Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲(Ling Chao)
dc.contributor.authorHao-Cin Yangen
dc.contributor.author楊皓欽zh_TW
dc.date.accessioned2023-03-20T00:13:27Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citation1. Chang, Y.-S., H.-C. Yang, and L. Chao, Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photocurrent. ACS Applied Materials & Interfaces, 2022. 14: p. 22216-22224. 2. Reece, J.B., et al., Campbell Biology. Vol. 9. 2014: Pearson Boston. 3. Haehnel, W., Photosynthetic Electron Transport in Higher Plants. Annual Review of Plant Physiology, 1984. 35: p. 659-693. 4. Wraight, C.A. and R.K. Clayton, The Absolute Quantum Efficiency of Bacteriochlorophyll Photooxidation in Reaction Centres of Rhodopseudomonas Spheroides. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1974. 333: p. 246-260. 5. Nocera, D.G., The Artificial Leaf. Accounts of chemical research, 2012. 45: p. 767-776. 6. Wang, Y., et al., Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical reviews, 2018. 118: p. 5201-5241. 7. Badura, A., et al., Photo-Induced Electron Transfer between Photosystem 2 Via Cross-Linked Redox Hydrogels. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008. 20: p. 1043-1047. 8. Badura, A., et al., Photocurrent Generation by Photosystem 1 Integrated in Crosslinked Redox Hydrogels. Energy & Environmental Science, 2011. 4: p. 2435-2440. 9. Ciesielski, P.N., et al., Photosystem I–Based Biohybrid Photoelectrochemical Cells. Bioresource technology, 2010. 101: p. 3047-3053. 10. Amao, Y., et al., Artificial Photosynthesis by Using Chloroplasts from Spinach Adsorbed on a Nanocrystalline Tio2 Electrode for Photovoltaic Conversion. Research on Chemical Intermediates, 2014. 40: p. 3257-3265. 11. Hasan, K., et al., Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catalysis, 2017. 7: p. 2257-2265. 12. Kim, S.I., et al., Electrosprayed Thylakoid-Alginate Film on a Micro-Pillar Electrode for Scalable Photosynthetic Energy Harvesting. ACS Applied Materials & Interfaces, 2020. 12: p. 54683-54693. 13. Calkins, J.O., et al., High Photo-Electrochemical Activity of Thylakoid–Carbon Nanotube Composites for Photosynthetic Energy Conversion. Energy & Environmental Science, 2013. 6: p. 1891-1900. 14. Rasmussen, M. and S.D. Minteer, Investigating the Mechanism of Thylakoid Direct Electron Transfer for Photocurrent Generation. Electrochimica Acta, 2014. 126: p. 68-73. 15. Pankratova, G., et al., Three-Dimensional Graphene Matrix-Supported and Thylakoid Membrane-Based High-Performance Bioelectrochemical Solar Cell. ACS Applied Energy Materials, 2018. 1: p. 319-323. 16. Pankratov, D., G. Pankratova, and L. Gorton, Thylakoid Membrane–Based Photobioelectrochemical Systems: Achievements, Limitations, and Perspectives. Current Opinion in Electrochemistry, 2020. 19: p. 49-54. 17. Sekar, N. and R.P. Ramasamy, Recent Advances in Photosynthetic Energy Conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015. 22: p. 19-33. 18. Ryu, H., et al., Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. International Journal of Molecular Sciences, 2019: p. 1437. 19. Kim, Y.J., et al., Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. Advanced Materials, 2021. 33: p. 2005919. 20. Cevik, E., et al., Construction of Conducting Polymer/Cytochrome C/Thylakoid Membrane Based Photo-Bioelectrochemical Fuel Cells Generating High Photocurrent Via Photosynthesis. Biosensors and Bioelectronics, 2018. 113: p.25-31. 21. Lettieri, S., et al., A Green and Easy-to-Assemble Electrochemical Biosensor Based on Thylakoid Membranes for Photosynthetic Herbicides Detection. Biosensors and Bioelectronics, 2022. 198: p. 113838. 22. Rasmussen, M. and S.D. Minteer, Thylakoid Direct Photobioelectrocatalysis: Utilizing Stroma Thylakoids to Improve Bio-Solar Cell Performance. Physical Chemistry Chemical Physics, 2014. 16: p. 17327-17331. 