請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86729完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁(Wei-Jiun Su) | |
| dc.contributor.author | Chao-Yu Chen | en |
| dc.contributor.author | 陳昭宇 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:13:58Z | - |
| dc.date.copyright | 2022-08-02 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-29 | |
| dc.identifier.citation | [1] 台大風險中心. (2022). 台灣行不行-各國電動車政策大評比. Available: https://csr.cw.com.tw/article/42336 [2] 陳信榮. (2021, Aug 21). 臺灣電動車時代 來的比想像還快! Available: https://ctee.com.tw/news/tech/505839.html [3] 林耘彤. (2014). 強制規定加裝ESC國家增加,歐洲11月上路. Available: https://news.u-car.com.tw/news/article/24718?utm_source=feature&utm_medium=related&utm_name=24608&utm_content=article [4] Mechanical Dynamic Inc. (2022, Mar 29). Adams Model Simulation. Available: https://www.mscsoftware.com/zh-hans/product/adams [5] T. Nabaglo, J. Kowal, and A. Jurkiewicz, 'Construction of a parametrized tracked vehicle model and its simulation in MSC. ADAMS program,' Journal of Low Frequency Noise, Vibration Active Control, vol. 32, no. 1-2, pp. 167-173, 2013. [6] R. Burdzik &B. Łazarz, 'Analysis of properties of automotive vehicle suspension arm depending on different materials used in the MSC. Adams environment,' Archives of Materials Science Engineering, vol. 58, no. 2, pp. 171--176, 2012. [7] dSPACE GmbH. ((2022, Mar 29)). dSPACE Automotive Simulation Models. Available: https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm [8] X. Zhang &C. Mi, Vehicle power management: modeling, control and optimization. Springer Science & Business Media, 2011. [9] B. S. Kaloko, M. H. P. Soebagio, and M. H. Purnomo, 'Design and development of small electric vehicle using MATLAB/Simulink,' International Journal of Computer Applications, vol. 24, no. 6, pp. 19-23, 2011. [10] J.-J. Hwang, Y.-J. Chen, and J.-K. Kuo, 'The study on the power management system in a fuel cell hybrid vehicle,' International Journal of Hydrogen Energy, vol. 37, no. 5, pp. 4476-4489, 2012. [11] A. Kim, T. Otani, and V. Leung, 'Model-Based Design for the development and System-Level testing of ADAS,' in Energy Consumption and Autonomous Driving: Springer, 2016, pp. 39-48. [12] K. Song, B. Wei, T. Zhu, M. Gong, Z. Song, and H. Chen, 'Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving,' SAE Technical Paper0148-7191, 2019. [13] L. Zhai, T. Sun, and J. Wang, 'Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle,' IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4726-4739, 2016. [14] X. Ji, X. He, C. Lv, Y. Liu, and J. Wu, 'A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation,' Vehicle System Dynamics, vol. 56, no. 6, pp. 923-946, 2018. [15] L. Guo, P. Ge, and D. Sun, 'Torque distribution algorithm for stability control of electric vehicle driven by four in-wheel motors under emergency conditions,' IEEE, vol. 7, pp. 104737-104748, 2019. [16] D. Yin, S. Oh, and Y. Hori, 'A novel traction control for EV based on maximum transmissible torque estimation,' IEEE Transactions on Industrial Electronics and Control Instrumentation, vol. 56, no. 6, pp. 2086-2094, 2009. [17] V. Ivanov, D. Savitski, and B. Shyrokau, 'A survey of traction control and antilock braking systems of full electric vehicles with individually controlled electric motors,' IEEE Transactions on Vehicular Technology, vol. 64, no. 9, pp. 3878-3896, 2014. [18] K. Nam, Y. Hori, and C. Lee, 'Wheel slip control for improving traction-ability and energy efficiency of a personal electric vehicle,' Energies, vol. 8, no. 7, pp. 6820-6840, 2015. [19] S. Solyom, A. Rantzer, and J. Lüdemann, 'Synthesis of a model-based tire slip controller,' Vehicle System Dynamics, vol. 41, no. 6, pp. 475-499, 2004. [20] H. R. More, A. A. Digrase, and A. V. Wayse, 'Linear PID control technique for single wheel ABS (anti-lock braking system) of motorcycle,' in 2017 2nd international conference for convergence in technology (i2ct), 2017, pp. 277-281: IEEE. [21] J.-m. Zhang, B.-y. Song, and G. Sun, 'An advanced control method for ABS fuzzy control system,' in 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 2008, vol. 1, pp. 845-849. [22] B. Lu, Y. Wang, J.-j. Wu, and J.-p. Li, 'ABS system design based on improved fuzzy PID control,' in 2010 sixth international conference on natural computation, Yantai, China, 2010, vol. 1, pp. 62-65. [23] A. Mousavi, A. H. Markazi, and S. Masoudi, 'Adaptive fuzzy sliding-mode control of wheel slide protection device for ER24PC locomotive,' Latin American Journal of Solids Structures, vol. 14, pp. 2019-2045, 2017. [24] Y. Zhao, Y. Zhang, and Y. Zhao, 'Stability control system for four-in-wheel-motor drive electric vehicle,' in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 2009, vol. 4, pp. 171-175. [25] H. Kim, S. Lee, and J. K. Hedrick, 'Active yaw control for handling performance improvement by using traction force,' International Journal of Automotive Technology, vol. 16, no. 3, pp. 457-464, 2015. [26] M. Aripin, Y. Md Sam, K. A. Danapalasingam, K. Peng, N. Hamzah, and M. Ismail, 'A review of active yaw control system for vehicle handling and stability enhancement,' International journal of vehicular technology, vol. 2014, 2014. [27] Z. Jin, B. Li, and J. Li, 'Dynamic Stability and Control of Tripped and Untripped Vehicle Rollover,' Synthesis Lectures on Advances in Automotive Technology vol. 3, no. 2, pp. 1-120, 2019. [28] J. Cao, L. Jing, K. Guo, and F. Yu, 'Study on integrated control of vehicle yaw and rollover stability using nonlinear prediction model,' Mathematical Problems in Engineering, vol. 2013, 2013. [29] R. Bosch, H. Bauer, and Dipl.-Ing, 'Automotive handbook 7th edition,' Society of automotive engineers, p. 1192, 2007. [30] J. P. Ferro, 'Design and Simulation of an ABS Control Scheme for a Formula Student Prototype,' Tecnico Lisboa, vol. 2014, 2014. [31] V. Colli, G. Tomassi, and M. Scarano, '' Single Wheel' longitudinal traction control for electric vehicles,' IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 799-808, 2006. [32] X. Yang, Z. Wang, and W. Peng, 'Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory,' Vehicle System Dynamics, vol. 47, no. 1, pp. 57-79, 2009. [33] N. Lin, C. Zong, and S. Shi, 'The method of mass estimation considering system error in vehicle longitudinal dynamics,' Energies, vol. 12, no. 1, p. 52, 2018. [34] K. Jiang, A. C. Victorino, and A. Charara, 'Adaptive estimation of vehicle dynamics through RLS and Kalman filter approaches,' in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp. 1741-1746: IEEE. [35] Y. Shiao, Q.-A. Nguyen, and J.-W. Lin, 'A study of novel hybrid antilock braking system employing magnetorheological brake,' Advances in Mechanical Engineering, vol. 6, p. 617584, 2014. [36] 葉重宇. (2015). 車身動態穩定系統評價方法概述. Available: https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=2867 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86729 | - |
| dc.description.abstract | 先進駕駛輔助系統(ADAS)是現今在汽車產業中非常熱門的技術,其技術多開發在商用小客車上,較少針對大型車輛(貨車、卡車)來進行設計開發。但大型車輛之駕駛者多為職業駕駛,需要長時間集中精神去駕駛車輛,在新聞中也常見疲勞駕駛導致大型車輛在閃避障礙物時使車輛翻覆。因此,本研究旨在開發一套應用於電動貨卡之車身穩定系統,其系統可因應不同道路摩擦係數、質量以及質心變化,降低車輛在突然轉向時發生翻覆的可能性。其系統作動方法為介入輪胎煞車來補償轉向不足和轉向過度的情況,並避免輪胎鎖死及空轉,讓電動貨卡的操控性能進一步提升。本研究藉由階層分工的方式整合AYC、ABS、TCS三種控制器來達到車身穩定控制系統,並根據輪速訊號及加速度訊號實時估測出控制器所需的參數,使控制器不會因為參數失真而導致車輛失控,最後將控制命令轉換成硬體命令輸入給動力系統以及煞車系統來達到控制效果。階層式動態整合策略係以MATLAB/Simulink結合dSPACE建立一套電動貨卡的車輛模型進行模型在環(MiL)驗證,確認控制方法的可行性及控制器的成果。 | zh_TW |
| dc.description.abstract | Advanced Driver Assistance System (ADAS) is a very popular technology in the automotive industry and it is mostly developed on commercial passenger cars, but less designed for large vehicles, such as trucks and lorries. However, the drivers of large vehicles are usually professional drivers who need to concentrate on driving for a long time, and thus, it is often seen in the news that fatigue driving causes roll over when avoiding obstacles. The purpose of this research is to develop an electronic stability control system for electric trucks. To reduce the possibility of the vehicle rollover during sudden turns, the system can respond to different road friction coefficient, mass and center of mass. It intervenes in the braking of tire to compensate for understeering and oversteering, and to avoid idling or locking of the wheels, further improving the handling performance of electric truck. In this study, by using hierarchical approach to integrate AYC, ABS, and TCS controllers to achieve electronic stability control system. The required parameters of the controllers are estimated in real time based on the wheel speed and acceleration signals, so that the controllers will not lose control of the vehicle due to parameter distortion. Finally, the control commands are converted into hardware commands and sent them to the power system and brake system to achieve the control effect. MATLAB/Simulink combined with dSPACE is used to build a vehicle model of an electric truck for model-in-the-loop (MiL) validation to confirm the feasibility of the control method and verify the results of the controllers. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:13:58Z (GMT). No. of bitstreams: 1 U0001-2707202221044000.pdf: 5782180 bytes, checksum: 7722fffc23ab8fc126b421cfc392b747 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I 線上簽名eSignature證明 II 誌謝 III 摘要 IV Abstract V 目錄 VI 圖目錄 VIII 表目錄 XI 符號列表 XII 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 2 1.3 研究流程與論文架構 4 第 2 章 文獻回顧 5 2.1 車輛動態系統模型建模 5 2.2 車輛動態整合控制 7 2.3 牽引力控制系統 (TCS) 9 2.4 防鎖死煞車系統 (ABS) 13 2.5 主動橫擺控制 (AYC) 15 2.6 文獻回顧總結 17 第 3 章 電動貨卡車輛動態控制演算法 18 3.1 動態控制整合控制器 18 3.2 主動橫擺控制器設計 (AYC) 20 3.3 循跡防滑控制器設計 (TCS) 24 3.4 防鎖死煞車控制器設計 (ABS) 30 3.5 動態控制演算法總結 37 第 4 章 參數估測系統設計 38 4.1 車輛參數估測目標及架構 38 4.2 車輛模型幾何參數定義 40 4.3 車輛動態實時估測 41 4.3.1 輪胎摩擦力估測器 41 4.3.2 輪胎正向力估測器 44 4.3.3 整車質量估測器 49 4.3.4 車身速度估測器 52 4.3.5 動態估測性能模擬驗證 54 4.4 參數估測器總結 60 第 5 章 MIL動態控制模擬分析 61 5.1 正弦定頻試驗 62 5.1.1 側向負載轉移比 64 5.1.2 橫擺率 67 5.1.3 縱向位移 69 5.1.4 車身側滑角 72 5.1.5 正弦定頻試驗小結 74 第 6 章 結論與未來展望 75 6.1 研究成果 75 6.2 未來方向 76 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 階層式整合控制 | zh_TW |
| dc.subject | 模型在環 | zh_TW |
| dc.subject | 主動橫擺控制 | zh_TW |
| dc.subject | 主動橫擺控制 | zh_TW |
| dc.subject | 電動貨卡 | zh_TW |
| dc.subject | 階層式整合控制 | zh_TW |
| dc.subject | 模型在環 | zh_TW |
| dc.subject | 牽引力控制系統 | zh_TW |
| dc.subject | 牽引力控制系統 | zh_TW |
| dc.subject | 防鎖死煞車系統 | zh_TW |
| dc.subject | 防鎖死煞車系統 | zh_TW |
| dc.subject | 電動貨卡 | zh_TW |
| dc.subject | model-in-the-loop | en |
| dc.subject | hierarchical control system | en |
| dc.subject | electric truck | en |
| dc.subject | active yaw control | en |
| dc.subject | anti-lock braking system | en |
| dc.subject | traction control system | en |
| dc.subject | model-in-the-loop | en |
| dc.subject | hierarchical control system | en |
| dc.subject | electric truck | en |
| dc.subject | active yaw control | en |
| dc.subject | anti-lock braking system | en |
| dc.subject | traction control system | en |
| dc.title | 應用四輪獨立煞車力控制之電動貨卡車身動態整合控制策略 | zh_TW |
| dc.title | Integrated Vehicle Dynamic Control for an Electric Truck by Four-Wheel Independent Braking Force Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉霆(Tyng Liu),陳明彥(Ming-Yan Chen) | |
| dc.subject.keyword | 階層式整合控制,電動貨卡,主動橫擺控制,防鎖死煞車系統,牽引力控制系統,模型在環, | zh_TW |
| dc.subject.keyword | hierarchical control system,electric truck,active yaw control,anti-lock braking system,traction control system,model-in-the-loop, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202201800 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-02 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202221044000.pdf | 5.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
