請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86690
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡孟勳(Meng-Shiun Tsai) | |
dc.contributor.author | Yong-Chun Yang | en |
dc.contributor.author | 楊詠淳 | zh_TW |
dc.date.accessioned | 2023-03-20T00:11:29Z | - |
dc.date.copyright | 2022-08-24 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-01 | |
dc.identifier.citation | [1] J.-Q. Xuan and S.-H. Xu, “Review on kinematics calibration technology of serial robots,” International journal of precision engineering and manufacturing, vol. 15, no. 8, pp. 1759–1774, 2014. [2] Z. Li, S. Li, and X. Luo, “An overview of calibration technology of industrial robots,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 23–36, 2021. [3] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” 1955. [4] S. Hayati, K. Tso, and G. Roston, “Robot geometry calibration,” in Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 947–951, 1988. [5] H. W. Stone, “Kinematic modeling, identification, and control of robotic manipulators, ” Springer Science & Business Media, vol. 29, 1987. [6] B. W. Mooring, Z. S. Roth, and M. R. Driels, “Fundamentals of manipulator calibration,” Wiley-interscience, 1991. [7] I.-M. Chen, G. Yang, C. T. Tan, and S. H. Yeo, “Local POE model for robot kinematic calibration,” Mechanism and Machine Theory, vol. 36, no. 11–12, pp. 1215–1239, 2001. [8] 周賢, “基於類神經網路之不同末端負重下機械手臂絕對精度提升方法,” 國立交通大學, 新竹市, 2018. [9] 楊季樺, “運動學模型校正與類神經網路之非幾何誤差補償用於六自由度機械手臂的精度改善,” 國立臺北科技大學, 台北市, 2019. [10] K. Young and J.-J. Chen, “Implementation of a variable DH parameter model for robot calibration using an FCMAC learning algorithm,” Journal of Intelligent and Robotic Systems, vol. 24, no. 4, pp. 313–346, 1999. [11] S. Ibaraki, N. A. Theissen, A. Archenti, and M. M. Alam, “Evaluation of kinematic and compliance calibration of serial articulated industrial manipulators,” International Journal of Automation Technology, vol. 15, no. 5, pp. 567–580, 2021. [12] C. Gong, J. Yuan, and J. Ni, “Nongeometric error identification and compensation for robotic system by inverse calibration,” International Journal of Machine Tools and Manufacture, vol. 40, no. 14, pp. 2119–2137, 2000. [13] L. Du, T. Zhang, and X. Dai, “Compliance error calibration for robot based on statistical properties of single joint,” Journal of Mechanical Science and Technology, vol. 33, no. 4, pp. 1861–1868, 2019. [14] A. Nubiola and I. A. Bonev, “Absolute calibration of an ABB IRB 1600 robot using a laser tracker,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 1, pp. 236–245, 2013. [15] M. M. Alam, S. Ibaraki, and K. Fukuda, “Kinematic modeling of six-axis industrial robot and its parameter identification: a tutorial,” International Journal of Automation Technology, vol. 15, no. 5, pp. 599–610, 2021. [16] G. Alici and B. Shirinzadeh, “Enhanced stiffness modeling, identification and characterization for robot manipulators,” IEEE transactions on robotics, vol. 21, no. 4, pp. 554–564, 2005. [17] Y. Cho, H. M. Do, and J. Cheong, “Screw based kinematic calibration method for robot manipulators with joint compliance using circular point analysis,” Robotics and Computer-Integrated Manufacturing, vol. 60, pp. 63–76, 2019. [18] J. Jiao, W. Tian, L. Zhang, B. Li, and J. Hu, “Variable parameters stiffness identification and modeling for positional compensation of industrial robots,” in Journal of Physics: Conference Series, vol. 1487, no. 1, 2020. [19] C. Mao, Z. Chen, S. Li, and X. Zhang, “Separable nonlinear least squares algorithm for robust kinematic calibration of serial robots,” Journal of Intelligent & Robotic Systems, vol. 101, no. 1, pp. 1–12, 2021. [20] X. Deng, L. Ge, R. Li, and Z. Liu, “Research on the kinematic parameter calibration method of industrial robot based on LM and PF algorithm,” in 2020 Chinese Control And Decision Conference (CCDC), pp. 2198–2203, 2020. [21] Z. Jiang, W. Zhou, H. Li, Y. Mo, W. Ni, and Q. Huang, “A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3337–3345, 2017. [22] J. Zhou and H.-J. Kang, “A hybrid least-squares genetic algorithm–based algorithm for simultaneous identification of geometric and compliance errors in industrial robots,” Advances in Mechanical Engineering, vol. 7, no. 6, 2015. [23] H.-N. Nguyen, J. Zhou, and H.-J. Kang, “A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network,” Neurocomputing, vol. 151, pp. 996–1005, 2015. [24] Z. Wang, Z. Chen, Y. Wang, C. Mao, and Q. Hang, “A Robot Calibration Method Based on Joint Angle Division and an Artificial Neural Network,” Mathematical Problems in Engineering, vol. 2019, pp. 1–12, 2019. [25] J. Li, F. Xie, X.-J. Liu, B. Mei, and H. Li, “A spatial vector projection based error sensitivity analysis method for industrial robots,” Journal of Mechanical Science and Technology, vol. 32, no. 6, pp. 2839–2850, 2018. [26] S. J. Ahn, W. Rauh, and M. Recknagel, “Geometric Fitting of Line, Plane, Circle, Sphere, and Ellipse,” ABW-Workshop 6, Technische Akademie Esslingen, 25.-26. 01. 1999, 1999. [27] J. Zhou, H.-N. Nguyen, and H.-J. Kang, “Simultaneous identification of joint compliance and kinematic parameters of industrial robots,” International journal of precision engineering and manufacturing, vol. 15, no. 11, pp. 2257–2264, 2014. [28] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brussel, “Optimal robot excitation and identification,” IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 730–740, 1997. [29] “HIWIN多軸機器人綜合型錄” https://www.hiwin.tw/download/tech_doc/mar/Multi_Axis_Robot_DM-(C).pdf [30] “FARO® Vantage Laser Trackers” https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/2_TECH-SHEET/FARO-Vantage-Laser-Trackers/TechSheet_Vantage_ENG.pdf?rev=-1 [31] A. Joubair and I. A. Bonev, “Comparison of the efficiency of five observability indices for robot calibration,” Mechanism and Machine Theory, vol. 70, pp. 254–265, 2013. [32] A. Nahvi and J. M. Hollerbach, “The noise amplification index for optimal pose selection in robot calibration,” in Proceedings of IEEE international conference on robotics and automation, vol. 1, pp. 647–654, 1996. [33] L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, and D. A. Bristow, “Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots,” Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 153–167, 2018. [34] A. Joubair and I. A. Bonev, “Kinematic calibration of a six-axis serial robot using distance and sphere constraints,” Int J Adv Manuf Technol, vol. 77, no. 1–4, pp. 515–523, 2015. [35] I.-C. Ha, “Kinematic parameter calibration method for industrial robot manipulator using the relative position,” J Mech Sci Technol, vol. 22, no. 6, pp. 1084–1090, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86690 | - |
dc.description.abstract | 機械手臂在自動化產業需求逐年上升,然而受限於絕對精度不足,主要應用始終侷限於搬運、塗佈或鑽孔等精度要求相對較低的工序。關於機械手臂之誤差來源,可以分為來自零件尺寸、安裝公差的幾何誤差,以及各軸關節與桿件在不同運行條件所產生的非幾何誤差,包括背隙、順應性(彈性)、摩擦、溫升等現象。過去文獻對於順應性鑑別多需仰賴高成本的力矩感測器,或與各軸馬達連線溝通取得手臂關節受力情形資訊,否則僅能得到順應性係數結合手臂重量與重心資訊的混合參數。而本研究聚焦於機械手臂關節的背隙及順應性現象,整合相關文獻提出一種僅需利用位置量測資訊,能夠同時鑑別幾何、背隙與順應性誤差參數的建模架構,並能透過所鑑別之參數對各軸不同運行方向、手臂末端負載條件進行誤差預測及補償。 本研究提出之鑑別架構以Modified Denavit-Hartenberg(MDH)運動學模型為基礎,利用機械手臂各軸來回轉動位置差異鑑別背隙現象,並由兩種以上的設計載重造成之位置差異鑑別關節順應性係數,再以結合參數篩選的Levenberg-Marquardt(LM)演算法同時鑑別幾何參數誤差以及手臂連桿之重量與重心資訊。由數值模擬結果顯示所提出方法在隨機誤差干擾下,表現較傳統文獻方法更加穩定,而應用在實驗平台HIWIN RT605-710機械手臂路徑補償,能夠將目標路徑之最大誤差改善61%、平均誤差改善84%;且當載重條件改變時,也能將目標路徑之最大誤差改善51%、平均誤差改善75%。 | zh_TW |
dc.description.abstract | The demand of robot manipulator keeps increasing in the field of automation industry recently. However, due to lack of position accuracy, the usage of industrial robot has usually been limited to the process that requires less accuracy such as pick and place, spray painting, and drilling. The error sources of industrial robot are classified into two categories, the geometric error that comes from size tolerance or assembling error, and the non-geometric error composed of other errors caused by different operating conditions at joints or links, including backlash, hysteresis, compliance (or elastic), and thermal deformation. Some of traditional techniques require more information to estimate the torque applied to joints, which can be obtained by executing identification process with communication to joint motor or setting up F\T sensor with higher cost. The other traditional techniques could only identify parameters that represent the fusion of compliance parameter and link mass and center of gravity. This study presents an approach to the identification of geometric error, joint backlash, and compliance error simultaneously with positional measurements only, and the identified parameters are used to predict and compensate for the position error of the robot with different moving direction or attached payload. The proposed approach is based on modified Denavit-Hartenberg (MDH) model, firstly the backlash angles are calculated with the position difference of opposite rotating direction of each joint, and the compliance coefficients are identified by applying two kinds or more designed payloads, then the geometric error and the parameters consisting of link mass and center of gravity are formulated by a Levenberg-Marquardt algorithm combined with parameter selecting method. Compared to recent literatures, the proposed method shows more stability under random disturbance during numerical simulations. The proposed approach is applied to a 6 degree-of-freedom industrial serial robot HIWIN RT605-710, the experiment demonstrates that the maximum and mean position error can be improved by 61% and 84% with same payload condition, and the maximum and mean position error can be improved by 51% and 75% after changing payload condition. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:11:29Z (GMT). No. of bitstreams: 1 U0001-2707202214002700.pdf: 6293078 bytes, checksum: fd890c80f640d25fc22ae2241d6def3e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 摘要 I Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目標 4 1.4 論文架構 5 第二章 幾何誤差參數鑑別 6 2.1 MDH模型 6 2.2 應用高斯牛頓法於幾何誤差參數鑑別 7 2.3 參數縮放與LM演算法 8 2.4 參數篩選 10 第三章 非幾何誤差參數鑑別 12 3.1 背隙誤差模型與鑑別方式 12 3.2 重力造成各軸力矩與順應性誤差模型 15 3.3 已知重量參數前提之順應性誤差鑑別 16 3.4 未知重量參數前提之順應性誤差鑑別 19 第四章 數值模擬驗證 23 4.1 幾何誤差參數鑑別與參數篩選模擬 24 4.2 關節背隙鑑別模擬 36 4.3 已知重量參數前提之順應性鑑別模擬 41 4.4 未知重量參數前提之順應性鑑別模擬 48 4.5 完整鑑別與補償架構 55 第五章 實驗結果與分析 57 5.1 馬達扭矩實驗 57 5.2 雷射追蹤儀實驗 59 5.2.1 實驗儀器架構 59 5.2.2 實驗設計 62 5.2.3 幾何誤差鑑別結果 63 5.2.4 背隙誤差鑑別結果 71 5.2.5 順應性誤差鑑別結果 77 5.3 小結 90 第六章 結論與未來展望 91 6.1 結論 91 6.2 研究未來展望 92 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 串聯式機械手臂背隙誤差與關節順應性之鑑別與補償 | zh_TW |
dc.title | Identification and Compensation of Backlash Error and Joint Compliance of Serial Robot | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭重顯(Chung-Hsien Kuo),蔡曜陽(Yao-Yang Tsai),林明宗(Ming-Tzong Lin) | |
dc.subject.keyword | 機械手臂,空間精度補償,幾何誤差,背隙誤差,順應性誤差, | zh_TW |
dc.subject.keyword | industrial serial robot,accuracy compensation,geometric error,backlash error,compliance error, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU202201772 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
dc.date.embargo-lift | 2027-07-29 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2707202214002700.pdf 此日期後於網路公開 2027-07-29 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。