23. Cai, P., et al., Co-Assembly of Thylakoid and Graphene Oxide as a Photoelectrochemical Composite Film for Enhanced Mediated Electron Transfer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 555: p. 37-42. 24. Pankratov, D., et al., Supercapacitive Biosolar Cell Driven by Direct Electron Transfer between Photosynthetic Membranes and Cnt Networks with Enhanced Performance. ACS Energy Letters, 2017. 2: p. 2635-2639. 25. Hamidi, H., et al., Photocurrent Generation from Thylakoid Membranes on Osmium-Redox-Polymer-Modified Electrodes. ChemSusChem, 2015. 8: p. 990-993. 26. Pankratov, D., et al., The Influence of Surface Composition of Carbon Nanotubes on the Photobioelectrochemical Activity of Thylakoid Bioanodes Mediated by Osmium-Complex Modified Redox Polymer. Electrochimica Acta, 2019. 310: p. 20-25. 27. Shin, H., et al., Fabrication of Scalable and Flexible Bio-Photoanodes by Electrospraying Thylakoid/Graphene Oxide Composites. Applied Surface Science, 2019. 481: p. 1-9. 28. Hasan, K., et al., Photoelectrochemical Communication between Thylakoid Membranes and Gold Electrodes through Different Quinone Derivatives. ChemElectroChem, 2014. 1: p. 131-139. 29. Zhao, F., et al., Extended Operational Lifetime of a Photosystem-Based Bioelectrode. Journal of the American Chemical Society, 2019. 141: p. 5102-5106. 30. Kirchhofer, N.D., et al., The Photobioelectrochemical Activity of Thylakoid Bioanodes Is Increased Via Photocurrent Generation and Improved Contacts by Membrane-Intercalating Conjugated Oligoelectrolytes. Energy & Environmental Science, 2015. 8: p. 2698-2706. 31. Sjöholm, K.H., M. Rasmussen, and S.D. Minteer, Bio-Solar Cells Incorporating Catalase for Stabilization of Thylakoid Bioelectrodes During Direct Photoelectrocatalysis. ECS Electrochemistry Letters, 2012. 1: p. G7. 32. Vermaas, W.F., et al., Interactions of Herbicides and Azidoquinones at a Photosystem Ii Binding Site in the Thylakoid Membrane. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1983. 723: p. 266-275. 33. Purcell, M., et al., Immobilized Plant Thylakoid Membranes as a Biosensor for Herbicides. Biotechnology Techniques, 1990. 4: p. 363-368. 34. Rasmussen, M. and S.D. Minteer, Self-Powered Herbicide Biosensor UtilizingThylakoid Membranes. Analytical Methods, 2013. 5: p. 1140-1144. 35. Sicard, C., et al., Nano-Gold Biosynthesis by Silica-Encapsulated Micro-Algae: A “Living” Bio-Hybrid Material. Journal of Materials Chemistry, 2010. 20: p.9342-9347. 36. Roychoudhury, P., et al., Biogenic Synthesis of Gold Nanoparticle Using Fractioned Cellular Components from Eukaryotic Algae and Cyanobacteria. Phycological Research, 2016. 64: p. 133-140. 37. Pinhassi, R.I., et al., Hybrid Bio-Photo-Electro-Chemical Cells for Solar Water Splitting. Nature Communications, 2016. 7: p. 12552. 38. Saper, G., et al., Live Cyanobacteria Produce Photocurrent and Hydrogen Using Both the Respiratory and Photosynthetic Systems. Nature Communications, 2018(1): p. 1-9. 39. Voloshin, R.A., et al., Photoelectrochemical Cells Based on Photosynthetic Systems: A Review. Biofuel Research Journal, 2015. 2: p. 227-235. 40. Danielsson, R., et al., Quantification of Photosystem I and Ii in Different Parts of the Thylakoid Membrane from Spinach. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004. 1608: p. 53-61. 41. Bengis, C. and N. Nelson, Purification and Properties of the Photosystem I Reaction Center from Chloroplasts. Journal of Biological Chemistry, 1975. 250: p. 2783-2788. 42. Rögner, M., P.J. Nixon, and B.A. Diner, Purification and Characterization of Photosystem I and Photosystem Ii Core Complexes from Wild-Type and Phycocyanin-Deficient Strains of the Cyanobacterium Synechocystis Pcc 6803. Journal of Biological Chemistry, 1990. 265: p. 6189-6196. 43. Kuhl, H., et al., Towards Structural Determination of the Water-Splitting Enzyme. Journal of Biological Chemistry, 2000. 275: p. 20652-20659. 44. Kern, J., et al., Purification, Characterisation and Crystallisation of Photosystem Ii from Thermosynechococcus Elongatus Cultivated in a New Type of Photobioreactor. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2005. 1706: p. 147-157. 45. Arnon, D.I., Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology, 1949. 24: p. 1. 46. Moehlenbrock, M.J., et al., Analytical Techniques for Characterizing Enzymatic Biofuel Cells. Analytical Chemistry, 2009. 81: p. 9538-9545. 47. Saga, Y., et al., Mechanism of Photocurrent Generation from Bacteriorhodopsin on Gold Electrodes. Journal of Physical Chemistry B, 1999. 103: p. 234-238. 48. Watanabe, T. and H. Gerischer, Photoelectrochemical Studies on Gold Electrodes with Surface Oxide Layers: Part I. Photocurrent Measurement in the Visible Region. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981. 117: p. 185-200. 49. Schieber, M. and Navdeep S. Chandel, Ros Function in Redox Signaling and Oxidative Stress. Current Biology, 2014. 24: p. R453-R462. 50. Stadtman, E.R. and R.L. Levine, Protein Oxidation. Annals of the New York Academy of Sciences, 2000. 899: p. 191-208. 51. Auten, R.L. and J.M. Davis, Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatric Research, 2009. 66: p. 121-127. 52. Asada, K., Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology, 2006. 141: p. 391-6. 53. Turrens, J.F., Mitochondrial Formation of Reactive Oxygen Species. Journal of Physiology, 2003. 552: p. 335-344. 54. Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical Methods: Fundamentals and Applications. 2022: John Wiley & Sons. 55. Hamann, C.H., A. Hamnett, and W. Vielstich, Electrochemistry. 1998, Weinheim ;: Wiley-VCH. 56. Yang, E., et al., A Review on Self-Sustainable Microbial Electrolysis Cells for Electro-Biohydrogen Production Via Coupling with Carbon-Neutral Renewable Energy Technologies. Bioresource technology, 2021. 320: p. 124363. 57. Kadier, A., et al., Recent Advances and Emerging Challenges in Microbial Electrolysis Cells (Mecs) for Microbial Production of Hydrogen and Value-Added Chemicals. Renewable and Sustainable Energy Reviews, 2016. 61: p. 501-525. 58. Qin, C., Water Transport in the Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell: Dynamic Pore-Network Modeling. Journal of the Electrochemical Society, 2015. 162: p. F1036. 59. Werner, D., et al., Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon-Based Electrodes with Potential Application for Organic Na-Ion Batteries. Israel Journal of Chemistry, 2021. 60. Merrill, M.D. and B.E. Logan, Electrolyte Effects on Hydrogen Evolution and Solution Resistance in Microbial Electrolysis Cells. Journal of Power Sources, 2009. 191: p. 203-208. 61. Canhoto, C., et al., Voltammetric Analysis of Weak Acids with Microelectrodes. Journal of Electroanalytical Chemistry, 2004. 570: p. 63-67. 62. Marinovic, V. and A. Despic, Phosphoric Acid as a Source of Hydrogen in Cathodic Hydrogen Evolution. Journal of the Serbian Chemical Society, 1998. 63: p. 545-553. 63. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry. 6th ed. ed. 2007, New York: W. H. Freeman. 64. Nozawa, S., et al., Mind the Buffering Capacity of Citric Acid. Fungal Genetics Newsletter, 1995. 42: p. 56. 65. Semenova, G.A., The Thylakoid Membrane in a Wide Ph Range. Journal of Plant Physiology, 2002. 159: p. 613-625.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86721-
dc.description.abstract光合作用在類囊體膜上透過電子傳遞的方式以高效率進行光能轉換。人們為 了能直接利用這個高效率的系統作為光能轉換媒介,因此嘗試研發以類囊體為基 的生物陽極作為多樣化的應用。以往關於類囊體陽極的研究著重於電極材料開發 的研究,至今無人針對類囊體本身的型態對於類囊體陽極可能造成的影響作出探 討。在本論文中,我們通過調控滲透壓使原本堆疊的類囊體膨脹。相較於其他研 究中所使用的未膨脹類囊體,膨脹的類囊體囊泡進行鋪膜可使類囊體膜與電極基 材間擁有較有效的接觸。此提升的接觸可使我們的類囊體陽極收穫更多的光電流 且對於空氣水界面張力更具耐受性。我們也發現添加較多類囊體的陽極與白金電 極製成的光燃料電池,其光電流在較高操作電壓以及長時間連續的照光下會有更 顯著的衰退。我們認為多層類囊體膜使電子傳遞效率降低因而產生活性氧化物致 使類囊體膜蛋白失活,導致光電流衰退。這部分的結果也支持了我們以膨脹類囊 體鋪膜的方式製備與電極基材良好接觸使電子有效傳遞的生物陽極之重要性。 接著我們將支撐式類囊體膜片應用於光電解池產氫上,並找尋方法降低產氫 所需的額外電壓。透過循環伏安法分析金與白金的氧化還原,並觀察了不同電壓 下的電位變化情形,提出了金在氧化水的反應產生前為速率限制電極,而初始的 電壓改變的幾乎都是金的電位;水解反應開始後白金轉為速率限制電極,使陰極 電位下降。因此,我們提出需將陽極材料換成可在較低電位行水解反應的碳紙及 調整了陰陽極間的相對大小,發現皆可使白金在較小偏壓時即轉變為速率限制電 極,降低系統產氫所需的電壓。微生物電解池因為有生物物質的參與,無法像一 般的電解池在強酸環境下操作,以及需要緩衝液來維持恆定的環境。因此我們使 用了弱酸緩衝鹽-檸檬酸鈉,來維持酸鹼恆定並同時進行弱酸催化效應。我們發現 在酸鹼值一旦低於檸檬酸緩衝鹽的解離常數時,所需產氫電壓皆有顯著降低;也 發現類囊體陽極光電流在扣除掉陽極基材本身造成的影響後,會隨著氫離子濃度 下降而下降,但過酸的環境也會造成其光電流下降,推測是超出其原生酸鹼環境 所致。綜合以上的結果,我們認為類囊體膜以直接電子傳遞的方式在光電解產氫 的反應中扮演的角色是提供額外的電子來源,使光電解系統有更佳的產氫效率。zh_TW
dc.description.abstractPhotosynthesis is a high-efficiency energy conversion process through electron transfer on thylakoid membranes. People sought to utilize this high-efficiency system directly and therefore develop thylakoid membrane-based bioanodes for various applications. Most research focused on electrode material developments. To the best of our knowledge, no one ever reported the influence of the physical structures of thylakoids on the performance of TM-based bioanode. In this study, we manipulated the osmotic pressure and expanded the naturally stacked thylakoids into expanded thylakoid liposomes. The thus deposited thylakoid membranes (TMs) have a larger and more effective contact area than the naturally stacked thylakoid membranes used in other research. The effective contact elevates the photocurrent yield and durability to air-water interfacial peeling force for the expanded TM/Au bioanode. Furthermore, we found that PFCs made of high-load TM bioanodes had fast photocurrent decay under continuous operation at high cell voltages. We reasoned that this observation with the poor communication of large numbers of TMs at the high-load TM bioanodes could cause more ROS accumulation and therefore decrease the operational stability. This result supports the importance of effective contact between TMs and the electrodes. Second, we applied the TM/Au bioanode to the photo-electrolysis cell for hydrogen production and sought ways to lower the required bias. We analyzed the cyclic voltammograms of Au and Pt electrodes and the characterization results of the TM/Au-Pt PEC. We hypothesized that the Au was the rate-limiting electrode before reaching the potential where water oxidation occurred. Therefore, the applied bias allocated more increased potential to the Au anode. After the water oxidation occurred at the anode, the cathodic potential decreased, and the Pt cathode became the rate-limiting electrode. Hence, we devised two strategies, including altering the anode substrate to carbon paper with a lower water oxidation potential and enlarging the relative electrode size ratio between the anode and the cathode. Results show that both strategies can make the Pt cathode become the rate-limiting electrode at a lower bias and therefore lower the required bias for hydrogen generation. Since MEC systems cannot work under strong acid or strong base environments like the commercial electrolyzers. The near-neutral environment has low aqueous free protons and has difficulty in hydrogen production. Therefore, the use of buffer solution as an electrolyte can not only maintain the pH but also serve as another proton donating source for HER, which is called the weak acid catalytic effect. We applied the concept of weak acid catalysis to our PEC system. We found that the required biases decreased significantly from pH 6.8 to pH 3.0 when the pH was lower than the pKas of the citric acid but remained unchanged when the pH was further lowered to pH 2.0. The photocurrents exclusively from TM could be elevated with the pH lowering to the philosophical relevant pH of the TM but decreasing when it was too acidic. Our results suggest that the TM can play a role in supplying more electrons to elevate the energy conversion efficiency.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:13:27Z (GMT). No. of bitstreams: 1
U0001-2707202222304100.pdf: 17997527 bytes, checksum: bd06d2a6c46c72536e43605c18886c60 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i Acknowledgment ii 摘要 iii Abstract iv Table of Content vii Figure Captions x Table Captions xiii Chapter 1 Introduction 1 1.1 Introduction of thylakoid membranes (TMs) and TM-based bioanodes 1 1.2 Research aspects on elevating the performance of the thylakoid-based bioanodes 2 1.3 Effect of the physical structure of the thylakoids on the bioanode performance, durability, and stability 3 1.4 Applications of the TM-based bioanodes 4 1.5 Development of the TM-based photo-electrolysis cell (PEC) 5 Chapter 2 Materials and Methods 7 2.1 Materials 7 2.2 Apparatus 8 2.3 Improved performances for the expanded thylakoid membrane bioanodes 9 2.3.1 Thylakoid purification and chlorophyll content measurement 9 2.3.2 Thylakoid liposomes expansion 11 2.3.3 Gold electrode fabrication 11 2.3.4 Deposition of the thylakoid membranes 12 2.3.5 Electrochemical measurements for quantification of the TM/Au bioanodes under a three-electrode system 12 2.3.6 Setup and measurements for the TM/Au-Pt photo-fuel cell 13 2.4 Application of the thylakoid-based bioanode on the photo-electrolysis hydrogen production 14 2.4.1 Setup and electrochemical measurements of the photo-electrolysis hydrogen production 14 2.4.2 Deposition of the thylakoid membranes on carbon paper 16 2.4.3 Cyclic voltammetry of the Au and the carbon paper 16 2.4.4 Correlating the photocurrents obtained from different experiments 17 Chapter 3 Formation of durable and stable-photocurrent-generation bioanodes through thylakoid liposomes expansion 18 3.1 Formation of the supported thylakoid membrane with two types of thylakoid liposomes 18 3.2 Enhanced photocurrent yield from the expanded TM/Au bioanodes 20 3.3 Durability to the air/water interface of the TM/Au bioanodes 23 3.4 Construction and characterization of the photo-fuel cell with the TM/Au bioanode 25 3.5 Effect of added thylakoid amount on the TM/Au PFC operational stability 29 Chapter 4 Application of the thylakoid-based bioanode on photo-electrolysis hydrogen production 33 4.1 Application of TM/Au bioanode on photo-electrolysis 33 4.1.1 Photocurrents and electrode potentials under different applied biases 33 4.1.2 Parameters for TM-based PEC quantification 34 4.2 Strategies to lower the required bias 35 4.2.1 Working principle of the applied bias and limitations observed from the cyclic voltammograms 35 4.2.2 Anode substrate substitution from Au to carbon paper 38 4.2.3 Altering the relative electrode size of anode and cathode 40 4.3 Adjustment of the working electrolyte conditions based on weak acid catalysis effect 42 4.3.1 Introduction of the weak acid catalysis 42 4.3.2 Effect of the pH environments of the electrolyte on the required bias 43 4.3.3 Effect of the pH environments of the electrolyte on the photocurrents of the TM 46 Chapter 5 Conclusions 50 REFERENCE 52
dc.language.isoen
dc.subject類囊體膜zh_TW
dc.subject氫氣產生zh_TW
dc.subject光電解池zh_TW
dc.subject生物陽極zh_TW
dc.subject膨脹類囊體zh_TW
dc.subject類囊體膜zh_TW
dc.subject光合作用zh_TW
dc.subject光合作用zh_TW
dc.subject膨脹類囊體zh_TW
dc.subject生物陽極zh_TW
dc.subject光電解池zh_TW
dc.subject氫氣產生zh_TW
dc.subjectphoto-electrolysisen
dc.subjectthylakoid membraneen
dc.subjectexpanded thylakoidsen
dc.subjectbioanodeen
dc.subjectbioanodeen
dc.subjectphoto-electrolysisen
dc.subjecthydrogen productionen
dc.subjectexpanded thylakoidsen
dc.subjectphotosynthesisen
dc.subjectthylakoid membraneen
dc.subjecthydrogen productionen
dc.subjectphotosynthesisen
dc.title以支撐式類囊體膜片形成具耐受性和穩定性之生物陽極及其在光電解產氫之應用zh_TW
dc.titleFormation of durable and stable supported thylakoid membrane bioanodes and the application in photo-electrolysis hydrogen productionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝之真(Chih-Chen Hsieh),闕居振(Chu-Chen Chueh)
dc.subject.keyword光合作用,類囊體膜,膨脹類囊體,生物陽極,光電解池,氫氣產生,zh_TW
dc.subject.keywordphotosynthesis,thylakoid membrane,expanded thylakoids,bioanode,photo-electrolysis,hydrogen production,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202201803
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202222304100.pdf17.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved