請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱致遠 | zh_TW |
| dc.contributor.advisor | James C. Chu | en |
| dc.contributor.author | 施千華 | zh_TW |
| dc.contributor.author | Chien-Hua Shih | en |
| dc.date.accessioned | 2023-03-20T00:11:15Z | - |
| dc.date.available | 2023-12-27 | - |
| dc.date.copyright | 2022-08-23 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Potvin, J. Y., & Rousseau, J. M. (1993). A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. European Journal of Operational Research, 66(3), 331-340. [2] Larsen, A., & Madsen, O. B. (2000). The dynamic vehicle routing problem (Doctoral dissertation, Institute of Mathematical Modelling, Technical University of Denmark). [3] Cordeau, J. F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573-586. [4] Berbeglia, G., Cordeau, J. F., & Laporte, G. (2012). A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing, 24(3), 343-355. [5] Repoux, M., Boyacı, B., & Geroliminis, N. (2014). Simulation and optimization of one-way car-sharing systems with variant relocation policies. In hEART 2014-3rd Symposium of the European Association for Research in Transportation. [6] Nourinejad, M., & Roorda, M. J. (2014). A dynamic carsharing decision support system. Transportation research part E: logistics and transportation review, 66, 36-50. [7] Laporte, G., Meunier, F., & Wolfler Calvo, R. (2015). Shared mobility systems. 4or, 13(4), 341-360. [8] Weikl, S., & Bogenberger, K. (2015). A practice-ready relocation model for free-floating carsharing systems with electric vehicles–Mesoscopic approach and field trial results. Transportation Research Part C: Emerging Technologies, 57, 206-223. [9] Boyacı, B., Zografos, K. G., & Geroliminis, N. (2017). An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations. Transportation Research Part B: Methodological, 95, 214-237. [10] Gambella, C., Malaguti, E., Masini, F., & Vigo, D. (2018). Optimizing relocation operations in electric car-sharing. Omega, 81, 234-245. [11] Xu, M., Meng, Q., & Liu, Z. (2018). Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment. Transportation Research Part B: Methodological, 111, 60-82. [12] Ait-Ouahmed, A., Josselin, D., & Zhou, F. (2018). Relocation optimization of electric cars in one-way car-sharing systems: modeling, exact solving and heuristics algorithms. International journal of geographical information science, 32(2), 367-398. [13] Zhao, M., Li, X., Yin, J., Cui, J., Yang, L., & An, S. (2018). An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach. Transportation Research Part B: Methodological, 117, 542-572. [14] Santos, G. G. D., & de Almeida Correia, G. H. (2019). Finding the relevance of staff-based vehicle relocations in one-way carsharing systems through the use of a simulation-based optimization tool. Journal of Intelligent Transportation Systems, 23(6), 583-604. [15] Cocca, M., Giordano, D., Mellia, M., & Vassio, L. (2019). Free floating electric car sharing design: Data driven optimisation. Pervasive and Mobile Computing, 55, 59-75. [16] Illgen, S., & Höck, M. (2019). Literature review of the vehicle relocation problem in one-way car sharing networks. Transportation Research Part B: Methodological, 120, 193-204. [17] Lu, X., Zhang, Q., Peng, Z., Shao, Z., Song, H., & Wang, W. (2020). Charging and relocating optimization for electric vehicle car-sharing: an event-based strategy improvement approach. Energy, 207, 118285. [18] Huang, K., An, K., Rich, J., & Ma, W. (2020). Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods. Transportation Research Part E: Logistics and Transportation Review, 142, 102081. [19] Wang, N., Guo, J., Liu, X., & Liang, Y. (2021). Electric vehicle car-sharing optimization relocation model combining user relocation and staff relocation. Transportation Letters, 13(4), 315-326. [20] Yang, S., Wu, J., Sun, H., Qu, Y., & Li, T. (2021). Double-balanced relocation optimization of one-way car-sharing system with real-time requests. Transportation Research Part C: Emerging Technologies, 125, 103071. [21] Lin, D. Y., & Kuo, J. K. (2021). The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity. Transportation Research Part E: Logistics and Transportation Review, 156, 102514. [22] James C. Chu, Sung, Y. W., Lin, S. C. & Shih, C. H. (2022). Optimization of Vehicle Charging and Dynamic Relocation in Free-floating Electric Carsharing. Under Review. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86686 | - |
| dc.description.abstract | 共享運具於近年蓬勃發展,提供人們一個運具使用的新選擇。但因共享運具存在車輛空間分布不均與使用者不確定性等因素,因此需要一個有效的營運方式來調度和管理。本研究基於營運者的角度,提出一個考量即時預約需求的路邊租還共享汽車調度系統的最佳化演算法。 因不限制顧客的預約時間,本研究設計一個即時預約需求的共享車輛系統調度問題演算法,進行共享車輛與調度員的調度與顧客需求的管理。首先使用時間分批的策略,將營業時間切分成許多等長時間段,依前一時間段預約的顧客資訊,使用事先預約需求系統的共享車輛系統調度問題演算法求解共享車輛及調度員的路線及時間表。在下個時間段開始時,根據車輛與調度員當下的位置與新的顧客資訊做重新求解。若調度員正在執行任務,則透過重新導向措施設立新的節點,尋找對營運者更有利益的目的地,即時調整為更具效益的調度任務。作為可供即時預約模式,重新最佳化的運算時間可能會影響實務上的運作,本研究也設計兩種演算法的加速方式來增加運算速度。 事先預約系統演算法為即時預約系統演算法的核心運算工具,因此本研究將該演算法與混合整數模型的結果作比較驗證,證明事先預約系統演算法具備良好的運算速度與求解成效。除此之外,本研究也透過實際共享車輛使用資料組成的中型案例與大型案例來演示即時預約系統演算法的成果,並透過敏感度分析,提供營運者對於求解頻率、最小提前預約時間、即時預約需求比例配置、車隊大小及調度員數量作決策參考。 | zh_TW |
| dc.description.abstract | Shared vehicles have been more common in recent years, providing people with a new mode choice. However, due to factors such as imbalance distribution of vehicles and uncertainty of users, an effective operation method is required for scheduling and management. Therefore, this study proposes an optimal model for the operator-based dynamic relocation strategy for free-floating electric vehicle sharing systems that considers the real-time demand. Because there is no restriction on the customer's reservation time, this study designs an algorithm for the scheduling problem of the shared vehicle system with real-time demand (Real-time reservation algorithm), which is used for the scheduling of shared vehicles and dispatchers and the management of customer needs. First, we use the time batching strategy to divide the operating time into many time periods, then we use the algorithm for the scheduling problem of the shared vehicle system with advanced-reserved demand (Advanced reservation algorithm) to solve scheduling problem in every time period. Secondly, at the beginning of the next time period, the solution is re-solved based on the current location of the vehicle and the dispatcher and the new customer information. If the dispatcher is performing a task, a new dummy node will be set up through diversion measures to find a new destination that is more beneficial to the operator, and the dispatcher will be adjusted to a more profitable task in real-time. As a real-time reservation algorithm, the re-optimization computation time may affect the actual operation. Therefore, this study also designs two ways to accelerate the speed of algorithm. The advanced reservation algorithm is the core computing tool of the real-time reservation algorithm. Therefore, this study compares the results of the algorithm with the mixed integer programing and verifies that the advanced reservation algorithm has a great performance of computational speed and solution quality. In addition, this study also displays the results of the real-time reservation algorithm through medium-sized cases and large-scale cases both designed based the on actual shared vehicle usage data. Through the sensitivity test, this study can help operator to make decision on the policy like the size of the fleet, the number of dispatchers, the frequency of re-optimization, reservation time and the real-time demand proportion. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:11:15Z (GMT). No. of bitstreams: 1 U0001-2807202214133500.pdf: 3184212 bytes, checksum: e9ad90b86d433dc39645e1e28b1c2b58 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究流程 3 第二章 文獻回顧 4 2.1定義問題-共享車輛系統調度問題 4 2.2事先預約需求之共享車輛系統調度問題 7 2.3即時預約需求之共享車輛系統調度問題 8 第三章 研究方法 11 3.1問題概述 11 3.2模式架構 14 3.3事先預約需求之共享車輛系統調度問題演算法 15 3.3.1搬運組 15 3.3.2車輛路線 17 3.3.3調度員路線 19 3.3.4篩選式局部搜索演算法 20 3.4即時預約需求之共享車輛系統調度問題演算法 24 3.4.1重新最佳化與時間分批 27 3.4.2重新最佳化前後車輛路線連結與調度員重新導向 29 3.4.3承諾但尚未服務之顧客 35 3.4.4演算法加速 38 第四章 結果與案例分析 40 4.1演算法成效驗證 40 4.1.1資料蒐集 41 4.1.2演算法驗證分析 41 4.2中型案例測試 44 4.2.1資料蒐集與產生 44 4.2.2案例結果 47 4.3大型案例測試 49 4.3.1資料蒐集與產生 50 4.3.2案例結果 50 4.3.3敏感度分析-時間段寬度 53 4.3.4敏感度分析-最小提前預約時間 56 4.3.5敏感度分析-即時預約需求比例 58 4.3.6敏感度分析-加速方法 62 4.3.7敏感度分析-車隊大小與調度員數量 66 第五章 結論與建議 72 5.1結論 72 5.2建議 73 參考文獻 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 路邊租還共享運具 | zh_TW |
| dc.subject | 重新導向 | zh_TW |
| dc.subject | 時間分批法 | zh_TW |
| dc.subject | 篩選式局部搜索演算法 | zh_TW |
| dc.subject | 動態調度 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 路邊租還共享運具 | zh_TW |
| dc.subject | 即時預約需求 | zh_TW |
| dc.subject | 重新導向 | zh_TW |
| dc.subject | 時間分批法 | zh_TW |
| dc.subject | 篩選式局部搜索演算法 | zh_TW |
| dc.subject | 動態調度 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 即時預約需求 | zh_TW |
| dc.subject | Diversion | en |
| dc.subject | Real-time requests | en |
| dc.subject | Free-floating shared mobility | en |
| dc.subject | Electric vehicle | en |
| dc.subject | Dynamic relocation | en |
| dc.subject | Filtered local search heuristics algorithm | en |
| dc.subject | Time batching strategy | en |
| dc.subject | Diversion | en |
| dc.subject | Real-time requests | en |
| dc.subject | Free-floating shared mobility | en |
| dc.subject | Electric vehicle | en |
| dc.subject | Dynamic relocation | en |
| dc.subject | Filtered local search heuristics algorithm | en |
| dc.subject | Time batching strategy | en |
| dc.title | 考量即時需求之路邊租還電動共享汽車充電與調度系統 | zh_TW |
| dc.title | Vehicle Charging and Relocation in Free-floating Electric Carsharing System Considering Real-Time Requests | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.advisor-orcid | 朱致遠(0000-0003-4095-4573) | |
| dc.contributor.oralexamcommittee | 陳俊穎;水敬心;沈宗緯 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Ying Chen;Chin-Sum Shui;Chung-Wei Shen | en |
| dc.subject.keyword | 即時預約需求,路邊租還共享運具,電動車,動態調度,篩選式局部搜索演算法,時間分批法,重新導向, | zh_TW |
| dc.subject.keyword | Real-time requests,Free-floating shared mobility,Electric vehicle,Dynamic relocation,Filtered local search heuristics algorithm,Time batching strategy,Diversion, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202201827 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2027-08-03 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-08-03 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
