請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚(Chia-Ching Chou) | |
| dc.contributor.author | Yu-Cheng Lai | en |
| dc.contributor.author | 賴有成 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:14:36Z | - |
| dc.date.copyright | 2022-08-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-28 | |
| dc.identifier.citation | 1. Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. Journal of controlled release. 2018;271:1-20. 2. Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Advanced Materials. 2000;12(17):1237-47. 3. Fox CH, Ter Hurrne GM, Wojtecki RJ, Jones GO, Horn HW, Meijer E, et al. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nature communications. 2015;6(1):1-8. 4. Su G, Yin S, Guo Y, Zhao F, Guo Q, Zhang X, et al. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Materials Horizons. 2021;8(6):1795-804. 5. Hanabusa K, Hiratsuka K, Kimura M, Shirai H. Easy preparation and useful character of organogel electrolytes based on low molecular weight gelator. Chemistry of materials. 1999;11(3):649-55. 6. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Advances. 2019;1(10):3807-35. 7. Wang M, Lai Z, Jin X, Sun T, Liu H, Qi H. Multifunctional Liquid-Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Advanced Functional Materials. 2021 2021/08/01;31(32):2101957. doi: https://doi.org/10.1002/adfm.202101957. 8. Yiming B, Han Y, Han Z, Zhang X, Li Y, Lian W, et al. A Mechanically Robust and Versatile Liquid-Free Ionic Conductive Elastomer. Advanced Materials. 2021 2021/03/01;33(11):2006111. doi: https://doi.org/10.1002/adma.202006111. 9. Shi L, Zhu T, Gao G, Zhang X, Wei W, Liu W, et al. Highly stretchable and transparent ionic conducting elastomers. Nature Communications. 2018 2018/07/06;9(1):2630. doi: 10.1038/s41467-018-05165-w. 10. Chan CY, Wang Z, Jia H, Ng PF, Chow L, Fei B. Recent advances of hydrogel electrolytes in flexible energy storage devices. Journal of Materials Chemistry A. 2021;9(4):2043-69. 11. Wang Z, Li H, Tang Z, Liu Z, Ruan Z, Ma L, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Advanced Functional Materials. 2018;28(48):1804560. 12. Guo Y, Zheng K, Wan P. A flexible stretchable hydrogel electrolyte for healable all‐in‐one configured supercapacitors. Small. 2018;14(14):1704497. 13. Jin Q, Zhang L, Zhu X, Duan P, Liu M. Amphiphilic Schiff Base Organogels: Metal‐Ion‐Mediated Chiral Twists and Chiral Recognition. Chemistry–A European Journal. 2012;18(16):4916-22. 14. Gao Y, Shi L, Lu S, Zhu T, Da X, Li Y, et al. Highly stretchable organogel ionic conductors with extreme-temperature tolerance. Chemistry of Materials. 2019;31(9):3257-64. 15. Zhang Z, Wang L, Yu H, Zhang F, Tang L, Feng Y, et al. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS applied materials & interfaces. 2020;12(13):15657-66. 16. George M, Funkhouser GP, Weiss RG. Organogels with complexes of ions and phosphorus-containing amphiphiles as gelators. Spontaneous gelation by in situ complexation. Langmuir. 2008;24(7):3537-44. 17. Sánchez M, Sabio L, Gálvez N, Capdevila M, Dominguez‐Vera JM. Iron chemistry at the service of life. IUBMB life. 2017;69(6):382-8. 18. Włodarczyk-Biegun MK, Paez JI, Villiou M, Feng J, Del Campo A. Printability study of metal ion crosslinked PEG-catechol based inks. Biofabrication. 2020;12(3):035009. 19. Li H, Ma Y, Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Materials Horizons. 2021;8(2):383-400. 20. Zhenwu Wang, Yu-Cheng Lai, Ya-Tang Chiang, Johannes Martin Scheiger, Shuai Li, Zheqin Dong, Qianyu Cai, Sida Liu, Shan-Hui Hsu, Chia-Ching Chou, Pavel A. Levkin. Tough, Conductive, and Self-healing Ionic Elastomer for Ionotronics. Advanced Materials. 2022 (Under submission). 21. Hu CTLYY. Progress in the Study of Solid/Solid Interface between Lithium Electrode and Polymer Electrolytes in Lithium Polymer Batteries. Progress in Chemistry. 2006;18(05):542. 22. De Ascentiis A, deGrazia JL, Bowman CN, Colombo P, Peppas NA. Mucoadhesion of poly (2-hydroxyethyl methacrylate) is improved when linear poly (ethylene oxide) chains are added to the polymer network. Journal of controlled release. 1995;33(1):197-201. 23. Zellander A, Zhao C, Kotecha M, Gemeinhart R, Wardlow M, Abiade J, et al. Characterization of pore structure in biologically functional poly (2-hydroxyethyl methacrylate)-poly (ethylene glycol) diacrylate (PHEMA-PEGDA). PloS one. 2014;9(5):e96709. 24. Seo E, Kumar S, Lee J, Jang J, Park JH, Chang MC, et al. Modified hydrogels based on poly (2-hydroxyethyl methacrylate)(pHEMA) with higher surface wettability and mechanical properties. Macromolecular Research. 2017;25(7):704-11. 25. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert opinion on drug delivery. 2016;13(9):1257-75. 26. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nature reviews Drug discovery. 2003;2(3):214-21. 27. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials. 2017;2(4):1-16. 28. Xu F-J, Li H, Li J, Zhang Z, Kang E-T, Neoh K-G. Pentablock copolymers of poly (ethylene glycol), poly ((2-dimethyl amino) ethyl methacrylate) and poly (2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials. 2008;29(20):3023-33. 29. Bajpai A, Shrivastava M. Enhanced water sorption of a semi-interpenetrating polymer network (IPN) of poly (2-hydroxyethyl methacrylate)(PHEMA) and poly (ethylene glycol)(PEG). Journal of Macromolecular Science, Part A. 2002;39(7):667-92. 30. Farrington G, Linford R, MacCallum J, Vincent C. Polymer Electrolyte Reviews 2. Elsevier Applied Science: London; 1989. 31. Stephan AM, Nahm K. Review on composite polymer electrolytes for lithium batteries. Polymer. 2006;47(16):5952-64. 32. Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A. 2016;4(26):10038-69. 33. MacGlashan GS, Andreev YG, Bruce PG. Structure of the polymer electrolyte poly (ethylene oxide) 6: LiAsF6. Nature. 1999;398(6730):792-4. 34. Wakihara M. Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports. 2001;33(4):109-34. 35. Bernson A, Lindgren J, Huang W, Frech R. Coordination and conformation in PEO, PEGM and PEG systems containing lithium or lanthanum triflate. Polymer. 1995;36(23):4471-8. 36. Di Noto V, Longo D, Münchow V. Ion− Oligomer Interactions in Poly (ethylene glycol) 400/(LiCl) x Electrolyte Complexes. The Journal of Physical Chemistry B. 1999;103(14):2636-46. 37. Lee H, Venable RM, MacKerell Jr AD, Pastor RW. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophysical journal. 2008;95(4):1590-9. 38. Roussou R-E, Karatasos K. Graphene/poly (ethylene glycol) nanocomposites as studied by molecular dynamics simulations. Materials & Design. 2016;97:163-74. 39. Nagumo R, Matsuoka T, Iwata S. Interactions between Acrylate/Methacrylate Biomaterials and Organic Foulants Evaluated by Molecular Dynamics Simulations of Simplified Binary Mixtures. ACS Biomaterials Science & Engineering. 2021;7(8):3709-17. 40. Lee SG, Brunello GF, Jang SS, Lee JH, Bucknall DG. Effect of monomeric sequence on mechanical properties of P (VP-co-HEMA) hydrogels at low hydration. The Journal of Physical Chemistry B. 2009;113(19):6604-12. 41. Jang SS, Goddard WA, Kalani MYS. Mechanical and transport properties of the poly (ethylene oxide)− poly (acrylic acid) double network hydrogel from molecular dynamic simulations. The Journal of Physical Chemistry B. 2007;111(7):1729-37. 42. Borodin O, Smith GD. Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules. 2006;39(4):1620-9. 43. Costa LT, Ribeiro MC. Molecular dynamics simulation of polymer electrolytes based on poly (ethylene oxide) and ionic liquids. II. Dynamical properties. The Journal of chemical physics. 2007;127(16):164901. 44. Yoshida K, Manabe H, Takahashi Y, Furukawa T. Correlation between ionic and molecular dynamics in the liquid state of polyethylene oxide/lithium perchlorate complexes. Electrochimica acta. 2011;57:139-46. 45. Kamiyama Y, Shibata M, Kanzaki R, Fujii K. Lithium-ion coordination-induced conformational change of PEG chains in ionic-liquid-based electrolytes. Physical Chemistry Chemical Physics. 2020;22(10):5561-7. 46. Hünenberger PH. Thermostat algorithms for molecular dynamics simulations. Advanced computer simulation. 2005:105-49. 47. Lippert RA, Predescu C, Ierardi DJ, Mackenzie KM, Eastwood MP, Dror RO, et al. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. The Journal of chemical physics. 2013;139(16):10B621_1. 48. Hockney RW, Eastwood JW. Computer simulation using particles: crc Press; 2021. ISBN: 0367806932. 49. Chipot C. Numerical methods for molecular dynamics simulations of biological systems. France; 2010. 50. Senda N. Winmostar Software, Version 6.005 (2016), http://winmostar.com. 2016. 51. Sousa da Silva AW, Vranken WF. ACPYPE-Antechamber python parser interface. BMC research notes. 2012;5(1):1-8. 52. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry. 2009;30(13):2157-64. 53. Hossain D, Tschopp MA, Ward D, Bouvard J-L, Wang P, Horstemeyer MF. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer. 2010;51(25):6071-83. 54. Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics. 1980;72(4):2384-93. 55. Jagtap S, Dalvi V, Sankar K, Ratna D. Shape memory properties and unusual optical behaviour of an interpenetrating network of poly (ethylene oxide) and poly (2‐hydroxyethyl methacrylate). Polymer International. 2019;68(4):812-7. 56. Bouazizi S, Nasr S. Local order in aqueous lithium chloride solutions as studied by X-ray scattering and molecular dynamics simulations. Journal of molecular structure. 2007;837(1-3):206-13. 57. Egorov A, Komolkin A, Chizhik V, Yushmanov P, Lyubartsev A, Laaksonen A. Temperature and concentration effects on Li+-ion hydration. A molecular dynamics simulation study. The Journal of Physical Chemistry B. 2003;107(14):3234-42. 58. Tóth G. Ab initio pair potential parameter set for the interaction of a rigid and a flexible water model and the complete series of the halides and alkali cations. The Journal of chemical physics. 1996;105(13):5518-24. 59. Chandrasekhar J, Spellmeyer DC, Jorgensen WL. Energy component analysis for dilute aqueous solutions of lithium (1+), sodium (1+), fluoride (1-), and chloride (1-) ions. Journal of the American Chemical Society. 1984;106(4):903-10. 60. Spångberg D, Hermansson K. Many-body potentials for aqueous Li+, Na+, Mg 2+, and Al 3+: comparison of effective three-body potentials and polarizable models. The Journal of chemical physics. 2004;120(10):4829-43. 61. Narten A, Vaslow F, Levy H. Diffraction pattern and structure of aqueous lithium chloride solutions. The Journal of Chemical Physics. 1973;58(11):5017-23. 62. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. The journal of physical chemistry B. 2007;111(27):7812-24. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86739 | - |
| dc.description.abstract | 有機凝膠是一種以有機分子作為溶劑,高分子彼此膠聯所形成的具有良好彈性的高分子材料。他們具有高延展性、自癒合能力與高穩定性等優點,因此被廣泛應用於生物醫學、食品加工、以及軟性電子產品等領域。然而,有機凝膠的抗拉能力並不好,容易因為拉力而形變,這對有機凝膠的應用造成很大的限制。其中一種增加抗拉性質的方法,是透過添加金屬離子來加強其楊氏模數。但是,不同種類的金屬離子會對不同高分子構型與膠聯過程產生不同影響,並且必須透過反覆實驗才能確定特定原子對特定高分子材料的影響。因此,本研究使用分子動力學方法,研究以聚乙二醇(PEG)與聚甲基丙烯酸羥乙酯(PHEMA)為材料所形成的有機凝膠材料,並且以氯化鋰為金屬離子,探討該金屬離子對PEG-PHEMA有機凝膠力學性質之影響。我們首先針對有機凝膠的平衡態結構進行分析,比較加入金屬離子與未加金屬離子的差異。接著,我們進行單軸拉伸實驗,研究金屬離子對材料力學性質的影響。從平衡態分析我們發現:在添加金屬離子後,有機凝膠內的PEG高分子會因為配位鍵的而產生蜷曲,並且減少氫鍵總數。然而這樣的現象並不會造成連接的下降,而是透過鋰與氯形成的離子團加強了高分子間的連結性,也使得PHEMA高分子因為和PEG溶劑連接性的增加而更加舒展。在拉伸實驗中,我們發現:加入氯化鋰的PEG-PHEMA有機凝膠有更高的楊氏模數以及更強的最大應力,破壞應變則和未加氯化鋰的有機凝膠相近。金屬離子和高分子形成的配位鍵,能使材料在高應變的形變下避免PEG高分子彼此分開。希望透過分子模擬的分析,能幫助研究者對於凝膠材料力學性質與添加金屬離子的影響有更加深入的認識,並促進凝膠材料的研發。 | zh_TW |
| dc.description.abstract | Organogels are semi-solid systems with an organic liquid phase immobilized by a three-dimensional elastic or viscoelastic crosslink network composed of self-assembled, crosslinked, or entangled gelator fibers. Due to its good stretchability, self-healing properties, and high stability, they are widely used in drug delivering, food processing and flexible electronics devices. However, like most gel-like materials, organogels’ failure stress is usually low and may reduce their potential for further applications. One effective method, which may enrich organogels’ mechanical properties and denser the network structures, is to blend ions into the organic solvent. Inspired by this method, we aim to investigate organogel made up of polyethylene glycol (PEG) and poly (2-hydroxyethyl methacrylate) (PHEMA) and the mechanical influence of adding lithium chloride. However, previous study shows that different ions cause different effect to polymer materials. Therefore, we use molecular dynamics simulation to analyze the difference between the PEG-PHEMA organogel and ionized LiCl PEG-PHEMA organogel. We perform equilibrium analysis to investigate the microstructure of two materials. We also perform the tensile test simulation to study the different mechanical properties of ionized and non-ionized organogel. In equilibrium analysis, the addition of lithium ions makes the PEG chain curl. However, this does not decrease the connectivity of polymers in organogel. Instead, the lithium-chloride clusters strengthen the interactions between multiple polymer chains and stretch the PHEMA chain longer. In tensile test, we show that the addition of lithium chloride ions improves the tensile strength and elastic modulus of the organogel while maintaining a similar failure strain. Coordination bonds formed by lithium ions and polymers strengthen the inter-polymer interaction and prevent post-deformation defect in ionized PEG-PHEMA organogel. We hope this study helps reveal the mechanical enhancement mechanism behind LiCl ions and PEG-PHEMA organogels and provides a deeper look for researchers seeking to develop new functional soft material. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:14:36Z (GMT). No. of bitstreams: 1 U0001-1004202222161000.pdf: 8504714 bytes, checksum: 561ac2e4e66f71842ba9da84781cf991 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables xi Chapter 1. Introduction 1 1.1 Organogels 1 1.2 Literature Review 5 1.2.1 Mechanical Properties of Gel-like Materials Associated with PEG and PHEMA 5 1.2.2 Coordination Between Lithium Ions and PEG 6 1.2.3 Molecular Dynamics Studies Associated with PEG, PHEMA, and Lithium-PEG Coordination 8 1.3 Motivation and Aims 11 1.4 The Framework of This Thesis 12 Chapter 2. Methodology 13 2.1 Molecular Dynamics Simulation 13 2.1.1 Equations of Motion and Integration 13 2.1.2 Ensemble, Thermostat, and Barostat in Molecular Dynamics simulation 15 2.1.3 Force Field 18 2.1.4 Energy Minimization 20 2.1.5 Boundary Conditions, Cutoff, and PPPM method 21 2.1.6 Procedure for Performing Molecular Dynamics Simulation 24 2.2 Uniaxial Tensile Test under NVT Ensemble 26 2.3 Analytical Method 27 2.3.1 Root Mean Square Deviation 27 2.3.2 Radius of Gyration and End-to-end Distance 27 2.3.3 Hydrogen Bond 28 2.3.4 Radial Distribution Function 29 2.4 Model Design and Simulation Details 32 2.4.1 Model and Potential Functions 32 2.4.2 Simulation Details of Equilibrium and Tensile Test 36 Chapter 3. Structure Analysis of HP and IHP 38 3.1 Equilibrium of HP and IHP 38 3.2 Length of Polymers 43 3.3 Hydrogen Bond 50 3.4 Lithium Ions and Coordination Bonds 53 3.5 Ionic Clustering 59 Chapter 4. Mechanical Behavior of HP and IHP and Their Deformation Mechanism 68 4.1 Stress-Strain Curve and Deformation Structure 68 4.2 Polymer Chain Structure 75 4.3 Hydrogen Bond and Coordination Bond 78 4.4 Deformation and Failure Mechanism of HP and IHP 83 Chapter 5. Conclusions and Outlook 86 5.1 Conclusions 86 5.2 Future Work and Outlook 88 Reference a | |
| dc.language.iso | en | |
| dc.subject | 高分子材料 | zh_TW |
| dc.subject | 單軸拉身試驗 | zh_TW |
| dc.subject | 聚甲基丙烯酸羥乙酯 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 高分子材料 | zh_TW |
| dc.subject | 有機凝膠 | zh_TW |
| dc.subject | 單軸拉身試驗 | zh_TW |
| dc.subject | 聚甲基丙烯酸羥乙酯 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 有機凝膠 | zh_TW |
| dc.subject | Molecular dynamics simulation | en |
| dc.subject | Molecular dynamics simulation | en |
| dc.subject | Polyethylene glycol (PEG) | en |
| dc.subject | Tensile test | en |
| dc.subject | Polyethylene glycol (PEG) | en |
| dc.subject | Poly (2-hydroxyethyl methacrylate) (PHEMA) | en |
| dc.subject | Tensile test | en |
| dc.subject | Polymer materials | en |
| dc.subject | Polymer materials | en |
| dc.subject | Poly (2-hydroxyethyl methacrylate) (PHEMA) | en |
| dc.subject | Organogel | en |
| dc.subject | Organogel | en |
| dc.title | 以分子動力學模擬探討氯化鋰對聚乙二醇/聚甲基丙烯酸羥乙酯有機凝膠之分子結構與力學性質之影響 | zh_TW |
| dc.title | Molecular Dynamics Study on Molecular Structure and Mechanical Properties of Polyethylene Glycol/2-Hydroxyethyl Methacrylate Organogel with Lithium Chloride | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-4861-0604 | |
| dc.contributor.oralexamcommittee | 徐善惠(Shan-Hui Hsu),游佳欣(Jia-Shing Yu),張書瑋(Shu-Wei Chang) | |
| dc.subject.keyword | 有機凝膠,高分子材料,分子動力學,聚乙二醇,聚甲基丙烯酸羥乙酯,單軸拉身試驗, | zh_TW |
| dc.subject.keyword | Organogel,Polymer materials,Molecular dynamics simulation,Polyethylene glycol (PEG),Poly (2-hydroxyethyl methacrylate) (PHEMA),Tensile test, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202200685 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-02 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1004202222161000.pdf | 8.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
