transport parameters from laboratory or filed tracer experiments. US Salinity Laboratory Riverside, CA. Toride, N., Leij, F.J., van Genuchten, M.T., 1993. A comprehensive set of analytical solutions for nonequilibrium solute transport with first‐order decay and zero‐order production. Water Resources Research 29, 2167-2182. Tremel, A., Masson, P., Sterckeman, T., Baize, D., Mench, M., 1997. Thallium in French agrosystems—I. Thallium contents in arable soils. Environmental Pollution 95, 293-302. Tsang, D.C., Zhang, W., Lo, I.M., 2007. Modeling cadmium transport in soils using sequential extraction, batch, and miscible displacement experiments. Soil Science Society of America Journal 71, 674-681. Van Genuchten, M.T., Parker, J., 1984. Boundary conditions for displacement experiments through short laboratory soil columns. Soil Science Society of America Journal 48, 703-708. Van Genuchten, M.T., Wagenet, R., 1989. Two‐site/two‐region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Science Society of America Journal 53, 1303-1310. Van Genuchten, M.T., Wierenga, P., 1976. Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal 40, 473-480. Van Genuchten, M.T., Wierenga, P., 1977. Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O). Soil Science Society of America Journal 41, 272-278. Vaněk, A., Chrastný, V., Komárek, M., Galušková, I., Drahota, P., Grygar, T., Tejnecký, V., Drábek, O., 2010a. Thallium dynamics in contrasting light sandy soils—soil vulnerability assessment to anthropogenic contamination. Journal of Hazardous Materials 173, 717-723. Vaněk, A., Chrastný, V., Komárek, M., Penížek, V., Teper, L., Cabala, J., Drábek, O., 2013. Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration 124, 176-182. Vaněk, A., Grygar, T., Chrastný, V., Tejnecký, V., Drahota, P., Komárek, M., 2010b. Assessment of the BCR sequential extraction procedure for thallium fractionation using synthetic mineral mixtures. Journal of Hazardous Materials 176, 913-918. Vaněk, A., Holubík, O., Oborná, V., Mihaljevič, M., Trubač, J., Ettler, V., Pavlů, L., Vokurková, P., Penížek, V., Zádorová, T., 2019. Thallium stable isotope fractionation in white mustard: Implications for metal transfers and incorporation in plants. Journal of Hazardous Materials 369, 521-527. Vaněk, A., Komárek, M., Vokurková, P., Mihaljevič, M., Šebek, O., Panušková, G., Chrastný, V., Drábek, O., 2011. Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials 191, 170-176. Veli, S., Alyüz, B., 2007. Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials 149, 226-233. Vink, B., 1993. The behaviour of thallium in the (sub) surface environment in terms of Eh and pH. Chemical Geology 109, 119-123. Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A.-C., Mangold, S., Steininger, R., Göttlicher, J.r., 2015. Thallium speciation and extractability in a thallium-and arsenic-rich soil developed from mineralized carbonate rock. Environmental Science & Technology 49, 5390-5398. Wang, T.-H., Li, M.-H., Wei, Y.-Y., Teng, S.-P., 2010. Desorption of cesium from granite under various aqueous conditions. Applied Radiation and Isotopes 68, 2140-2146. Wick, S., Baeyens, B., Fernandes, M.M., Göttlicher, J., Fischer, M., Pfenninger, N., Plötze, M., Voegelin, A., 2020. Thallium sorption and speciation in soils: Role of micaceous clay minerals and manganese oxides. Geochimica et Cosmochimica Acta 288, 83-100. Wick, S., Baeyens, B., Marques Fernandes, M., Voegelin, A., 2017. Thallium adsorption onto illite. Environmental Science & Technology 52, 571-580. Wojtkowiak, T., Karbowska, B., Zembrzuski, W., Siepak, M., Lukaszewski, Z., 2016. Miocene colored waters: a new significant source of thallium in the environment. Journal of Geochemical Exploration 161, 42-48. Xiao, T., Guha, J., Boyle, D., Liu, C.-Q., Zheng, B., Wilson, G.C., Rouleau, A., Chen, J., 2004. Naturally occurring thallium: a hidden geoenvironmental health hazard? Environment International 30, 501-507. Xiao, T., Yang, F., Li, S., Zheng, B., Ning, Z., 2012. Thallium pollution in China: a geo-environmental perspective. Science of the Total Environment 421, 51-58. Yang, C., Chen, Y., Li, C., Chang, X., Xie, C., 2005. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Science of the Total Environment 341, 159-172. Yu, H.-Y., Liu, C., Zhu, J., Li, F., Deng, D.-M., Wang, Q., Liu, C., 2016. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution 209, 38-45. Yule, D.F., Gardner, W., 1978. Longitudinal and transverse dispersion coefficients in unsaturated plainfield sand. Water Resources Research 14, 582-588. Zelazny, L.W., Jackson, M.L., Lim, C.H., 1986. Oxides, hydroxides, and aluminosilicates. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5, 101-150. Zhang, X., Tong, J., Hu, B.X., Wei, W., 2018. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr (VI)) in soil column. Environmental Science and Pollution Research 25, 459-468. Zitko, V., 1975. Toxicity and pollution potential of thallium. Science of the Total Environment 4, 185-192. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86755 | - |
| dc.description.abstract | 有鑑於鉈為一種劇毒的環境污染物,長期暴露於高濃度鉈的環境下,生物將有致死風險。尤其高科技產業其產製過程所排放出的鉈逐漸累積於土壤中,適逢強降雨,鉈會受到雨水之淋洗作用而移動到地下水層及河流,將間接對人體健康造成嚴重的威脅,不容小覬。此外,土壤的異質性亦會對鉈的移動性產生不同程度的影響,亦即不同基本性質的土壤會對鉈產生不同程度的滯留,故而,瞭解並掌握鉈在土壤中的移動性誠乃目前土壤管理的重要課題。然而,綜觀過去有關鉈離子與土壤間交互作用之相關研究,主要均著重於探討單一土壤因子改變時,對鉈離子與土壤間靜態吸附及脫附過程的影響,卻鮮少完整地探究關於多種不同之土壤因子對鉈離子在土壤中動態傳輸的影響。準此,本研究選用二十種基本性質差易大的土壤,以管柱淋洗實驗模擬自然環境下鉈在土壤中的移動情形,探究何種土壤基本性質主導鉈在土壤中的傳輸。此外,由於競爭型陽離子會與鉈離子競爭土壤上的結合位,並交換出原本吸附在土壤中的鉈離子,間接使鉈離子重新釋放到環境中。因此,本研究更應進一步以管柱淋洗實驗探討四種競爭型陽離子對鉈離子脫附效應之影響。研究發現,土壤pH值、可交換性鉀離子、可交換性鈉離子、可交換性鎂離子、可交換性鈣離子以及游離氧化錳是主導鉈離子在土壤中傳輸的最關鍵因素。在土壤pH介於3.6~7.2的範圍內,上述六種土壤因子較高時,土壤對鉈離子有較高的滯留能力,從而降低鉈離子釋出到環境的機會。此外,由競爭型陽離子對鉈離子脫附效應的實驗結果明白顯示,鉈離子在脫附初期的濃度將會遠遠超過原通入土壤的濃度,尤其是鉀離子存在時,不僅造成脫附初期的鉈離子濃度遠遠超過原通入土壤的鉈溶液濃度,甚至能脫附大部分被土壤吸附的鉈離子。本研究針對鉈離子的傳輸特性進行系統性的研究,說明了土壤pH值、可交換性鉀離子、可交換性鈉離子、可交換性鎂離子、可交換性鈣離子以及游離氧化錳是控制鉈離子移動性的主要因素,同時競爭型陽離子會對鉈離子的脫附行為造成影響。 | zh_TW |
| dc.description.abstract | Thallium (Tl) is a highly toxic environmental pollutant. The deposition of Tl from anthropogenic activities such as the production process of mining and electronic industries has increased the levels of Tl in the environment. Once it enters the food chain, it will pose a serious threat to human health. The soils with different soil properties will have different effects on the transport of Tl(I). Thus, in this study, a column leaching experiment was used to simulate the transport behavior of Tl(I) in soils in the natural environment and explore which soil properties play a key role in determining the transport of Tl(I) in soils. Moreover, the competing cations, such as K+, Na+, Ca2+ and Mg2+, would compete with Tl(I) for binding sites on the soils, leading to the desorption of Tl(I) adsorbed on the soils. Therefore, a column leaching experiment was further used to investigate the effect of competing cations on the desorption of Tl(I). The results indicated that soil pH, exchangeable K, exchangeable Na, exchangeable Ca, exchangeable Mg and free manganese oxide content are the most critical factors in determining Tl(I) transport in soils. In the range of soil pH 3.6~7.2, the higher the soil pH, exchangeable K, exchangeable Na, exchangeable Ca, exchangeable Mg and free manganese oxide is, the stronger Tl(I) retardation in soils. Moreover, the competing cations play the important role in the desorption of Tl(I). At the initial stage of desorption, the Tl(I) concentration drastically increased, even higher than the inlet Tl(I) solution. Among the four competing cations, K+ is the strongest. When K+ is present, Tl(I) concentration would greatly increase at the initial stage of desorption and the adsorbed Tl(I) on the soils would almost be desorbed by K+ in the end of desorption phase. This study systematically explores the transport behavior of Tl(I) in soils. These findings can provide detailed information for soil remediation, and even establish a strategy for soil management, protecting human beings from being threatened by Tl. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:15:38Z (GMT). No. of bitstreams: 1 U0001-2607202202284800.pdf: 4808833 bytes, checksum: a72e3efb58b05a664236d41a28e6c51f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 (Approval Page) I 誌謝 (Acknowledgements) II 中文摘要 IV Abstract VI 第一章、緒論 1 第二章、文獻回顧 5 ㄧ、鉈 5 二、重金屬於土壤中的有效性 13 三、元素於土壤中的吸附反應及機制 18 四、傳輸模型的應用 21 第三章、材料與方法 23 一、土壤的選用及其基本性質分析 23 (一)供試土壤的來源與介紹 23 (二)土壤的基本性質分析 24 1. 土壤pH值 24 2. 土壤質地 24 3. 土壤陽離子交換容量 26 4. 土壤可交換性鹽基 28 5. 土壤有機質 29 6. 土壤電導度 30 7. 土壤可利用性磷濃度 31 8. 土壤游離氧化鐵、游離氧化錳及游離氧化鋁濃度 32 9. 土壤無定型氧化鐵、無定型氧化錳及無定型氧化鋁含量 34 10.土壤可交換性鋁含量 35 11. 管柱所填充土壤的孔隙度 35 12. 管柱所填充土壤的密度 35 二、管柱淋洗實驗 36 (一)探究何種土壤的基本性質是影響鉈離子在土壤中的主要因素 38 (二)探究不同競爭型陽離子對鉈離子在脫附階段所造成的效應 42 三、鉈離子在土壤中的傳輸模型 46 (一)平衡傳輸模型 (Equilibrium transport model) 46 (二)非平衡傳輸模型 (Non-equilibrium transport model) 48 (三)模型初始條件及邊界條件 52 (四)傳輸方程式的解析解 53 (五)溶質反應傳輸參數的估計 56 (六)鉈離子傳輸參數的靈敏度 58 四、統計分析 59 五、作圖 59 第四章、結果與討論 60 一、土壤基本性質分析 60 (一)土壤質地 60 (二)土壤pH值 60 (三)土壤電導度 61 (四)土壤有機質含量 61 (五)土壤可利用性磷含量 61 (六)土壤陽離子交換容量 62 (七)土壤可交換性鹽基含量 62 (八)土壤游離氧化鐵含量 63 (九)土壤無定型氧化鐵含量 63 (十)土壤游離氧化錳含量 63 (十一)土壤無定型氧化錳含量 63 (十二)土壤游離氧化鋁含量 64 (十三)土壤無定型氧化鋁含量 64 二、管柱淋洗實驗 70 (一)主導土壤中鉈離子移動性的主要因子 70 1. 吸附相之鉈離子濃度變化 70 (1) 突破曲線形狀 70 (2) CXTFIT擬合分析 75 (3) 統計分析 83 2. 脫附相之鉈離子濃度變化 89 (二)不同競爭型陽離子對鉈離子在脫附階段造成的影響 89 第五章、結論 95 第六章、參考資料 97 圖目錄 圖1. 管柱淋洗實驗裝置圖 37 圖2. 二十種土壤之鉈離子突破曲線結果 72 圖3. 不同競爭型離子對鉈離子突破曲線之脫附階段的影響 92 表目錄 表1. 各國礦物、沉積物及土壤中鉈的背景濃度 8 表2. 試驗土壤之採樣位置及土壤分類 22 表3. 第一階段的管柱淋洗實驗參數設置 40 表4. 鉈離子脫附實驗之處理組別 43 表5. 第二階段的管柱淋洗實驗參數設置 44 表6. 土壤質地分析 65 表7. 土壤基本性質分析 67 表8. 突破曲線經CXTFIT擬和結果 80 表9. 土壤基本性質與傳輸參數之間的相關性分析結果 86 表10. 不同競爭型離子對鉈離子的脫附效應 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鉈 | zh_TW |
| dc.subject | 土壤 | zh_TW |
| dc.subject | 鉈 | zh_TW |
| dc.subject | 傳輸 | zh_TW |
| dc.subject | 管柱淋洗實驗 | zh_TW |
| dc.subject | 競爭型陽離子 | zh_TW |
| dc.subject | 脫附反應 | zh_TW |
| dc.subject | 脫附反應 | zh_TW |
| dc.subject | 競爭型陽離子 | zh_TW |
| dc.subject | 土壤 | zh_TW |
| dc.subject | 管柱淋洗實驗 | zh_TW |
| dc.subject | 傳輸 | zh_TW |
| dc.subject | thallium | en |
| dc.subject | soil | en |
| dc.subject | transport | en |
| dc.subject | column leaching experiment | en |
| dc.subject | competing cations | en |
| dc.subject | desorption | en |
| dc.subject | soil | en |
| dc.subject | thallium | en |
| dc.subject | transport | en |
| dc.subject | column leaching experiment | en |
| dc.subject | competing cations | en |
| dc.subject | desorption | en |
| dc.title | 以管柱淋洗實驗探討一價鉈在不同性質土壤中的吸持性 | zh_TW |
| dc.title | Retention of thallium(I) in soils with different soil properties: a column experiment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許正一(Zeng-Yei Hseu),李達源(Dar-Yuan Lee),簡士濠(Shih-Hao Jien),鄒裕民(Yu-Min Tzou) | |
| dc.subject.keyword | 土壤,鉈,傳輸,管柱淋洗實驗,競爭型陽離子,脫附反應, | zh_TW |
| dc.subject.keyword | soil,thallium,transport,column leaching experiment,competing cations,desorption, | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU202201720 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-29 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2607202202284800.pdf | 4.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
