Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋(Shu-Wei Chang)
dc.contributor.authorMeng-Lin Tsaien
dc.contributor.author蔡孟霖zh_TW
dc.date.accessioned2023-03-20T00:08:51Z-
dc.date.copyright2022-08-05
dc.date.issued2022
dc.date.submitted2022-08-03
dc.identifier.citation[1] W. Song et al., 'Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review,' Coatings, vol. 11, no. 11, 2021, doi: 10.3390/coatings11111297. [2] U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, 'Bioinspired structural materials,' Nat Mater, vol. 14, no. 1, pp. 23-36, Jan 2015, doi: 10.1038/nmat4089. [3] S. David Muzel, E. P. Bonhin, N. M. Guimaraes, and E. S. Guidi, 'Application of the Finite Element Method in the Analysis of Composite Materials: A Review,' Polymers (Basel), vol. 12, no. 4, Apr 4 2020, doi: 10.3390/polym12040818. [4] J. P. Firmo, M. G. Roquette, J. R. Correia, and A. S. Azevedo, 'Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications,' Int. J. Adhes. Adhes., vol. 93, 2019, doi: 10.1016/j.ijadhadh.2019.01.027. [5] D. K. Koli, G. Agnihotri, and R. Purohit, 'Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields,' Materials Today: Proceedings, vol. 2, no. 4-5, pp. 3032-3041, 2015, doi: 10.1016/j.matpr.2015.07.290. [6] M. Arif, M. Asif, and I. Ahmed, 'Advanced composite material for aerospace application—A review,' Int. J. Eng. Manuf. Sci, vol. 7, no. 2, pp. 393-409, 2017. [7] D. Mathijsen, 'DARPA: inventing the future of military technology,' Reinforced Plastics, vol. 59, no. 5, pp. 233-237, 2015, doi: 10.1016/j.repl.2015.08.048. [8] G.-Z. Kang, C. Yang, and J.-x. Zhang, 'Tensile properties of randomly oriented short δ-Al2O3 fiber reinforced aluminum alloy composites. I. Microstructure characteristics, fracture mechanisms and strength prediction,' Composites Part A: Applied Science and Manufacturing, vol. 33, no. 5, pp. 647-656, 2002/05/01/ 2002, doi: https://doi.org/10.1016/S1359-835X(02)00005-2. [9] L. G. Hou et al., 'Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites,' (in English), J. Alloy. Compd., Article vol. 695, pp. 2820-2826, Feb 2017, doi: 10.1016/j.jallcom.2016.11.422. [10] F. Ye, L. M. Liu, and L. J. Huang, 'Fabrication and mechanical properties of carbon short fiber reinforced barium aluminosilicate glass-ceramic matrix composites,' (in English), Compos. Sci. Technol., Article vol. 68, no. 7-8, pp. 1710-1717, Jun 2008, doi: 10.1016/j.compscitech.2008.02.004. [11] F. Y. Yang, X. H. Zhang, J. C. Han, and S. Y. Du, 'Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites,' (in English), Mater. Lett., Article vol. 62, no. 17-18, pp. 2925-2927, Jun 2008, doi: 10.1016/j.matlet.2008.01.076. [12] Z. S. Hua, G. C. Yao, J. F. Ma, and M. L. Zhang, 'Fabrication and mechanical properties of short ZrO2 fiber reinforced NiFe2O4 matrix composites,' (in English), Ceram. Int., Article vol. 39, no. 4, pp. 3699-3708, May 2013, doi: 10.1016/j.ceramint.2012.10.203. [13] S. Mortazavian and A. Fatemi, 'Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects,' J. Thermoplast. Compos. Mater., vol. 30, no. 10, pp. 1414-1437, 2016, doi: 10.1177/0892705716632863. [14] J. Cui, S. Wang, S. Wang, G. Li, P. Wang, and C. Liang, 'The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites,' Polymers (Basel), vol. 11, no. 12, Dec 5 2019, doi: 10.3390/polym11122019. [15] Z. K. Zhao et al., 'Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites: A comparative study,' (in English), Compos. Commun., Article vol. 8, pp. 1-6, Jun 2018, doi: 10.1016/j.coco.2018.02.001. [16] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, 'A Review on Natural Fiber Reinforced Polymer Composite and Its Applications,' International Journal of Polymer Science, vol. 2015, pp. 1-15, 2015, doi: 10.1155/2015/243947. [17] Jagadish, M. Rajakumaran, and A. Ray, 'Investigation on mechanical properties of pineapple leaf-based short fiber-reinforced polymer composite from selected Indian (northeastern part) cultivars,' (in English), J. Thermoplast. Compos. Mater., Article vol. 33, no. 3, pp. 324-342, Mar 2020, doi: 10.1177/0892705718805535. [18] M. Szpieg, M. Wysocki, and L. E. Asp, 'Mechanical performance and modelling of a fully recycled modified CF/PP composite,' J. Compos Mater., vol. 46, no. 12, pp. 1503-1517, 2011, doi: 10.1177/0021998311423860. [19] H. Meftah, S. Tamboura, J. Fitoussi, H. BenDaly, and A. Tcharkhtchi, 'Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension,' (in English), Appl. Compos. Mater., Article vol. 25, no. 3, pp. 507-526, Jun 2018, doi: 10.1007/s10443-017-9632-6. [20] M. S. Rouhi, M. Juntikka, J. Landberg, and M. Wysocki, 'Assessing models for the prediction of mechanical properties for the recycled short fibre composites,' (in English), J. Reinf. Plast. Compos., Article vol. 38, no. 10, pp. 454-466, May 2019, doi: 10.1177/0731684418824404. [21] T. Lin, D. Jia, P. He, M. Wang, and D. Liang, 'Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites,' (in English), Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Article vol. 497, no. 1-2, pp. 181-185, Dec 2008, doi: 10.1016/j.msea.2008.06.040. [22] N. Ferreira, C. Capela, J. M. Ferreira, and J. M. Costa, 'Effect of Water and Fiber Length on the Mechanical Properties of Polypropylene Matrix Composites,' (in English), Fiber. Polym., Article vol. 15, no. 5, pp. 1017-1022, May 2014, doi: 10.1007/s12221-014-1017-y. [23] C. Jayaseelan, P. Padmanabhan, A. Athijayamani, and K. Ramanathan, 'Comparative Investigation of Mechanical Properties of Epoxy Composites Reinforced with Short Fibers, Macro Particles, and Micro Particles,' (in English), BioResources, Article vol. 12, no. 2, pp. 2864-2871, 2017, doi: 10.15376/biores.12.2.2864-2871. [24] X. Y. Wang, F. Luo, X. M. Yu, D. M. Zhu, and W. C. Zhou, 'Influence of short carbon fiber content on mechanical and dielectric properties of C-fiber/Si3N4 composites,' (in English), Scr. Mater., Article vol. 57, no. 4, pp. 309-312, Aug 2007, doi: 10.1016/j.scriptamat.2007.04.030. [25] C. Capela, S. E. Oliveira, and J. A. M. Ferreira, 'Mechanical behavior of high dosage short carbon fiber reinforced epoxy composites,' (in English), Fiber. Polym., Article vol. 18, no. 6, pp. 1200-1207, Jun 2017, doi: 10.1007/s12221-017-7246-0. [26] W. W. Li, L. Liu, and B. Shen, 'Effect of Ni-coated short carbon fibers on the mechanical and electrical properties of epoxy composites,' (in English), Fiber. Polym., Article vol. 14, no. 9, pp. 1515-1520, Sep 2013, doi: 10.1007/s12221-013-1515-3. [27] F. Li et al., 'Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating,' Polymer, vol. 59, pp. 155-165, 2015/02/24/ 2015, doi: https://doi.org/10.1016/j.polymer.2014.12.067. [28] H. F. Lei, Z. Q. Zhang, and B. Liu, 'Effect of fiber arrangement on mechanical properties of short fiber reinforced composites,' (in English), Compos. Sci. Technol., Article vol. 72, no. 4, pp. 506-514, Feb 2012, doi: 10.1016/j.compscitech.2011.12.011. [29] W. Tian, L. Qi, C. Su, J. Zhou, and Z. Jing, 'Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation,' Composite Structures, vol. 152, pp. 408-417, 2016, doi: 10.1016/j.compstruct.2016.05.046. [30] L. P. Canal, C. González, J. Segurado, and J. Llorca, 'Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling,' Compos. Sci. Technol., vol. 72, no. 11, pp. 1223-1232, 2012, doi: 10.1016/j.compscitech.2012.04.008. [31] L. Riaño, L. Belec, J.-F. Chailan, and Y. Joliff, 'Effect of interphase region on the elastic behavior of unidirectional glass-fiber/epoxy composites,' Composite Structures, vol. 198, pp. 109-116, 2018. [32] J. Ge, L. Qi, X. Chao, Y. Xue, X. Hou, and H. Li, 'The effects of interphase parameters on transverse elastic properties of Carbon–Carbon composites based on FE model,' Composite Structures, vol. 268, 2021, doi: 10.1016/j.compstruct.2021.113961. [33] L. Wang, G. Nygren, R. L. Karkkainen, and Q. Yang, 'A multiscale approach for virtual testing of highly aligned short carbon fiber composites,' Composite Structures, vol. 230, 2019, doi: 10.1016/j.compstruct.2019.111462. [34] M. Takayanagi, S. Uemura, and S. Minami, 'Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer,' Journal of Polymer Science Part C: Polymer Symposia, vol. 5, no. 1, pp. 113-122, 1964, doi: https://doi.org/10.1002/polc.5070050111. [35] Y. Zare and K. Y. Rhee, 'Expansion of Takayanagi model by interphase characteristics and filler size to approximate the tensile modulus of halloysite-nanotube-filled system,' Journal of Materials Research and Technology, vol. 16, pp. 1628-1636, 2022, doi: 10.1016/j.jmrt.2021.12.082. [36] J. C. Halpin, 'Stiffness and Expansion Estimates for Oriented Short Fiber Composites,' J. Compos Mater., vol. 3, no. 4, pp. 732-734, 1969, doi: 10.1177/002199836900300419. [37] J. C. Halpin and J. L. Kardos, 'The Halpin-Tsai equations: A review,' Polymer Engineering & Science, vol. 16, no. 5, pp. 344-352, 1976, doi: https://doi.org/10.1002/pen.760160512. [38] Z. Luo, X. Li, J. Shang, H. Zhu, and D. Fang, 'Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication,' Advances in Mechanical Engineering, vol. 10, no. 7, 2018, doi: 10.1177/1687814018785286. [39] R. M. Christensen, 'Asymptotic modulus results for composites containing randomly oriented fibers,' International Journal of Solids and Structures, vol. 12, no. 7, pp. 537-544, 1976, doi: 10.1016/0020-7683(76)90036-6. [40] J. Epaarachchi, H. Ku, and K. Gohel, 'A Simplified Empirical Model for Prediction of Mechanical Properties of Random Short Fiber/Vinylester Composites,' (in English), J. Compos Mater., Article vol. 44, no. 6, pp. 779-788, Mar 2010, doi: 10.1177/0021998309346383. [41] I. Doghri, L. Brassart, L. Adam, and J. S. Gérard, 'A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites,' International Journal of Plasticity, vol. 27, no. 3, pp. 352-371, 2011, doi: 10.1016/j.ijplas.2010.06.004. [42] V. Müller, B. Brylka, F. Dillenberger, R. Glöckner, S. Kolling, and T. Böhlke, 'Homogenization of elastic properties of short-fiber reinforced composites based on measured microstructure data,' J. Compos Mater., vol. 50, no. 3, pp. 297-312, 2015, doi: 10.1177/0021998315574314. [43] P. A. Hessman, F. Welschinger, K. Hornberger, and T. Böhlke, 'On mean field homogenization schemes for short fiber reinforced composites: Unified formulation, application and benchmark,' International Journal of Solids and Structures, vol. 230-231, 2021, doi: 10.1016/j.ijsolstr.2021.111141. [44] A. Gupta, S. Hasanov, I. Fidan, and Z. Zhang, 'Homogenized modeling approach for effective property prediction of 3D-printed short fibers reinforced polymer matrix composite material,' The International Journal of Advanced Manufacturing Technology, vol. 118, no. 11-12, pp. 4161-4178, 2021, doi: 10.1007/s00170-021-08230-9. [45] O. Pierard, C. Friebel, and I. Doghri, 'Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation,' Compos. Sci. Technol., vol. 64, no. 10-11, pp. 1587-1603, 2004, doi: 10.1016/j.compscitech.2003.11.009. [46] J. Jung, S. Lee, B. Ryu, and S. Ryu, 'Investigation of effective thermoelectric properties of composite with interfacial resistance using micromechanics-based homogenisation,' International Journal of Heat and Mass Transfer, vol. 144, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118620. [47] S. Ryu, S. Lee, J. Jung, J. Lee, and Y. Kim, 'Micromechanics-Based Homogenization of the Effective Physical Properties of Composites With an Anisotropic Matrix and Interfacial Imperfections,' Frontiers in Materials, vol. 6, 2019, doi: 10.3389/fmats.2019.00021. [48] V. Müller, M. Kabel, H. Andrä, and T. Böhlke, 'Homogenization of linear elastic properties of short-fiber reinforced composites – A comparison of mean field and voxel-based methods,' International Journal of Solids and Structures, vol. 67-68, pp. 56-70, 2015, doi: 10.1016/j.ijsolstr.2015.02.030. [49] S. Y. Fu, B. Lauke, E. Mäder, C. Y. Yue, and X. Hu, 'Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites,' Composites Part A: Applied Science and Manufacturing, vol. 31, no. 10, pp. 1117-1125, 2000/10/01/ 2000, doi: https://doi.org/10.1016/S1359-835X(00)00068-3. [50] H. L. Tang, X. R. Zeng, X. B. Xiong, L. Li, and J. Z. Zou, 'Mechanical and tribological properties of short-fiber-reinforced SiC composites,' (in English), Tribol. Int., Article vol. 42, no. 6, pp. 823-827, Jun 2009, doi: 10.1016/j.triboint.2008.10.017. [51] A. P. Sharma, S. H. Khan, and V. Parameswaran, 'Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates,' Composites Part B: Engineering, vol. 125, pp. 259-274, 2017, doi: 10.1016/j.compositesb.2017.05.072. [52] Z. X. Lu, Z. S. Yuan, and Q. Liu, '3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios,' (in English), Comput. Mater. Sci., Article vol. 90, pp. 123-129, Jul 2014, doi: 10.1016/j.commatsci.2014.04.007. [53] H. Kebir and R. Ayad, 'A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The Projected Fibre approach,' Composite Structures, vol. 118, pp. 580-588, 2014, doi: 10.1016/j.compstruct.2014.07.046. [54] J. Zhi, L. Zhao, J. Zhang, and Z. Liu, 'A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension,' Appl. Compos. Mater., vol. 23, no. 3, pp. 255-269, 2015, doi: 10.1007/s10443-015-9459-y. [55] S. Daggumati, A. Sharma, and Y. S. Pydi, 'Micromechanical FE Analysis of SiCf/SiC Composite with BN Interface,' Silicon, vol. 12, no. 2, pp. 245-261, 2019, doi: 10.1007/s12633-019-00119-3. [56] S. M. Mirkhalaf, E. H. Eggels, T. J. H. van Beurden, F. Larsson, and M. Fagerström, 'A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites,' Composites Part B: Engineering, vol. 202, 2020, doi: 10.1016/j.compositesb.2020.108388. [57] S. E. Naleway, M. M. Porter, J. McKittrick, and M. A. Meyers, 'Structural Design Elements in Biological Materials: Application to Bioinspiration,' Adv Mater, vol. 27, no. 37, pp. 5455-76, Oct 7 2015, doi: 10.1002/adma.201502403. [58] B. Zhang, Q. Han, J. Zhang, Z. Han, S. Niu, and L. Ren, 'Advanced bio-inspired structural materials: Local properties determine overall performance,' Materials Today, vol. 41, pp. 177-199, 2020, doi: 10.1016/j.mattod.2020.04.009. [59] A. Ghimire, Y.-Y. Tsai, P.-Y. Chen, and S.-W. Chang, 'Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation,' Composites Part B: Engineering, vol. 215, p. 108754, 2021/06/15/ 2021, doi: https://doi.org/10.1016/j.compositesb.2021.108754. [60] Y. Chiang, C.-C. Tung, X.-D. Lin, P.-Y. Chen, C.-S. Chen, and S.-W. Chang, 'Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana,' Composite Structures, vol. 262, 2021, doi: 10.1016/j.compstruct.2020.113349. [61] Y. Y. Tsai, Y. Chiang, J. L. Buford, M. L. Tsai, H. C. Chen, and S. W. Chang, 'Mechanical and Crack Propagating Behavior of Sierpinski Carpet Composites,' ACS Biomater Sci Eng, Apr 11 2021, doi: 10.1021/acsbiomaterials.0c01595. [62] F. Libonati, G. X. Gu, Z. Qin, L. Vergani, and M. J. Buehler, 'Bone-Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing ' Advanced Engineering Materials, vol. 18, no. 8, pp. 1354-1363, 2016, doi: 10.1002/adem.201600143. [63] F. Libonati, V. Cipriano, L. Vergani, and M. J. Buehler, 'Computational Framework to Predict Failure and Performance of Bone-Inspired Materials,' ACS Biomater Sci Eng, vol. 3, no. 12, pp. 3236-3243, Dec 11 2017, doi: 10.1021/acsbiomaterials.7b00606. [64] L. Long, Z. Wang, and K. Chen, 'Analysis of the hollow structure with functionally gradient materials of moso bamboo,' Journal of Wood Science, vol. 61, no. 6, pp. 569-577, 2015, doi: 10.1007/s10086-015-1504-9. [65] G. X. Gu, C.-T. Chen, D. J. Richmond, and M. J. Buehler, 'Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment,' Materials Horizons, vol. 5, no. 5, pp. 939-945, 2018, doi: 10.1039/c8mh00653a. [66] G. X. Gu, C.-T. Chen, and M. J. Buehler, 'De novo composite design based on machine learning algorithm,' Extreme Mechanics Letters, vol. 18, pp. 19-28, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.eml.2017.10.001. [67] C. Yang, Y. Kim, S. Ryu, and G. X. Gu, 'Prediction of composite microstructure stress-strain curves using convolutional neural networks,' Materials & Design, vol. 189, 2020, doi: 10.1016/j.matdes.2020.108509. [68] K. Weiss, T. M. Khoshgoftaar, and D. Wang, 'A survey of transfer learning,' Journal of Big Data, vol. 3, no. 1, 2016, doi: 10.1186/s40537-016-0043-6. [69] Z. Q. Fuzhen Zhuang, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Senior Member, IEEE, and F. Hui Xiong, IEEE, and Qing He, 'A Comprehensive Survey on Transfer Learning,' 2020. [70] E. D. Cubuk, A. D. Sendek, and E. J. Reed, 'Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data,' J Chem Phys, vol. 150, no. 21, p. 214701, Jun 7 2019, doi: 10.1063/1.5093220. [71] J. Y. Jung, Y. Kim, J. Park, and S. Ryu, 'Transfer learning for enhancing the homogenization-theory-based prediction of elasto-plastic response of particle/short fiber-reinforced composites,' (in English), Composite Structures, Article vol. 285, p. 11, Apr 2022, doi: 10.1016/j.compstruct.2022.115210. [72] O. Iatrellis, I. Κ. Savvas, P. Fitsilis, and V. C. Gerogiannis, 'A two-phase machine learning approach for predicting student outcomes,' Education and Information Technologies, vol. 26, no. 1, pp. 69-88, 2020, doi: 10.1007/s10639-020-10260-x. [73] N. Zobeiry, J. Reiner, and R. Vaziri, 'Theory-guided machine learning for damage characterization of composites,' Composite Structures, vol. 246, 2020, doi: 10.1016/j.compstruct.2020.112407. [74] 'ABAQUS Documentation,' 2020. [Online]. Available: https://help.3ds.com/2020/English/DSSIMULIA_Established/SIMULIA_Established_FrontmatterMap/HelpViewerDS.aspx?version=2020&prod=DSSIMULIA_Established&lang=English&path=SIMULIA_Established_FrontmatterMap%2fsim-r-DSDocAbaqus.htm&ContextScope=all. [75] L. Bouaoune, Y. Brunet, A. El Moumen, T. Kanit, and H. Mazouz, 'Random versus periodic microstructures for elasticity of fibers reinforced composites,' Composites Part B: Engineering, vol. 103, pp. 68-73, 2016, doi: 10.1016/j.compositesb.2016.08.026. [76] W. Tian, L. Qi, X. Chao, J. Liang, and M. Fu, 'Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures,' Composites Part B: Engineering, vol. 162, pp. 1-10, 2019, doi: 10.1016/j.compositesb.2018.10.053. [77] S. Plimpton, P. Crozier, and A. Thompson, 'LAMMPS-large-scale atomic/molecular massively parallel simulator,' Sandia National Laboratories, vol. 18, p. 43, 2007. [78] I. T. Jolliffe and J. Cadima, 'Principal component analysis: a review and recent developments,' Philos Trans A Math Phys Eng Sci, vol. 374, no. 2065, p. 20150202, Apr 13 2016, doi: 10.1098/rsta.2015.0202. [79] P. Domingos, 'A few useful things to know about machine learning,' Communications of the ACM, vol. 55, no. 10, pp. 78-87, 2012, doi: 10.1145/2347736.2347755. [80] F. CHOLLET, 'Deep Learning with Python,' 2018. [81] S. C. Douglas and J. Yu, 'Why RELU Units Sometimes Die: Analysis of Single-Unit Error Backpropagation in Neural Networks,' in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 28-31 Oct. 2018 2018, pp. 864-868, doi: 10.1109/ACSSC.2018.8645556. [Online]. Available: https://ieeexplore.ieee.org/document/8645556/ [82] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, 'Fast and accurate deep network learning by exponential linear units (elus),' arXiv preprint arXiv:1511.07289, 2015. [83] D. Hendrycks and K. Gimpel, 'Gaussian error linear units (gelus),' arXiv preprint arXiv:1606.08415, 2016. [84] S. Ioffe and C. Szegedy, 'Batch normalization: Accelerating deep network training by reducing internal covariate shift,' in International conference on machine learning, 2015: PMLR, pp. 448-456. [85] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86648-
dc.description.abstract本研究針對短纖維複合材及仿生階層複合結構建立了一套以深度神經網絡預測應力應變曲線的流程。從古至今,材料的發展一直都在帶領著人類生活不斷地進步。近年來,因為電腦計算模擬技術、3D列印及機器學習等先進技術的蓬勃發展,材料的設計得以更加深入地探討,能拓展的層面也越來越廣。因此,透過機器學習輔助,在廣大的設計空間中藉由預測應力應變曲線來更加了解材料性質,找尋符合需求的材料,是本研究主要的宗旨。 短纖維複合材料的材料性質受許多因素影響,如纖維形狀、纖維含量、纖維的的方向性及基體材料與纖維之間的介面的品質等。三維的有限元素分析能精準的預測短纖維複合材料的材料性質;然而,計算需耗費相當大的計算資源及成本。因此,本研究利用主成分分析(PCA)降維後訓練了深度神經網絡(DNN)預測模型,建立材料組成物的性質以及由有限元素分析(FEA)得來的應力應變曲線的關係,以預測短纖維複合材料的應力應變曲線,再由應力應變曲線求得其各應變下的應力與勁度。此預測模型材料性質的決定係數(R2)皆高達0.9以上,而預測之應力應變曲線與真實值之應力應變曲線比較下的相對最大誤差大部分都小於10%。此外,本研究亦提出應用理論引導之機器學習(TGML)以及兩階段機器學習(two-phase learning)之方法來提升預測模型之準確度。而上述方法可延伸應用於其他具非線性材料性質之複合材料分析。 另外,自然環境中生物材料具有相當好的機械性質與多功能性,因此值得我們作為設計材料時的參考。本研究的仿生階層複合結構是啟發自骨頭的拓墣與竹子的階層密度分佈。本研究運用主成分分析降維後訓練了另一個深度神經網絡預測模型,建立複合材各階層之體積分率與來自二維三角晶格彈簧模型(LSM)模擬得到的應力應變曲線的關係,以預測具破壞行為之仿生階層複合結構的應力應變曲線,再由其應力應變曲線求得最大強度及韌性。此部分預測模型韌性的決定係數高達0.85,而強度的決定係數亦達0.8。因此可驗證此預測模型可以準確且有效地預測材料的應力應變曲線,在廣大的設計空間中能夠更快速地了解材料性質,更進一步去促進材料設計的發展與最佳化。zh_TW
dc.description.abstractIn recent years, attributed to the advancement in computational simulations and 3D printing experiments, the development of materials has made considerable progress. Despite these material analysis methods providing highly accurate predictions of material properties, they are not feasible to explore the colossal design space of structural materials due to the high cost and time consumption. Therefore, in this research, machine learning techniques are utilized to predict stress-strain curves of different composite materials and further understand the mechanical behaviors of composites. Firstly, this study predicts the mechanical response of short fiber-reinforced composites (SFRCs). The properties of SFRCs greatly depend on several factors, such as fiber shape, fiber content, fiber orientation, and the interphase quality between fiber and matrix materials. Three-dimensional finite element analyses (FEA) for the SFRCs predict composite properties accurately; however, the tremendous consumption of computational cost and time is a critical disadvantage. With the aid of machine learning techniques, the predictions of the composite properties can be produced effectively and accurately at the same time when having a sufficient amount of data. In this research, we propose a machine learning approach via training a deep learning network with the FEA dataset to predict the nonlinear mechanical response of short fiber-reinforced composites. Moreover, theory-guided machine learning (TGML) and two-phase learning approaches are adopted to enhance predictive performances. Our results show that TGML and two-phase learning methods can capture more information on the data and thus improve predictive performances. The proposed method can be extended to other composite analyses with nonlinear mechanical behavior. Secondly, the mechanical responses of bio-inspired layered structural composites are predicted in this work. Biological materials evolve extraordinary protective systems to survive the competitive environment, thus having outstanding mechanical properties and multifunctionality. For instance, bone and bamboo are both bio-composites with superior mechanical properties. In this research, the composite structures are inspired by the topology of bone and the density distribution of bamboo. To explore the vast design space of structural materials, we developed a machine learning-based surrogate model using a combination of principal component analysis (PCA) and deep neural networks (DNN) and predicted the entire stress-strain behavior of the bio-inspired layered composite structures. The results show that the surrogate model is accurate and efficient for investigating the design space. The proposed approach in this work can be extended to other composite structures to accelerate material design and optimization.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:08:51Z (GMT). No. of bitstreams: 1
U0001-0208202214322600.pdf: 20419374 bytes, checksum: 6ed79c0c094ef09398c4627f0a8fa425 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 iii Abstract v List of Contents vii List of Figures ix List of Tables xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 4 1.3 Objectives of the Thesis 12 1.4 Organization of the Thesis 13 Chapter 2 Materials and Methods 15 2.1 Data Generation 15 2.1.1 FCC-Structured RVE SFRC Dataset 15 2.1.2 Bio-Inspired Layered Structural Composite Dataset 18 2.2 Principal Component Analysis 21 2.3 Machine Learning Approaches 22 2.3.1 Fundamental Concepts of Machine Learning 22 2.3.2 Deep Learning 23 Chapter 3 Stress-strain Curve Predictions of SFRCs 29 3.1 Dataset Preparation 29 3.2 DNN Model Setup 32 3.3 Results and Discussion 36 3.4 Summary 42 Chapter 4 TGML and Two-phase Learning for Enhancing Stress-strain Curve Predictions of SFRCs 43 4.1 Dataset Preparation 44 4.1.1 Dataset for Each Task 44 4.1.2 Data Preparation for Model X 45 4.1.3 Data Preparation for Model Y 46 4.1.4 Data Preparation for Model Z 47 4.2 DNN Model Setup 49 4.3 Results and Discussion 49 4.4 Summary 79 Chapter 5 Stress-strain Curve Predictions of Bio-inspired Layered Structural Composites 81 5.1 Dataset Preparation 82 5.2 DNN Model Setup 84 5.3 Results and Discussion 87 5.4 Properties Prediction of Whole Design Space 90 5.5 Summary 91 Chapter 6 Conclusions and Future Work 93 6.1 Conclusions 93 6.2 Future Work 94 References 95
dc.language.isoen
dc.subject理論引導之機器學習zh_TW
dc.subject機器學習zh_TW
dc.subject深度神經網絡zh_TW
dc.subject短纖維複合材料zh_TW
dc.subject兩階段機器學習zh_TW
dc.subject仿生階層複合結構zh_TW
dc.subject機器學習zh_TW
dc.subject深度神經網絡zh_TW
dc.subject短纖維複合材料zh_TW
dc.subject理論引導之機器學習zh_TW
dc.subject兩階段機器學習zh_TW
dc.subject仿生階層複合結構zh_TW
dc.subjectTwo-phase Learningen
dc.subjectTheory-guided Machine Learningen
dc.subjectTwo-phase Learningen
dc.subjectBio-inspired Layered Structural Compositeen
dc.subjectDeep Neural Networken
dc.subjectShort Fiber-reinforced Compositeen
dc.subjectTheory-guided Machine Learningen
dc.subjectBio-inspired Layered Structural Compositeen
dc.subjectMachine Learningen
dc.subjectMachine Learningen
dc.subjectDeep Neural Networken
dc.subjectShort Fiber-reinforced Compositeen
dc.title深度神經網路應用於短纖維複合材及仿生階層複合結構的應力應變曲線預測zh_TW
dc.titleStress-strain curve prediction of short fiber-reinforced composites and bio-inspired layered structural composites using deep neural networksen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan Chen),黃仲偉(Chang-Wei Huang),陳柏宇(Po-Yu Chen),周佳靚(Chia-Ching Chou)
dc.subject.keyword機器學習,深度神經網絡,短纖維複合材料,理論引導之機器學習,兩階段機器學習,仿生階層複合結構,zh_TW
dc.subject.keywordMachine Learning,Deep Neural Network,Short Fiber-reinforced Composite,Theory-guided Machine Learning,Two-phase Learning,Bio-inspired Layered Structural Composite,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202201971
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2022-08-05-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0208202214322600.pdf19.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved