Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯詠德(Yung-Te Hou)
dc.contributor.authorYi-Cheng Hsiehen
dc.contributor.author謝宜成zh_TW
dc.date.accessioned2023-03-20T00:07:53Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-05
dc.identifier.citation[1] J.-K. Park, D.-H. Lee, Bioartificial liver systems: current status and future perspective, 99(4) (2005) 311-319. [2] K.S. Hung, T.H. Lee, W.Y. Chou, C.L. Wu, C.L. Cho, C.N. Lu, B. Jawan, C.H. Wang, Interleukin-10 gene therapy reverses thioacetamide-induced liver fibrosis in mice, Biochemical and Biophysical Research Communications 336(1) (2005) 324-331. [3] T. Poynard, P. Bedossa, P. Opolon, Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups, Lancet 349(9055) (1997) 825-32. [4] R.H. Westbrook, G. Dusheiko, Natural history of hepatitis C, Journal of Hepatology 61(1, Supplement) (2014) S58-S68. [5] M.W. McCrary, D. Bousalis, S. Mobini, Y.H. Song, C.E. Schmidt, Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues, Acta Biomater. 111 (2020) 1-19. [6] S. Dash, Y. Aydin, T. Wu, Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis, Seminars in Cell & Developmental Biology 101 (2020) 20-35. [7] K. Matsumoto, T. Nakamura, Hepatocyte growth factor: molecular structure and implications for a central role in liver regeneration, J Gastroenterol Hepatol 6(5) (1991) 509-19. [8] Y. Ishiki, H. Ohnishi, Y. Muto, K. Matsumoto, T. Nakamura, Direct evidence that hepatocyte growth factor is a hepatotrophic factor for liver regeneration and has a potent antihepatitis effectin vivo, 16(5) (1992) 1227-1235. [9] W.K.E. Ip, N. Hoshi, D.S. Shouval, S. Snapper, R. Medzhitov, Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages, Science 356(6337) (2017) 513-519. [10] M. Saraiva, A. O'Garra, The regulation of IL-10 production by immune cells, Nature Reviews Immunology 10(3) (2010) 170-181. [11] S.R. Andersen, L.J. Lambrecht, S.K. Swan, D.L. Cutler, E. Radwanski, M.B. Affrime, J.J. Garaud, Disposition of recombinant human interleukin-10 in subjects with various degrees of renal function, J Clin Pharmacol 39(10) (1999) 1015-20. [12] A. Segarra-Medrano, C. Carnicer-Caceres, N. Valtierra-Carmeno, I. Agraz-Pamplona, N. Ramos-Terrades, E. Jatem Escalante, E. Ostos-Roldan, Value of urinary levels of interleukin-6, epidermal growth factor, monocyte chemoattractant protein type1 and transforming growth factor β1 in predicting the extent of fibrosis lesions in kidney biopsies of patients with IgA nephropathy, Nefrologia 37(5) (2017) 531-538. [13] S. Pulavendran, M. Rajam, C. Rose, B. Mandal, Hepatocyte growth factor incorporated chitosan nanoparticles differentiate murine bone marrow mesenchymal stem cell into hepatocytes in vitro, IET Nanobiotechnol. 4(3) (2010) 51-60. [14] S.A. Duncan, S. Dixit, R. Sahu, D. Martin, D.R. Baganizi, E. Nyairo, F. Villinger, S.R. Singh, V.A. Dennis, Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles, Nanomaterials 9(8) (2019) 16. [15] Y. Kobayashi, M. Hamanoue, S. Ueno, T. Aikou, G. Tanabe, S. Mitsue, K. Matsumoto, T. Nakamura, Induction of Hepatocyte Growth by Intraportal Infusion of HGF into Beagle Dogs, Biochemical and Biophysical Research Communications 220(1) (1996) 7-12. [16] S. Huang, S.J. Chang, M. Yang, J.J.C. Chen, W.H. Chang, Nanoscale hepatoprotective herbal decoction attenuates hepatic stellate cell activity and chloroform-induced liver damage in mice, Int. J. Nanomed. 6 (2011) 7. [17] L.W.D. Weber, M. Boll, A. Stampfl, Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model, Crit. Rev. Toxicol. 33(2) (2003) 105-136. [18] Y.-C. Hsieh, W.-R. Yin, Y.-Y. Xu, Y.