Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorKe-Chou Hanen
dc.contributor.author韓可疇zh_TW
dc.date.accessioned2023-03-20T00:13:23Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-07-31
dc.identifier.citation[1] Q. Halim, N. A. N. Mohamed, M. R. M. Rejab, W. N. W. A. Naim, and Q. Ma, 'Metallic glass properties, processing method and development perspective: a review,' The International Journal of Advanced Manufacturing Technology, vol. 112, no. 5, pp. 1231-1258, 2021. [2] M. M. Khan, I. Shabib, and W. Haider, 'A combinatorially developed Zr-Ti-Fe-Al metallic glass with outstanding corrosion resistance for implantable medical devices,' Scripta Materialia, vol. 162, pp. 223-229, 2019. [3] J. Gu, X. Yang, A. Zhang, Y. Shao, S. Zhao, and K. Yao, 'Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance,' Journal of Non-Crystalline Solids, vol. 512, pp. 206-210, 2019. [4] M. M. Khan, A. Nemati, Z. U. Rahman, U. H. Shah, H. Asgar, and W. Haider, 'Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review,' Critical Reviews in Solid State and Materials Sciences, vol. 43, no. 3, pp. 233-268, 2018. [5] B. Cantor, K. Kim, and P. Warren, 'Novel Multicomponent Amorphous Alloys,' Journal of Metastable and Nanocrystalline Materials, vol. 13, pp. 27-32, 2002. [6] Y. Zhang et al., 'Microstructures and properties of high-entropy alloys,' Progress in Materials Science, vol. 61, pp. 1-93, 2014. [7] J. W. Yeh et al., 'Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,' Advanced engineering materials, vol. 6, no. 5, pp. 299-303, 2004. [8] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, 'Microstructural development in equiatomic multicomponent alloys,' Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004. [9] A. L. Greer, 'Confusion by design,' Nature, vol. 366, no. 6453, pp. 303-304, 1993. [10] Z. Wang, Y. Huang, C. T. Liu, J. Li, and J. Wang, 'Atomic packing and size effect on the Hume-Rothery rule,' Intermetallics, vol. 109, pp. 139-144, 2019. [11] J.-W. Yeh, 'Alloy Design Strategies and Future Trends in High-Entropy Alloys,' JOM, vol. 65, no. 12, pp. 1759-1771, 2013. [12] P. Gordon, 'Principles of Phase Diagrams in Materials Systems,' 1968. [13] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, 'Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys,' Entropy, vol. 15, pp. 3810-3821, 2013. [14] K. Guan-Yu, C. Swe-Kai, H. Tung, and Y. Jien-Wei, 'FCC and BCC equivalents in as-cast solid solutions of Al [x] Co [y] Cr [z] Cu [0.5] Fe [v] Ni [w] high-entropy alloys,' Cachan, France, p. 669, 2006. [15] H. Y. Ding and K. F. Yao, 'High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass,' Journal of Non-Crystalline Solids, vol. 364, pp. 9-12, 2013. [16] J. Y. He et al., 'Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,' Acta Materialia, vol. 62, pp. 105-113, 2014. [17] Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, 'High-entropy alloy: challenges and prospects,' Materials Today, vol. 19, no. 6, pp. 349-362, 2016. [18] E. J. Pickering and N. G. Jones, 'High-entropy alloys: a critical assessment of their founding principles and future prospects,' International Materials Reviews, vol. 61, no. 3, pp. 183-202, 2016. [19] K. Y. Tsai, M. H. Tsai, and J. W. Yeh, 'Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys,' Acta Materialia, vol. 61, no. 13, pp. 4887-4897, 2013. [20] G. S. Frankel, 'Pitting Corrosion of Metals: A Review of the Critical Factors,' Journal of The Electrochemical Society, vol. 145, no. 6, pp. 2186-2198, 1998. [21] S. A. Saadi, Y. Yi, P. Cho, C. Jang, and P. Beeley, 'Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution,' Corrosion Science, vol. 111, pp. 720-727, 2016. [22] M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, and D. S. McPhail, 'Why stainless steel corrodes,' Nature, vol. 415, no. 6873, pp. 770-774, 2002. [23] G. S. Frankel, L. Stockert, F. Hunkeler, and H. Boehni, 'Metastable Pitting of Stainless Steel,' Corrosion, vol. 43, no. 7, pp. 429-436, 1987. [24] B. N. Popov, 'Chapter 7 - Pitting and Crevice Corrosion,' in Corrosion Engineering, B. N. Popov Ed. Amsterdam: Elsevier, pp. 289-325, 2015. [25] H. Torbati-Sarraf, M. Shabani, P. D. Jablonski, G. J. Pataky, and A. Poursaee, 'The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures,' Materials & Design, vol. 184, p. 108170, 2019. [26] C.-W. Lu, Y.-S. Lu, Z.-H. Lai, H.-W. Yen, and Y.-L. Lee, 'Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution,' Journal of Alloys and Compounds, vol. 842, p. 155824, 2020. [27] G. Su and X. Gao, 'Comparison of Medium Manganese Steel and Q345 Steel on Corrosion Behavior in a 3.5 wt % NaCl Solution,' Materials (Basel, Switzerland), vol. 10, 2017. [28] G. Y. Koga et al., 'Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys,' Journal of Alloys and Compounds, vol. 884, p. 161107, 2021. [29] 徐國閔, 'FeCrNiCoMnx (x = 1 ~ 0)高熵合金工業級塊材顯微結構與腐蝕行為之研究,' 博士, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2022. [30] 陳思翰, 'FeCrNiCoMnx(x=1.0,0.6,0.3,0)高熵合金於0.5M硫酸中的抗蝕性質之研究,' 碩士, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2021. [31] A. A380, 'Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems,' INTERNATIONAL, 2013. [32] H. Luo, Z. Li, A. M. Mingers, and D. Raabe, 'Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution,' Corrosion Science, vol. 134, pp. 131-139, 2018. [33] J. Yang et al., 'Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution,' Journal of Alloys and Compounds, vol. 819, 2020. [34] Y.-J. Hsu, W.-C. Chiang, and J.-K. Wu, 'Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution,' Materials Chemistry and Physics, vol. 92, no. 1, pp. 112-117, 2005. [35] C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, and H. C. Shih, 'Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments,' Corrosion Science, vol. 50, no. 7, pp. 2053-2060, 2008. [36] P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, 'The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution,' Corrosion Science, vol. 172, 2020. [37] J. Jun, K. Holguin, and G. S. Frankel, 'Pitting Corrosion of Very Clean Type 304 Stainless Steel,' Corrosion, vol. 70, no. 2, pp. 146-155, 2014. [38] R. A. Robie and B. S. Hemingway, 'Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10^5 pascals) pressure and at higher temperatures,' in 'Bulletin,' Report 2131, 1995. [39] L.-I. Staffansson, 'On the Mn-MnS phase diagram,' Metallurgical and Materials Transactions B, vol. 7, no. 1, pp. 131-134, 1976. [40] J. S. Byun, J. H. Shim, Y. W. Cho, and D. N. Lee, 'Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel,' Acta Materialia, vol. 51, no. 6, pp. 1593-1606, 2003. [41] M. Li, H. Matsuura, and F. Tsukihashi, 'Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-O-N alloy by inductive separation method,' Materials Characterization, vol. 136, pp. 358-366, 2018. [42] X. Gao, L. Zhang, X. Qu, Y. Luan, and X. Chen, 'Investigation on the formation mechanism of non-metallic inclusions in high-aluminum and titanium-alloyed Ni-based superalloy,' Vacuum, vol. 177, p. 109409, 2020. [43] S. R. Shatynski, 'The thermochemistry of transition metal sulfides,' Oxidation of Metals, vol. 11, no. 6, pp. 307-320, 1977. [44] M. Nishimoto, I. Muto, Y. Sugawara, and N. Hara, 'Passivity of (Mn,Cr)S inclusions in type 304 stainless steel: The role of Cr and the critical concentration for preventing inclusion dissolution in NaCl solution,' Corrosion Science, vol. 176, p. 109060, 2020. [45] H. Krawiec, V. Vignal, R. Oltra, and O. Heintz, 'Influence of the chemical dissolution of MnS inclusions on the composition of passive films and the local electrochemical behaviour of stainless steels,' in Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, P. Marcus and V. Maurice Eds. Amsterdam: Elsevier Science, pp. 567-572, 2006. [46] N. Shimahashi, I. Muto, Y. Sugawara, and N. Hara, 'Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel,' Journal of the Electrochemical Society, vol. 161, pp. C494-C500, 2014. [47] E. G. Webb and R. C. Alkire, 'Pit initiation at single sulfide inclusions in stainless steel. Part III. Mathematical model,' Journal of The Electrochemical Society, vol. 149, pp. B286-B295, 2002. [48] A. Chiba, I. Muto, Y. Sugawara, and N. Hara, 'Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions,' Journal of The Electrochemical Society, vol. 160, no. 10, pp. C511-C520, 2013. [49] R. Ke and R. Alkire, 'Surface Analysis of Corrosion Pits Initiated at MnS Inclusions in 304 Stainless Steel,' Journal of The Electrochemical Society, vol. 139, no. 6, pp. 1573-1580, 1992. [50] L. Pao, I. Muto, and Y. Sugawara, 'Pitting at inclusions of the equiatomic CoCrFeMnNi alloy and improving corrosion resistance by potentiodynamic polarization in H2SO4,' Corrosion Science, vol. 191, p. 109748, 2021. [51] B. Zhang, J. Wang, B. Wu, Y. T. Zhou, and X. L. Ma, 'Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel,' Corrosion Science, vol. 100, pp. 295-305, 2015. [52] A. A. Becerra Araneda, M. A. Kappes, M. A. Rodríguez, and R. M. Carranza, 'Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions,' Corrosion Science, vol. 198, 2022. [53] A. A. Becerra Araneda, M. A. Kappes, M. A. Rodríguez, and R. M. Carranza, 'Effect of Thiosulfate on Pitting Corrosion of Ni-Cr-Fe Alloys in Chloride Solutions,' Corrosion, vol. 74, no. 11, pp. 1214-1228, 2018. [54] A. A. Becerra Araneda, M. A. Kappes, M. A. Rodríguez, and R. M. Carranza, 'Low Potential Pitting Corrosion of Ni-Cr-Fe Alloys in Chloride Plus Thiosulfate Solutions: Determination of Potential and Concentration Boundaries,' Corrosion, vol. 76, pp. 786-795, 2020. [55] Z. Szklarska-Smialowska and N. A. o. C. Engineers, Pitting Corrosion of Metals. National Association of Corrosion Engineers, 1986. [56] S. Sahu, O. J. Swanson, T. Li, A. Y. Gerard, J. R. Scully, and G. S. Frankel, 'Localized Corrosion Behavior of Non-Equiatomic NiFeCrMnCo Multi-Principal Element Alloys,' Electrochimica Acta, vol. 354, 2020. [57] Z. Zhang, B. Ter-Ovanessian, S. Marcelin, J. Galipaud, and B. Normand, 'Role of Alloying Elements in Passive and Transpassive Behavior of Ni–Cr-Based Alloys in Borate Buffer Solution,' Journal of The Electrochemical Society, vol. 168, no. 8, 2021. [58] R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, and U. Stolz, 'The passivity of iron-chromium alloys,' Corrosion Science, vol. 29, no. 7, pp. 899-917, 1989. [59] Y. Yue, C. Liu, P. Shi, and M. Jiang, 'Passivity of stainless steel in sulphuric acid under chemical oxidation,' Corrosion Engineering, Science and Technology, vol. 53, no. 3, pp. 173-182, 2017. [60] J. Liu, T. Zhang, G. Meng, Y. Shao, and F. Wang, 'Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation,' Corrosion Science, vol. 91, pp. 232-244, 2015. [61] Z. B. Zheng and Y. G. Zheng, 'Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution,' Corrosion Science, vol. 112, pp. 657-668, 2016. [62] A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, 'Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions,' Corrosion Science, vol. 50, no. 6, pp. 1796-1806, 2008. [63] G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, 'The analysis of electrode impedances complicated by the presence of a constant phase element,' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 176, no. 1, pp. 275-295, 1984. [64] L. Wang et al., 'Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS,' Corrosion Science, vol. 167, 2020. [65] K.-M. Hsu and C.-S. Lin, 'Microstructural and electrochemical characterization of the passive film on a 50-kg hot rolled FeCrNiCoMn high entropy alloy,' Materials Today Communications, vol. 26, p. 101979, 2021. [66] L. Wang et al., 'Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS,' Corrosion Science, vol. 167, p. 108507, 2020. [67] J. M. Bastidas, M. F. López, A. Gutiérrez, and C. L. Torres, 'Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy,' Corrosion Science, vol. 40, no. 2, pp. 431-438, 1998. [68] A. Kocijan, Č. Donik, and M. Jenko, 'Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions,' Corrosion Science, vol. 49, no. 5, pp. 2083-2098, 2007. [69] L. Wang, A. Seyeux, and P. Marcus, 'Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS,' Corrosion Science, vol. 165, p. 108395, 2019. [70] J. Huang, X. Wu, and E.-H. Han, 'Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments,' Corrosion Science, vol. 52, no. 10, pp. 3444-3452, 2010. [71] I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne, and T. Saario, 'The transpassive dissolution mechanism of highly alloyed stainless steels: I. Experimental results and modelling procedure,' Corrosion Science, vol. 44, no. 12, pp. 2675-2697, 2002. [72] A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C. O. A. Olsson, and S. Mischler, 'Passive and transpassive behaviour of CoCrMo in simulated biological solutions,' Electrochimica Acta, vol. 49, no. 13, pp. 2167-2178, 2004. [73] M. Bojinov et al., 'The mechanism of transpassive dissolution of Ni–Cr alloys in sulphate solutions,' Electrochimica Acta, vol. 45, no. 17, pp. 2791-2802, 2000. [74] G. Song, 'Transpassivation of Fe–Cr–Ni stainless steels,' Corrosion Science, vol. 47, no. 8, pp. 1953-1987, 2005. [75] L.-F. Li et al., 'Mechanism of single and multiple step pickling of 304 stainless steel in acid electrolytes,' Corrosion Science, vol. 47, no. 5, pp. 1307-1324, 2005. [76] M. A. Barbosa, 'The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid,' Corrosion Science, vol. 23, no. 12, pp. 1293-1305, 1983. [77] J. S. Noh, N. J. Laycock, W. Gao, and D. B. Wells, 'Effects of nitric acid passivation on the pitting resistance of 316 stainless steel,' Corrosion Science, vol. 42, no. 12, pp. 2069-2084, 2000. [78] T. T. Hong, M. Nagumo, and W. P. Jepson, 'Influence of HNO3 treatments on the early stages of pitting of type 430 stainless steel,' Corrosion Science, vol. 42, pp. 289-298, 2000. [79] L. F. Li and J. P. Celis, 'Pickling of Austenitic Stainless Steels (a Review),' Canadian Metallurgical Quarterly, vol. 42, no. 3, pp. 365-376, 2013. [80] Haynes, W.M, 'CRC Handbook of Chemistry and Physics (95th ed.),' 2014. [81] Z. Wang, H. Hu, C. Liu, and Y. Zheng, 'The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05M sulfuric acid,' Electrochimica Acta, vol. 135, pp. 526-535, 2014. [82] Y. Lu et al., 'Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy,' Journal of Alloys and Compounds, vol. 730, pp. 552-562, 2018. [83] Z. B. Wang, H. X. Hu, and Y. G. Zheng, 'Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions,' Corrosion Science, vol. 130, pp. 203-217, 2018. [84] R. Dieckmann, T. O. Mason, J. D. Hodge, and H. Schmalzried, 'Defects and cation diffusion in magnetite Pt 3,' Berichte der Bunsengesellschaft fuer Physikalische Chemie, vol. 82, no. 8, pp. 778-783, 1978. [85] B. S. Covino, J. V. Scalera, T. J. Driscoll, and J. P. Carter, 'Dissolution behavior of 304 stainless steel in HNO3/HF mixtures,' Metallurgical Transactions A, vol. 17, no. 1, pp. 137-149, 1986. [86] J. L. Gálvez, J. Dufour, C. Negro, and F. López-Mateos, 'Determination of iron and chromium fluorides solubility for the treatment of wastes from stainless steel mills,' Chemical Engineering Journal, vol. 136, no. 2, pp. 116-125, 2008. [87] A. E. Martell, & Smith, R. M. , 'Critical Stability Constants,' 1974. [88] M. Mirjalili, M. Momeni, N. Ebrahimi, and M. H. Moayed, 'Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions,' Materials Science and Engineering: C, vol. 33, no. 4, pp. 2084-2093, 2013. [89] A. Kocijan, D. K. Merl, and M. Jenko, 'The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride,' Corrosion Science, vol. 53, no. 2, pp. 776-783, 2011. [90] C. Man, C. Dong, k. xiao, Q. Yu, and X. li, 'The Combined Effect of Chemical and Structural Factors on Pitting Corrosion Induced by MnS-(Cr, Mn, Al)O Duplex Inclusions,' CORROSION, vol. 74, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86720-
dc.description.abstract高熵合金為多種元素以等比例混和而成的一種新世代材料。為了探討其腐蝕性質,選定等比例組成之FeCrNiCoMn以及FeCrNiCo兩種合金,並針對Mn的有無是否對抗蝕性質產生影響來做研究,其中304L不銹鋼也會做為對照組來一同比較。 在極化曲線中,FeCrNiCoMn沒有出現鈍化區,且與先前的文獻相比之下在較低電位就發生孔蝕;反觀FeCrNiCo則是出現了寬廣的鈍化區。若以Cr含量與FeCrNiCoMn相近的304L不鏽鋼來做測試,卻發現304L不鏽鋼不但會出現鈍化區,且孔蝕電位也明顯較高。經由SEM以及EDX的分析,發現熱軋均質化的FeCrNiCoMn以及FeCrNiCo試片含有大量介在物,其成分多為S、O的化合物,且在諸多文獻中都顯示MnS溶解後可能抑制周圍底材的鈍化行為。此外,由XPS分析的結果得知在FeCrNiCoMn的鈍化膜中含有高比例的Mn氧化物,因此合理推測材料中的Mn會與Cr產生競爭氧化,使得鈍化膜中的Cr2O3含量下降而造成孔蝕電位的降低。 為了清除MnS等有害的介在物,本研究所使用的表面改質配方包括複合酸洗-鈍化配方以及硝酸酸洗-鈍化配方,且發現前者能夠有效移除大部分O、S的化合物,而後者則是僅能移除S的化合物。此外,由於酸洗-鈍化配方能讓試片表面生成富含Cr2O3的鈍化膜,經酸洗-鈍化後的試片在電化學測試中都呈現了良好的抗蝕性質,但在F離子的負面影響下,複合酸洗-鈍化配方對於抗蝕性的提升會略遜於硝酸酸洗-鈍化配方。 最後的章節本研究以SEM和EDX Mapping分析極化至孔蝕電位的試片,發現FeCrNiCoMn以及304L不鏽鋼的孔蝕起始位置皆為MnS介在物。而在酸洗-鈍化後的試片中,由於大部分的孔蝕起始位置都被移除,因此孔蝕的數量有著明顯的下降。zh_TW
dc.description.abstractHigh entropy alloy (HEA) is a new generation material composed of multiple elements in equal proportions. To investigate the corrosion properties of HEA, FeCrNiCoMn and FeCrNiCo alloys were chosen in this study, focusing on whether Mn element can have an influence on corrosion resistance. Simultaneously, 304L stainless steel would become the control group in all of the experiments. The results showed that no passive region was exhibited in the FeCrNiCoMn polarization curve, and pitting occurred at a much lower potential compared to previous studies, on the other hand, FeCrNiCo exhibited a wide passive region in the polarization curve. In 304L stainless steel, the passive region could be exhibited in the polarization curve, and pitting potential was obviously higher than that of FeCrNiCoMn even though both of them had nearly the same concentration of Cr. By SEM and EDX analysis, a substantial number of inclusions composed of sulfide and oxide existed in the FeCrNiCoMn and FeCrNiCo specimens. Moreover, many research have reported that MnS dissolution might inhibit the passivation behavior around the inclusion. By XPS analysis, the results showed that a high percentage of Mn and Cr oxides were contained in the passive film, so it was reasonable to presume that Mn competes with Cr in the oxidation reaction so that Cr_2 O_3 decrease in the passive film and leads to a much lower pitting potential. To eliminate the harmful MnS inclusion, surface treatments including Multiple Pickling-Passivation (MP-P) and Nitric Acid Pickling-Passivation (NP-P) were carried out; the former effectively removed most of the sulfide and oxide, but the latter could solely remove sulfide. Besides, the superior corrosion resistance in the electrochemical test might result from Cr_2 O_3 enrichment in the passive film by surface treatments, but under the negative effect of fluoride ion, MP-P had less improvement in corrosion resistance compared to NP-P. In the final chapter, SEM and EDX Mapping were used to analyze the specimens which were polarized to pitting potential, confirming that MnS was the pitting initiation site for both FeCrNiCoMn and 304L stainless steel. Owing to remove most of the initiation sites of pitting, pitting numbers dropped largely after performing surface treatments.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:13:23Z (GMT). No. of bitstreams: 1
U0001-2807202215564100.pdf: 6459446 bytes, checksum: 1678db6fa15bfac001b48e7a3134c9e1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 學術論文原創性比對聲明書 ii 誌謝 iii 摘要 iv Abstract vi 總目錄 viii 圖目錄 xi 表目錄 xvi 第一章 前言 1 第二章 文獻回顧 2 2.1 高熵合金背景知識 2 2.1.1 高熵合金發展 2 2.1.2 高熵合金的定義 5 2.1.3 高熵四大效應 6 2.2 氯化鈉系統 14 2.2.1 氯化鈉的腐蝕行為 14 2.2.2 FeCrNiCoMn系列高熵合金腐蝕研究 18 第三章 實驗步驟與方法 26 3.1 實驗流程 26 3.2 試片製備 28 3.2.1 熱軋均質化材 28 3.2.2 商用304L不鏽鋼 30 3.2.3 試片前處理 31 3.3 電化學測試 32 3.3.1 開路電位平衡 34 3.3.2 動電位極化曲線 34 3.3.3 電化學阻抗譜 35 3.4 顯微結構及化學組成分析 36 3.4.1 掃描式電子顯微鏡 36 3.4.2 能量散射X射線譜 37 3.4.3 X射線光電子能譜儀 37 3.5 表面改質方法 39 第四章 實驗結果與討論 41 4.1 熱軋均質化材 41 4.1.1 熱處理後的基本性質 41 4.1.2 合金中的介在物 44 4.1.3 介在物對於電化學的影響 53 4.2 底材的抗蝕性質 54 4.2.1 開路電位分析 54 4.2.2 動電位極化曲線 55 4.2.3 電化學阻抗譜 58 4.2.4 膜層XPS分析 60 4.2.5 底材的鈍化機制探討 66 4.3 酸洗-鈍化的效果 68 4.3.1 顯微結構觀察 68 4.3.2 開路電位分析 75 4.3.3 動電位極化曲線 76 4.3.4 電化學阻抗譜 82 4.3.5 膜層XPS分析 85 4.3.6 酸洗-鈍化的機制探討 90 4.4 孔蝕行為探討 93 4.4.1 孔蝕的起始與擴展 93 4.4.2 酸洗-鈍化後的孔蝕行為 100 第五章 結論 105 第六章 未來工作 107 第七章 參考文獻 108
dc.language.isozh-TW
dc.subject酸洗zh_TW
dc.subject高熵合金zh_TW
dc.subject介在物zh_TW
dc.subject化學鈍化zh_TW
dc.subject孔蝕zh_TW
dc.subject高熵合金zh_TW
dc.subject介在物zh_TW
dc.subject酸洗zh_TW
dc.subject化學鈍化zh_TW
dc.subject孔蝕zh_TW
dc.subjectpittingen
dc.subjecthigh entropy alloyen
dc.subjectinclusionen
dc.subjectpicklingen
dc.subjectchemical passivationen
dc.subjectpittingen
dc.subjectinclusionen
dc.subjectpicklingen
dc.subjectchemical passivationen
dc.subjecthigh entropy alloyen
dc.titleFeCrNiCoMn高熵合金及FeCrNiCo中熵合金在3.5wt%氯化鈉水溶液中的腐蝕性質研究zh_TW
dc.titleThe Corrosion Behavior of FeCrNiCoMn High Entropy Alloy and FeCrNiCo Medium Entropy Alloy in 3.5wt% Sodium Chloride Solutionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡文達(Wen-Ta Tsai),莊東漢(Tung-Han Chuang),張君華(Chun-Hua Chang)
dc.subject.keyword高熵合金,介在物,酸洗,化學鈍化,孔蝕,zh_TW
dc.subject.keywordhigh entropy alloy,inclusion,pickling,chemical passivation,pitting,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202201835
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202215564100.pdf6.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved