請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86660完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任(Yuh-Renn Wu) | |
| dc.contributor.author | Yun-Hsiu Cheng | en |
| dc.contributor.author | 鄭昀修 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:09:35Z | - |
| dc.date.copyright | 2022-09-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | [1] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill Jr, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Applied Physics Letters, vol. 1, no. 3, pp. 62–64, 1962. [2] R. N. Hall, G. E. Fenner, J. Kingsley, T. Soltys, and R. Carlson, “Coherent light emission from GaAs junctions,” Physical Review Letters, vol. 9, no. 9, p. 366, 1962. [3] P. Zhang and M. X. Wu, “A clinical review of phototherapy for psoriasis,” Lasers in medical science, vol. 33, no. 1, pp. 173–180, 2018. [4] S.-I. Nagahama, T. Yanamoto, M. Sano, and T. Mukai, “Ultraviolet GaN single quantum well laser diodes,” Japanese Journal of Applied Physics, vol. 40, no. 8A, p. L785, 2001. [5] K. Iida, T. Kawashima, A. Miyazaki, H. Kasugai, S. Mishima, A. Honshio, Y. Miyake, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “350.9 nm UV laser diode grown on low-dislocation-density AlGaN,” Japanese journal of applied physics, vol. 43, no. 4A, p. L499, 2004. [6] K. Sato, S. Yasue, Y. Ogino, S. Tanaka, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Light confinement and high current density in UVB laser diode structure using Al composition-graded p-AlGaN cladding layer,” Applied Physics Letters, vol. 114, no. 19, p. 191103, 2019. [7] K. Sato, S. Yasue, K. Yamada, S. Tanaka, T. Omori, S. Ishizuka, S. Teramura, Y. Ogino, S. Iwayama, H. Miyake, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al0.6Ga0.4N/AlN/sapphire,” Applied Physics Express, vol. 13, no. 3, p. 031004, 2020. [8] T. Omori, S. Ishizuka, S. Tanaka, S. Yasue, K. Sato, Y. Ogino, S. Teramura, K. Yamada, S. Iwayama, H. Miyake, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping,” Applied Physics Express, vol. 13, no. 7, p. 071008, 2020. [9] S. Tanaka, Y. Ogino, K. Yamada, T. Omori, R. Ogura, S. Teramura, M. Shimokawa, S. Ishizuka, A. Yabutani, S. Iwayama, K. Sato, H. Miyake, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “AlGaN-based UV-B laser diode with a high optical confinement factor,” Applied Physics Letters, vol. 118, no. 16, p. 163504, 2021. [10] K. Sato, T. Omori, K. Yamada, S. Tanaka, S. Ishizuka, S. Teramura, S. Iwayama, M. Iwaya, H. Miyake, T. Takeuchi, S. Kamiyama, and I. Akasaki, “Analysis of carrier injection efficiency of AlGaN UV-B laser diodes based on the relationship between threshold current density and cavity length,” Japanese Journal of Applied Physics, vol. 60, no. 7, p. 074002, 2021. [11] S. Tanaka, Y. Ogino, K. Yamada, R. Ogura, S. Teramura, M. Shimokawa, S. Ishizuka, S. Iwayama, K. Sato, H. Miyake, M. Iwaya, T. Takeuchi, and S. Kamiyama, “Low-threshold-current (~ 85 mA) of AlGaN-based UV-B laser diode with refractive-index waveguide structure,” Applied Physics Express, vol. 14, no. 9, p. 094009, 2021. [12] Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1226–1233, 2009. [13] Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,” Journal of applied physics, vol. 105, no. 1, p. 013117, 2009. [14] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Applied Physics Letters, vol. 101, no. 8, p. 083505, 2012. [15] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” Journal of Applied Physics, vol. 116, no. 11, p. 113104, 2014. [16] J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” physica status solidi (a), vol. 207, no. 10, pp. 2217–2225, 2010. [17] X. Chen and Y.-R. Wu, “Numerical study of current spreading and light extraction in deep UV light-emitting diode,” in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XIX, vol. 9383, pp. 73–80, SPIE, 2015. [18] C.-M. Chuang, Y.-H. Cheng, and Y.-R. Wu, “Electro-Optical Numerical Modeling for the Design of UVA Nitride-Based Vertical-Cavity Surface-Emitting Laser Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1, pp. 1–6, 2021. 58 [19] M. Filoche, M. Piccardo, Y.-R. Wu, C.-K. Li, C. Weisbuch, and S. Mayboroda, “Localization landscape theory of disorder in semiconductors. I. Theory and modeling,” Physical Review B, vol. 95, no. 14, p. 144204, 2017. [20] M. Piccardo, C.-K. Li, Y.-R. Wu, J. S. Speck, B. Bonef, R. M. Farrell, M. Filoche, L. Martinelli, J. Peretti, and C. Weisbuch, “Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers,” Physical Review B, vol. 95, no. 14, p. 144205, 2017. [21] C.-K. Li, M. Piccardo, L.-S. Lu, S. Mayboroda, L. Martinelli, J. Peretti, J. S. Speck, C. Weisbuch, M. Filoche, and Y.-R. Wu, “Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes,” Physical Review B, vol. 95, no. 14, p. 144206, 2017. [22] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2002. [23] J. Singh, Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press, 2007. [24] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012. [25] T. Meyer, H. Braun, U. T. Schwarz, D. Queren, M. O. Schillgalies, S. Brüninghoff, A. Laubsch, and U. Strauß, “Spectral measurements and simulations of 405 nm (Al, In) GaN test laser structures grown on SiC and GaN substrate,” in Semiconductor Lasers and Laser Dynamics III, vol. 6997, pp. 65–76, SPIE, 2008. [26] E. Hecht, Optics. Pearson Education India, 2012. 59 [27] B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE Journal of Quantum Electronics, vol. 26, no. 1, pp. 113–122, 1990. [28] N. Ravindra, P. Ganapathy, and J. Choi, “Energy gap–refractive index relations in semiconductors–An overview,” Infrared physics & technology, vol. 50, no. 1, pp. 21–29, 2007. [29] N. Li, I. Waki, C. Kumtornkittikul, J.-H. Liang, M. Sugiyama, Y. Shimogaki, and Y. Nakano, “Fabrication of AlGaN-based waveguides by inductively coupled plasma etching,” Japanese journal of applied physics, vol. 43, no. 10B, p. L1340, 2004. [30] D. Rawal, H. Arora, V. Agarwal, A. Kapoor, S. Vinayak, B. Sehgal, R. Muralidharan, D. Saha, and H. Malik, “Cl2 /Ar based inductively coupled plasma etching of GaN/AlGaN structure,” in 16th International Workshop on Physics of Semiconductor Devices, vol. 8549, pp. 118–126, SPIE, 2012. [31] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu, and S. Nakamura, “Quantum-confined stark effect in an AlGaN/GaN/AlGaN single quantum well structure,” Japanese journal of applied physics, vol. 38, no. 8B, p. L914, 1999. [32] Q. Guo, R. Kirste, S. Mita, J. Tweedie, P. Reddy, S. Washiyama, M. H. Breckenridge, R. Collazo, and Z. Sitar, “The polarization field in Al-rich AlGaN multiple quantum wells,” Japanese Journal of Applied Physics, vol. 58, no. SC, p. SCCC10, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86660 | - |
| dc.description.abstract | 邊射型雷射為發展最早且廣泛應用的雷射之一,其優點在於可以透過增長共振腔長度以及結構設計以提升光場及電流侷限性來達到低閾值增益,並進而達到低閾值電流。其中以氮化鋁鎵為基底的邊射型雷射的中波紫外光波段在生物醫療上有重要的應用,然而目前實驗上仍有閾值電流偏高的現象,約為 25kA/cm2。但一維模擬因為缺少了水平方向資訊所以無法正確評估發生的原因,為此,在這篇文章中建立了一個二維光電數值模擬軟體,是以有限元素分析求解二維光學模態結合二維泊松擴散飄移電流與 localization landscape 理論並耦合一維薛丁格組成的模型,用以分析邊射型雷射出射面的穩態光學模態以及量子井中因為電流匯聚造成本質增益的分布,並透過疊合來得到邊射型雷射的模態增益、閾值增益、閾值電流及輸出功率-電流-電壓曲線。利用這個模型我們發現了實驗用的氮化鋁鎵為基底的邊射型雷射會因為設計問題導致光場與增益區不對齊,以及強電流聚集效應導致的負增益區被放大而產生高閾值電流,因此,我們試著藉由對齊基態光場與增益區域來降低閾值電流,而本文中所提出的設計最低能將閾值電流減至僅1.33 kA/cm2。另外,此二維模型也結合了含時雷射速率方程式模型以獲得光致發光頻譜以及利用惠更斯-菲涅爾原理以得到遠場圖形。 | zh_TW |
| dc.description.abstract | Edge emitting laser diodes are one of the most original and widely used forms of semiconductor lasers. The advantage of edge emitting lasers is that they can achieve the low threshold gain by increasing the cavity length and through the structure design to enhance the optical and current confinement, further reaching the low threshold current. However, with this design, the aluminium gallium nitride (AlGaN)-based ultraviolet-B (UV-B) band edge emitting laser diodes, which are widely used in biotechnology and medicine, still suffers from the high threshold current issue, about 25 kA/cm2, in the reported experimental results. However, it cannot be evaluated properly by using one-dimension (1-D) model due to the leakage of lateral information. Therefore, in this thesis, a two-dimensional (2-D) electro-optical numerical model was built to simulate the edge emitting laser properties and try to find the critical issues limiting threshold current density. This model used a finite-element method cavity mode solver coupled with 2-D Poisson, drift-diffusion, localization landscape solver, and coupled with one-dimensional Schrödinger solver. Hence, it can analyze the steady optical mode along the light emitted face and the intrinsic gain distribution in the quantum well due to the current crowding. By overlapping the optical and electrical information, we can obtain the modal gain, threshold gain, threshold current, and L-J-V curve for the modeling edge emitting laser diode. With this model, the reason for the high threshold current density in the reported experimental results is blamed on the design-induced misalignment between the optical cavity mode and gain region and the enhancement of the negative gain region due to the high current crowding effect. Therefore, we try to align the fundamental optical mode and the gain region to decrease the threshold current. In this thesis, we can finally reduce the threshold current density to only 1.33 kA/cm2. Also, our 2-D model coupled with a time-dependent laser rate equation solver to obtain the electroluminescence (EL) spectrum and could get the far-field pattern by using Huygens–Fresnel principle. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:09:35Z (GMT). No. of bitstreams: 1 U0001-2609202221283900.pdf: 5261132 bytes, checksum: c74bbc912ef462d5fb6932c85871e105 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Verification Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 Methodology 4 2.1 Simulation flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 2-D Poisson and drift-diffusion equation . . . . . . . . . . . . . . . . 5 2.3 2-D Localization landscape theory . . . . . . . . . . . . . . . . . . . 7 2.4 1-D Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 2-D Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Intrinsic gain, modal gain, and threshold gain . . . . . . . . . . . . . 12 2.7 Emission spectrum and output power . . . . . . . . . . . . . . . . . 14 2.8 Far-field pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Analyzing the bottleneck of AlGaN-based UV-B laser diode 17 3.1 1-D simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Threshold current density issue . . . . . . . . . . . . . . . . 23 3.2 2-D simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 Study used design . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Adjust the design to fulfill the stimulation with fundamental mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 More information for the better structure design . . . . . . . . 38 3.2.3.1 Output power and spectrum . . . . . . . . . . . . . . . 38 3.2.3.2 Far-field pattern . . . . . . . . . . . . . . . . . . . . . 39 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4 Optimizations to improve the threshold current density 42 4.1 Symmetric n-electrodes design . . . . . . . . . . . . . . . . . . . . . 42 4.2 Narrow p-electrode side design . . . . . . . . . . . . . . . . . . . . 45 4.2.1 Sidewall defects issue . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Unusual modal gain profile . . . . . . . . . . . . . . . . . . . 48 4.2.3 Results for narrow p-electrode side design . . . . . . . . . . . 50 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 5 Conclusion 54 References 56 | |
| dc.language.iso | en | |
| dc.subject | 光學模態 | zh_TW |
| dc.subject | 邊射型雷射 | zh_TW |
| dc.subject | 中波紫外線 | zh_TW |
| dc.subject | 閾值電流 | zh_TW |
| dc.subject | 電致發光頻譜 | zh_TW |
| dc.subject | 邊射型雷射 | zh_TW |
| dc.subject | 中波紫外線 | zh_TW |
| dc.subject | 光學模態 | zh_TW |
| dc.subject | 閾值電流 | zh_TW |
| dc.subject | 電致發光頻譜 | zh_TW |
| dc.subject | Edge Emitting Laser Diode | en |
| dc.subject | Edge Emitting Laser Diode | en |
| dc.subject | UV-B | en |
| dc.subject | Optical Mode | en |
| dc.subject | Threshold Current | en |
| dc.subject | EL spectrum | en |
| dc.subject | UV-B | en |
| dc.subject | Optical Mode | en |
| dc.subject | Threshold Current | en |
| dc.subject | EL spectrum | en |
| dc.title | 利用二維數值模擬軟體分析UVB邊射型雷射之閾值電流與發光頻譜 | zh_TW |
| dc.title | Analyzing the Threshold Current and the Emission Spectrum of UVB Edge Emitting Laser Diode With a 2-D Electro-optical Numerical Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳肇欣(Chao-Hsin Wu),黃建璋(Jian-Jang Huang),彭隆瀚(Lung-Han Peng) | |
| dc.subject.keyword | 邊射型雷射,中波紫外線,光學模態,閾值電流,電致發光頻譜, | zh_TW |
| dc.subject.keyword | Edge Emitting Laser Diode,UV-B,Optical Mode,Threshold Current,EL spectrum, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202204122 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-29 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202221283900.pdf | 5.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