-T. Hou, HGF/heparin-immobilized decellularized liver matrices as novel hepatic patches for hepatocyte regeneration in an acute liver injury model, Biochemical Engineering Journal 180 (2022) 108354. [19] G. Mazza, W. Al‐Akkad, K. Rombouts, M. Pinzani, Liver tissue engineering: From implantable tissue to whole organ engineering, Hepatology Communications 2(2) (2018) 131-141. [20] S.F. Badylak, T.W. Gilbert, Immune response to biologic scaffold materials, Semin Immunol 20(2) (2008) 109-16. [21] B.E. Uygun, A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, K. Uygun, Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nature Medicine 16(7) (2010) 814-820. [22] S.W. Cho, S.H. Lim, I.K. Kim, Y.S. Hong, S.S. Kim, K.J. Yoo, H.Y. Park, Y. Jang, B.C. Chang, C.Y. Choi, K.C. Hwang, B.S. Kim, Small-diameter blood vessels engineered with bone marrow-derived cells, Ann Surg 241(3) (2005) 506-15. [23] S.W. Cho, I.K. Kim, J.M. Kang, K.W. Song, H.S. Kim, C.H. Park, K.J. Yoo, B.S. Kim, Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery, Tissue Eng Part A 15(4) (2009) 901-12. [24] C. Quint, Y. Kondo, R.J. Manson, J.H. Lawson, A. Dardik, L.E. Niklason, Decellularized tissue-engineered blood vessel as an arterial conduit, Proc Natl Acad Sci U S A 108(22) (2011) 9214-9. [25] T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, L.E. Niklason, Tissue-engineered lungs for in vivo implantation, Science 329(5991) (2010) 538-41. [26] H.C. Ott, T.S. Matthiesen, S.-K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, D.A. Taylor, Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart, Nature Medicine 14(2) (2008) 213-221. [27] S.B. Seif-Naraghi, J.M. Singelyn, M.A. Salvatore, K.G. Osborn, J.J. Wang, U. Sampat, O.L. Kwan, G.M. Strachan, J. Wong, P.J. Schup-Magoffin, R.L. Braden, K. Bartels, J.A. DeQuach, M. Preul, A.M. Kinsey, A.N. DeMaria, N. Dib, K.L. Christman, Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction, Sci Transl Med 5(173) (2013) 173ra25. [28] J.S. Lee, J. Shin, H.M. Park, Y.G. Kim, B.G. Kim, J.W. Oh, S.W. Cho, Liver Extracellular Matrix Providing Dual Functions of Two-Dimensional Substrate Coating and Three-Dimensional Injectable Hydrogel Platform for Liver Tissue Engineering, Biomacromolecules 15(1) (2014) 206-218. [29] S. Nakamura, H. Ijima, Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture, J Biosci Bioeng 116(6) (2013) 746-53. [30] T.W. Gilbert, T.L. Sellaro, S.F. Badylak, Decellularization of tissues and organs, Biomaterials 27(19) (2006) 3675-83. [31] P. Ammann, C.L. Laethem, G.L. Kedderis, Chloroform-induced cytolethality in freshly isolated male B6C3F1 mouse and F-344 rat hepatocytes, Toxicol Appl Pharmacol 149(2) (1998) 217-25. [32] L.R. Pohl, B. Bhooshan, N.F. Whittaker, G. Krishna, Phosgene: A metabolite of chloroform, Biochemical and Biophysical Research Communications 79(3) (1977) 684-691. [33] A.S. Burke, K. Redeker, R.C. Kurten, L.P. James, J.A. Hinson, Mechanisms of chloroform-induced hepatotoxicity: oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes, J Toxicol Environ Health A 70(22) (2007) 1936-45. [34] N.S. el-Shenawy, M.S. Abdel-Rahman, The mechanism of chloroform toxicity in isolated rat hepatocytes, Toxicol Lett 69(1) (1993) 77-85. [35] M.I. Luster, P.P. Simeonova, R.M. Gallucci, A. Bruccoleri, M.E. Blazka, B. Yucesoy, Role of inflammation in chemical-induced hepatotoxicity, Toxicology Letters 120(1) (2001) 317-321. [36] G. Plaa, Chlorinated Methanes and Liver Injury: Highlights of the Past 50 Years, Annual review of pharmacology and toxicology 40 (2000) 42-65. [37] A.T. Williams, R.F. Burk, Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury, Semin Liver Dis 10(4) (1990) 279-84. [38] R.O. Recknagel, E.A. Glende, Jr., J.A. Dolak, R.L. Waller, Mechanisms of carbon tetrachloride toxicity, Pharmacol Ther 43(1) (1989) 139-54. [39] B.A. Mico, L.R. Pohl, Reductive oxygenation of carbon tetrachloride: trichloromethylperoxyl radical as a possible intermediate in the conversion of carbon tetrachloride to electrophilic chlorine, Arch Biochem Biophys 225(2) (1983) 596-609. [40] L.G. Forni, J.E. Packer, T.F. Slater, R.L. Willson, Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: A pulse radiolysis study, Chemico-Biological Interactions 45(2) (1983) 171-177. [41] J.A. Castro, Mechanistical studies and prevention of free radical cell injury, in: W. Paton, J. Mitchell, P. Turner (Eds.), IUPHAR 9th International Congress of Pharmacology: Proceedings Volume 2, Macmillan Education UK, London, 1984, pp. 243-250. [42] E.G. de Toranzo, A. Marzi, J.A. Castro, Effects of cysteine and cystamine on the carbon tetrachloride induced decrease in arachidonic acid content of rat liver microsomal phospholipids, Toxicology 19(1) (1981) 77-82. [43] D.P. Hartley, K.L. Kolaja, J. Reichard, D.R. Petersen, 4-Hydroxynonenal and malondialdehyde hepatic protein adducts in rats treated with carbon tetrachloride: immunochemical detection and lobular localization, Toxicol Appl Pharmacol 161(1) (1999) 23-33. [44] E.A. Smuckler, E.P. Benditt, Studies on Carbon Tetrachloride Intoxication. III. A Subcellular Defect in Protein Synthesis*, Biochemistry 4(4) (1965) 671-679. [45] T. Nishimaki-Mogami, K. Suzuki, A. Takahashi, The role of phosphatidylethanolamine methylation in the secretion of very low density lipoproteins by cultured rat hepatocytes: rapid inhibition of phosphatidylethanolamine methylation by bezafibrate increases the density of apolipoprotein B48-containing lipoproteins, Biochim Biophys Acta 1304(1) (1996) 21-31. [46] M. Parola, E. Albano, R. Autelli, G. Barrera, M.E. Biocca, L. Paradisi, M.U. Dianzani, Inhibition of the high affinity Ca2+-ATPase activity in rat liver plasma membranes following carbon tetrachloride intoxication, Chemico-Biological Interactions 73(1) (1990) 103-119. [47] T. Nakamura, K. Nawa, A. Ichihara, N. Kaise, T. Nishino, Purification and subunit structure of hepatocyte growth factor from rat platelets, FEBS Lett 224(2) (1987) 311-6. [48] M. Bueno, S. Salgado, C. Beas-Zárate, J. Armendariz-Borunda, Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF, Journal of Gene Medicine 8(11) (2010) 1291-1299. [49] T. Nakamura, S. Mizuno, The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine, Proceedings of the Japan Academy Series B-Physical and Biological Sciences 86(6) (2010) 588-610. [50] N.A. Lokker, M.R. Mark, E.A. Luis, G.L. Bennett, K.A. Robbins, J.B. Baker, P.J. Godowski, Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding, EMBO J 11(7) (1992) 2503-2510. [51] T.S. Helling, Liver failure following partial hepatectomy, HPB (Oxford) 8(3) (2006) 165-174. [52] H. Ijima, Y.-T. Hou, T. Takei, Development of hepatocyte-embedded hydrogel-filled macroporous scaffold cultures using transglutaminase, Biochemical Engineering Journal 52(2) (2010) 276-281. [53] Y.T. Hou, H. Ijima, S. Matsumoto, T. Kubo, T. Takei, S. Sakai, K. Kawakami, Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes, J. Biosci. Bioeng. 110(2) (2010) 208-216. [54] M. Gumustekin, B. Sis, G. Bulut, A. Kargi, I. Oztop, N. Olgun, N. Atabey, The role of HGF/C-met signalling pathway on the non-small cell lung cancer, Febs Journal 273 (2006) 89-89. [55] D.R. LaBrecque, L.A. Pesch, Preparation and partial characterization of hepatic regenerative stimulator substance (SS) from rat liver, J Physiol 248(2) (1975) 273-84. [56] G.K. Michalopoulos, R. Zarnegar, K. Houck, P. Pediaditakis, Hepatopoietins A and B and hepatocyte growth, 36(5) (1991) 681-686. [57] T. Nakamura, T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sugimura, K. Tashiro, S. Shimizu, Molecular cloning and expression of human hepatocyte growth factor, Nature 342(6248) (1989) 440-443. [58] J.A. Deakin, B. Blaum, J.T. Gallagher, D. Uhrin, M. Lyon, The Binding Properties of Minimal Oligosaccharides Reveal a Common Heparan Sulfate/Dermatan Sulfate-binding Site in Hepatocyte Growth Factor/Scatter Factor That Can Accommodate a Wide Variety of Sulfation Patterns, J. Biol. Chem. 284(10) (2009) 6311-6321. [59] T. Kinoshita, S. Hirao, K. Matsumoto, T. Nakamura, Possible endocrine control by hepatocyte growth factor of liver regeneration after partial hepatectomy, Biochem Biophys Res Commun 177(1) (1991) 330-5. [60] M. Kan, G.H. Zhang, R. Zarnegar, G. Michalopoulos, Y. Myoken, W.L. McKeehan, J.I. Stevens, Hepatocyte growth factor/hepatopoietin A stimulates the growth of rat kidney proximal tubule epithelial cells (RPTE), rat nonparenchymal liver cells, human melanoma cells, mouse keratinocytes and stimulates anchorage-independent growth of SV-40 transformed RPTE, Biochem Biophys Res Commun 174(1) (1991) 331-7. [61] E. Gherardi, M. Stoker, Hepatocytes and scatter factor, Nature 346(6281) (1990) 228-228. [62] Y. Okano, K. Mizuno, S. Osada, T. Nakamura, Y. Nozawa, Tyrosine Phosphorylation of Phospholipase Cγ in c-met/HGF Receptor-Stimulated Hepatocytes: Comparison with HepG2 Hepatocarcinoma Cells, Biochemical and Biophysical Research Communications 190(3) (1993) 842-848. [63] K. Tashiro, M. Hagiya, T. Nishizawa, T. Seki, M. Shimonishi, S. Shimizu, T. Nakamura, Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues, 87(8) (1990) 3200-3204. [64] K.D. Grugan, C.G. Miller, Y. Yao, C.Z. Michaylira, S. Ohashi, A.J. Klein-Szanto, A. Diehl, M. Herlyn, M. Han, H. Nakagawa, A.K. Rustgi, Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion, Proc. Natl. Acad. Sci. U. S. A. 107(24) (2010) 11026-11031. [65] T. Fukushima, S. Uchiyama, H. Tanaka, H. Kataoka, Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair, Int. J. Mol. Sci. 19(11) (2018) 11. [66] A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, M. Taghadosi, S.-A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J.T. Afshari, A. Sahebkar, Macrophage plasticity, polarization, and function in health and disease, Journal of Cellular Physiology 233(9) (2018) 6425-6440. [67] M. Kamimoto, S. Mizuno, T. Nakamura, Reciprocal regulation of IL-6 and IL-10 balance by HGF via recruitment of heme oxygenase-1 in macrophages for attenuation of liver injury in a mouse model of endotoxemia, International Journal of Molecular Medicine 24(2) (2009) 161-170. [68] M. Mian, S. Davison, B. Alshiwanna, The appropriate use of transjugular intrahepatic portosystemic shunts in patients with diuretic refractory ascites, Journal of Gastroenterology and Hepatology 35 (2020) 102-103. [69] D.J. Mooney, S. Park, P.M. Kaufmann, K. Sano, K. McNamara, J.P. Vacanti, R. Langer, Biodegradable sponges for hepatocyte transplantation, 29(8) (1995) 959-965. [70] C.L. Willoughby, S. Ralles, S.P. Christiansen, L.K. McLoon, Effects of sequential injections of hepatocyte growth factor and insulin-like growth factor-I on adult rabbit extraocular muscle, J aapos 16(4) (2012) 354-60. [71] A. Ido, A. Moriuchi, M. Numata, T. Murayama, S. Teramukai, H. Marusawa, N. Yamaji, H. Setoyama, I.-D. Kim, T. Chiba, S. Higuchi, M. Yokode, M. Fukushima, A. Shimizu, H. Tsubouchi, Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety, Journal of Translational Medicine 9(1) (2011) 55. [72] H.K. Chang, P.H. Kim, H.M. Cho, S.Y. Yum, Y.J. Choi, Y. Son, D. Lee, I. Kang, K.S. Kang, G. Jang, J.Y. Cho, Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis, Mol Ther 24(9) (2016) 1644-54. [73] B.Y. Owusu, R. Galemmo, J. Janetka, L. Klampfer, Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment, Cancers (Basel) 9(4) (2017). [74] A.C. Sheka, O. Adeyi, J. Thompson, B. Hameed, P.A. Crawford, S. Ikramuddin, Nonalcoholic Steatohepatitis: A Review, JAMA-J. Am. Med. Assoc. 323(12) (2020) 1175-1183. [75] R. Linhardt, Heparin: structure and activity, J Med Chem 46 (2003) 2551-2554. [76] L.C. Wang, J.R. Brown, A. Varki, J.D. Esko, Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins, J. Clin. Invest. 110(1) (2002) 127-136. [77] D. Naka, T. Ishii, T. Shimomura, T. Hishida, H. Hara, Heparin modulates the receptor-binding and mitogenic activity of hepatocyte growth factor on hepatocytes, Exp Cell Res 209(2) (1993) 317-24. [78] H. Zhou, J.R. Casas-Finet, R. Heath Coats, J.D. Kaufman, S.J. Stahl, P.T. Wingfield, J.S. Rubin, D.P. Bottaro, R.A. Byrd, Identification and dynamics of a heparin-binding site in hepatocyte growth factor, Biochemistry 38(45) (1999) 14793-802. [79] Y. Kato, K.-X. Liu, T. Nakamura, Y. Sugiyama, Heparin-hepatocyte growth factor complex with low plasma clearance and retained hepatocyte proliferating activity, 20(2) (1994) 417-424. [80] S. Salek-Ardakani, J.R. Arrand, D. Shaw, M. Mackett, Heparin and heparan sulfate bind interleukin-10 and modulate its activity, Blood 96(5) (2000) 1879-1888. [81] R. Hershkoviz, R. Bruck, H. Aeed, H. Shirin, Z. Halpern, Treatment of concanavalin A-induced hepatitis in mice with low molecular weight heparin, Journal of Hepatology 31(5) (1999) 834-840. [82] Y. Kim, Y.W. Kim, S.B. Lee, K. Kang, S. Yoon, D. Choi, S.-H. Park, J. Jeong, Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury, Biomaterials 274 (2021) 120899. [83] H.-G. Yi, Y.-J. Choi, K.S. Kang, J.M. Hong, R.G. Pati, M.N. Park, I.K. Shim, C.M. Lee, S.C. Kim, D.-W. Cho, A 3D-printed local drug delivery patch for pancreatic cancer growth suppression, Journal of Controlled Release 238 (2016) 231-241. [84] F. Nobakht Lahrood, M. Saheli, Z. Farzaneh, P. Taheri, M. Dorraj, H. Baharvand, M. Vosough, A. Piryaei, Generation of Transplantable Three-Dimensional Hepatic-Patch to Improve the Functionality of Hepatic Cells In Vitro and In Vivo, Stem Cells and Development 29(5) (2020) 301-313. [85] A. Griesemer, K. Yamada, M. Sykes, Xenotransplantation: immunological hurdles and progress toward tolerance, Immunol Rev 258(1) (2014) 241-58. [86] M. Gumustekin, A. Kargi, G. Bulut, A. Gozukizil, C. Ulukus, I. Oztop, N. Atabey, HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer, Pathol Oncol Res 18(2) (2012) 209-18. [87] M. Yamamoto, S. Ariizumi, Glissonean pedicle approach in liver surgery, Ann. Gastroent. Surg. 2(2) (2018) 124-128. [88] S. Balog, Y. Li, T. Ogawa, T. Miki, T. Saito, S.W. French, K. Asahina, Development of Capsular Fibrosis Beneath the Liver Surface in Humans and Mice, Hepatology (2019). [89] G.X.V. Tan, R. Miranda, T. Sutherland, Causes of hepatic capsular retraction: a pictorial essay, Insights into Imaging 7(6) (2016) 831-840. [90] P.R. Kiela, F.K. Ghishan, Physiology of Intestinal Absorption and Secretion, Best Pract Res Clin Gastroenterol 30(2) (2016) 145-59. [91] K. Mertens, A. Kalsbeek, M. Soeters, H. Eggink, Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System, Frontiers in Neuroscience 11 (2017). [92] M. Varga, Chapter 1 - Rabbit Basic Science, in: M. Varga (Ed.), Textbook of Rabbit Medicine (Second Edition), Butterworth-Heinemann2014, pp. 3-108. [93] Q. Wu, J. Bao, Y.-J. Zhou, Y.-J. Wang, Z.-G. Du, Y.-J. Shi, L. Li, H. Bu, Optimizing Perfusion-Decellularization Methods of Porcine Livers for Clinical-Scale Whole-Organ Bioengineering, BioMed Research International 2015 (2015) 1-9. [94] B. Staels, A. Rubenstrunk, B. Noel, G. Rigou, P. Delataille, L.J. Millatt, M. Baron, A. Lucas, A. Tailleux, D.W. Hum, V. Ratziu, B. Cariou, R. Hanf, Hepatoprotective Effects of the Dual Peroxisome Proliferator-Activated Receptor Alpha/Delta Agonist, GFT505, in Rodent Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis, Hepatology 58(6) (2013) 1941-1952. [95] D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation, Journal of Immunological Methods 94(1) (1986) 57-63. [96] M.F. Clark, A.N. Adams, Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses, J Gen Virol 34(3) (1977) 475-83. [97] T. Decker, M.L. Lohmann-Matthes, A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity, J Immunol Methods 115(1) (1988) 61-9. [98] S. Sekiya, A. Suzuki, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature 475(7356) (2011) 390-3. [99] C. Saidani, D. Hammoudi-Triki, F. Laraba-Djebari, M. Taub, In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis, Toxicon 120 (2016) 29-37. [100] V. Lala, A. Goyal, P. Bansal, D.A. Minter, Liver Function Tests, StatPearls, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC., Treasure Island (FL), 2021. [101] C. Barbas, D. Burton, J. Scott, G. Silverman, Quantitation of DNA and RNA, CSH protocols 2007 (2007) pdb.ip47. [102] M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res 29(9) (2001) e45. [103] D. Ingber, Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis, J Cell Biochem 47(3) (1991) 236-41. [104] Q.Y. Li, B.E. Uygun, S. Geerts, S. Ozer, M. Scalf, S.E. Gilpin, H.C. Ott, M.L. Yarmush, L.M. Smith, N.V. Welham, B.L. Frey, Proteomic analysis of naturally-sourced biological scaffolds, Biomaterials 75 (2016) 37-46. [105] Y.T. Hou, S.H. Hsu, K.M. Lee, Decellularized liver matrix as substrates for rescue of acute hepatocytes toxicity, Journal of Biomedical Materials Research Part B: Applied Biomaterials 108(4) (2020) 1592-1602. [106] L. Shen, A. Hillebrand, D.Q. Wang, M. Liu, Isolation and primary culture of rat hepatic cells, J Vis Exp (64) (2012). [107] C. Hu, L. Li, In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration, Protein Cell 6(8) (2015) 562-74. [108] C.N.M. Trang, H.N.Q. Chi, N.K. Manh, H.N. Son, D.-N. Ngo, L.T. Long, The Chloroform Extracts of Vietnamese Sophora flavescens Ait. Inhibit the Proliferation of HepG2 Cells through Apoptosis Induction, Applied Sciences 12(12) (2022) 5906. [109] R.E. Shangraw, F. Jahoor, Effect of liver disease and transplantation on urea synthesis in humans: relationship to acid-base status, American Journal of Physiology-Gastrointestinal and Liver Physiology 276(5) (1999) G1145-G1152. [110] F. Li, Y. Yang, L. Yang, K. Wang, X. Zhang, Y. Zong, Y. Ding, C. Wang, L. Zhang, G. Ji, Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress, Oncotarget 8(27) (2017) 43799-43809. [111] M. Domínguez-Pérez, N. Nuño-Lámbarri, D. Clavijo-Cornejo, A. Luna-López, V. Souza, L. Bucio, R.U. Miranda, L. Muñoz, L.E. Gomez-Quiroz, S. Uribe-Carvajal, M.C. Gutiérrez-Ruiz, Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress, Oxidative Med. Cell. Longev. 2016 (2016) 7960386. [112] W.-C. Lee, H.A. Jung, J.S. Choi, Y.S. Kim, S.-M. Lee, Protective Effects of Luteolin against Apoptotic Liver Damage Induced by d-Galactosamine/Lipopolysaccharide in Mice, Journal of Natural Products 74(9) (2011) 1916-1921. [113] A. Ghallab, M. Myllys, C. H. Holland, A. Zaza, W. Murad, R. Hassan, Y. A. Ahmed, T. Abbas, E. A. Abdelrahim, K.M. Schneider, M. Matz-Soja, J. Reinders, R. Gebhardt, M.-L. Berres, M. Hatting, D. Drasdo, J. Saez-Rodriguez, C. Trautwein, J. G. Hengstler, Influence of Liver Fibrosis on Lobular Zonation, Cells 8(12) (2019) 1556. [114] Globulins, in: D.A. Wilson (Ed.), Clinical Veterinary Advisor, W.B. Saunders, Saint Louis, 2012, pp. 934-935. [115] L. Cordero-Espinoza, M. Huch, The balancing act of the liver: tissue regeneration versus fibrosis, J Clin Invest 128(1) (2018) 85-96. [116] K. Buyl, J. De Kock, J. Bolleyn, V. Rogiers, T. Vanhaecke, Measurement of Albumin Secretion as Functionality Test in Primary Hepatocyte Cultures, Methods Mol Biol 1250 (2015) 303-8. [117] V.L. Clark, J.A. Kruse, Clinical Methods: The History, Physical, and Laboratory Examinations, JAMA 264(21) (1990) 2808-2809. [118] P. Sharp, J.S. Villano, The laboratory rat, CRC press2012. [119] A.H. Fischer, K.A. Jacobson, J. Rose, R. Zeller, Hematoxylin and eosin staining of tissue and cell sections, CSH Protoc 2008 (2008) pdb.prot4986. [120] L. Rieppo, L. Janssen, K. Rahunen, P. Lehenkari, M.A.J. Finnilä, S. Saarakkala, Histochemical quantification of collagen content in articular cartilage, PLoS One 14(11) (2019) e0224839. [121] 2 - Histological and Histochemical Stains and Reactions, in: V. Dubowitz, C.A. Sewry, A. Oldfors (Eds.), Muscle Biopsy (Fifth Edition), Elsevier, London, 2020, pp. 14-23. [122] R.C. Lo, H. Kim, Histopathological evaluation of liver fibrosis and cirrhosis regression, Clin Mol Hepatol 23(4) (2017) 302-307. [123] K. Cheng, N. Yang, R.I. Mahato, TGF-beta1 gene silencing for treating liver fibrosis, Mol Pharm 6(3) (2009) 772-9. [124] I. Ozaki, M. Motomura, Y. Setoguchi, N. Fujio, K. Yamamoto, T. Kariya, T. Sakai, Albumin mRNA expression in human liver diseases and its correlation to serum albumin concentration, Gastroenterol Jpn 26(4) (1991) 472-6. [125] M. Omoto, K. Suri, A. Amouzegar, M. Li, K.R. Katikireddy, S.K. Mittal, S.K. Chauhan, Hepatocyte Growth Factor Suppresses Inflammation and Promotes Epithelium Repair in Corneal Injury, Molecular Therapy 25(8) (2017) 1881-1888. [126] E.M. Boyd, G.M. Bereczky, Liver necrosis from paracetamol, Br J Pharmacol Chemother 26(3) (1966) 606-14. [127] M.F. Dixon, J. Nimmo, L.F. Prescott, Experimental paracetamol-induced hepatic necrosis: A histopathological study, 103(4) (1971) 225-229.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86634-
dc.description.abstract肝臟在人體中扮演著不可或缺的角色,其具有蛋白質合成、尿素代謝以及解毒等重要機能。隨著人們藥物濫用,飲食習慣改變等,肝纖維化乃至於肝硬化日益普及。過往的研究提出自體性物質 (例如白細胞介素-10、肝細胞生長因子等) 的補充可以逆轉肝纖維化,但效率不彰,因此如何將「自體性物質」有效地作用於肝纖維化的患部去逆轉肝纖維化是科學家亟需解決的問題。為了解決這個問題,本研究將開發一新穎的生物材料來製作肝臟貼片使被毒化後的肝臟之機能能夠回復。 本研究第一部分主要致力於肝臟貼片的製作,利用脫細胞化肝臟間質 (Decellularized liver matrix; DLM) 為基底,並於其上方修飾肝細胞生長因子 (Hepatocyte growth factor; HGF)/肝素 (Heparin) 錯合物,除了檢測該材料的性質之外,亦實際將其應用於體外藥物毒化 (CHCl3, CCl4) 後的肝細胞之回復。第二部分則首先致力於建立大鼠體內四氯化碳 (Tetracholoride; CCl4) 誘導之慢性肝纖維化模型,我們接著以第一部分所開發的肝臟貼片對於上述慢性肝纖維化之回復的影響進行檢測。本研究期許此肝臟貼片未來能實際應用於臨床治療,並為肝病治療給予新的方法與展望。zh_TW
dc.description.abstractThe liver plays an indispensable role in the human body with important functions such as protein synthesis, urea metabolism, and detoxification. However, due to drug abuse and the change of diet habit, liver fibrosis or even liver cirrhosis exists much more commonly. Previous studies show several treatments to reverse liver fibrosis by adding autologous substrates (ex. interleukin-10, hepatocyte growth factor), but with low efficiency. Thus, what the scientists heading for is the elevation of the efficiency. In order to overcome the obstacle, this study aims to develop a new biomaterial (with a few autologous substrates) to manufacture liver patch for regeneration of chemicals induced liver injury. This research is planned to be carried out within two years. In the first year, we focus on the manufacture of liver patch (hepatocyte growth factor HGF/heparin complex coating on decellularized liver matrix DLM) and the measurement of the characteristics of the material. Furthermore, we utilize liver patch to the regeneration of chemicals induced liver injury in vitro. In the second year, we commit to in vivo study inclusive of CCl4 induced liver fibrosis, then attach liver patch to fibrotic liver for reversing the fibrotic process. This study is believed to be applied in clinical applications and give us new methods and prospects for the treatment of liver disease in the near future.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:07:53Z (GMT). No. of bitstreams: 1
U0001-0208202217413400.pdf: 5236099 bytes, checksum: 84848dfede55436acb329606d4fdf1ed (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 xi 第ㄧ章 前言 1 1.1 研究背景 1 1.2 研究目的 3 1.3 實驗架構 4 第二章 文獻探討 5 2.1 材料選擇 5 2.1.1脫細胞化肝臟間質 (Decellularized liver matrix; DLM) 5 2.1.2 脫細胞化技術 6 2.2 毒化物的選擇 8 2.2.1 氯仿 (CHCl3) 8 2.2.2 四氯化碳 (CCl4) 9 2.3 細胞選擇與前處理 12 成熟肝細胞 (Hepatocytes) 12 2.4 HGF 與白細胞介素 (IL-6, IL-10) 之相互關係 13 2.4.1 肝細胞生長因子 (Hepatocytes growth factor; HGF) 13 2.4.2 IL-6, IL-10 與 HGF 之交互關係 16 2.5 肝臟貼片之平台建立 17 2.5.1 過往肝纖維化之治療方式 17 2.5.2 肝素 (Heparin) 19 2.5.3 平台建立 21 2.6 肝臟貼片應用於大鼠體內實驗 22 2.6.1 Hepatic patch 過往類似地研究 22 2.6.2 格里森氏囊 (Glisson’s capsule) 23 2.6.3 腹腔給藥之藥物吸收途徑 24 2.7 明確的目標 (Specific Aims) 25 第三章 研究方法 26 3.1 實驗藥品、耗材、儀器設備與實驗動物 26 3.1.1 實驗藥品 26 3.1.2 實驗耗材 27 3.1.3 實驗儀器設備 28 3.1.4 實驗動物 29 3.2 脫細胞化肝臟間質 (DLM) 的製備 30 3.3 HGF/heparin-DLM film 的製備 31 3.4 HGF/heparin-DLM film 應用於體外實驗 33 3.4.1肝細胞毒化培養之最適化條件探討 33 3.4.2 HGF/heparin-DLM film 用於毒化後肝細胞的體外培養 34 3.5 HGF/heparin-DLM film 應用於體內實驗 35 3.5.1預防模型 (如圖十一 Prophylactic model) 35 3.5.2 治療模型 (如圖十一 Theraputic model) 35 3.6 體外實驗相關檢測方法 39 3.6.1 粒線體活性檢測 39 3.6.2 HGF, heparin 固定化濃度檢測 39 3.6.3 白蛋白 (Albumin) 活性檢測 40 3.6.4 LDH 活性檢測 40 3.6.5 尿素活性檢測 40 3.6.6 Live & Dead 螢光染色 41 3.7 體內實驗相關檢測方法 42 3.7.1 血液生化學檢驗 42 3.7.2 肝臟組織樣本採取 43 3.7.3 基因表現檢測方法 44 3.8 統計分析 46 第四章 結果與討論 47 4.1 脫細胞化肝臟間質製備結果 47 4.2 HGF/heparin-DLM film 之製作 50 4.3 DLM 對於初代肝細胞培養之影響 51 4.4 Heparin, HGF固定化結果 53 4.5 細胞毒化結果 56 4.6 細胞毒化後回復 58 4.6.1 CHCl3 毒化肝細胞後回復 58 4.6.2 CCl4 毒化肝細胞後回復 66 4.6.3 細胞毒化後回復實驗的探討 77 4.7 體內實驗 78 4.7.1 CCl4 體內誘導肝纖維化 78 4.7.2 肝臟貼片移植 80 4.7.3 血清分析 82 4.7.4 切片分析 88 4.7.5 QPCR 分析 93 4.7.6 體內實驗探討 95 第五章 結論與未來展望 96 5.1 結論 96 5.2 未來展望 98 參考資料 100
dc.language.isozh-TW
dc.subject肝臟再生zh_TW
dc.subject四氯化碳誘導之慢性肝纖維化 (體內)zh_TW
dc.subject四氯化碳誘導之慢性肝纖維化 (體內)zh_TW
dc.subject四氯化碳誘導之慢性肝纖維化 (體外)zh_TW
dc.subject四氯化碳誘導之慢性肝纖維化 (體外)zh_TW
dc.subject氯仿誘導之慢性肝纖維化 (體外)zh_TW
dc.subject肝細胞生長因子/肝素錯合物zh_TW
dc.subject脫細胞化肝臟間質zh_TW
dc.subject脫細胞化肝臟間質zh_TW
dc.subject肝細胞生長因子/肝素錯合物zh_TW
dc.subject肝臟再生zh_TW
dc.subject氯仿誘導之慢性肝纖維化 (體外)zh_TW
dc.subjectHepatocyte Growth Factor (HGF)/heparin Complexen
dc.subjectDecellularized Liver Matrix (DLM)en
dc.subjectCCl4 Induced Liver Fibrosisen
dc.subjectLiver regenerationen
dc.subjectDecellularized Liver Matrix (DLM)en
dc.subjectHepatocyte Growth Factor (HGF)/heparin Complexen
dc.subjectCCl4 Induced Liver Fibrosisen
dc.subjectLiver regenerationen
dc.title肝臟貼片應用於四氯化碳毒化後之肝臟回復的研究zh_TW
dc.titleHepatic Patch for Liver Regeneration after CCl4 Poisoningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee倪衍玄(Yen-Hsuan Ni),黃凱文(Kai-Wen Huang),游佳欣(Jia-Shing Yu)
dc.subject.keyword脫細胞化肝臟間質,肝細胞生長因子/肝素錯合物,氯仿誘導之慢性肝纖維化 (體外),四氯化碳誘導之慢性肝纖維化 (體外),四氯化碳誘導之慢性肝纖維化 (體內),肝臟再生,zh_TW
dc.subject.keywordDecellularized Liver Matrix (DLM),Hepatocyte Growth Factor (HGF)/heparin Complex,CCl4 Induced Liver Fibrosis,Liver regeneration,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202201983
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0208202217413400.pdf5.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved