請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Yu-Ting Liu | en |
| dc.contributor.author | 劉禹廷 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:07:23Z | - |
| dc.date.copyright | 2022-08-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-08 | |
| dc.identifier.citation | W. H. Organization. 'The top 10 causes of death.' https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed Dec 15, 2021. J. R. Sowers, M. Epstein, and E. D. Frohlich, 'Diabetes, Hypertension, and Cardiovascular Disease,' Hypertension, vol. 37, no. 4, pp. 1053-1059, 2001, doi: doi:10.1161/01.HYP.37.4.1053. J. A. Ambrose and R. S. Barua, 'The pathophysiology of cigarette smoking and cardiovascular disease: an update,' Journal of the American college of cardiology, vol. 43, no. 10, pp. 1731-1737, 2004. V. Centre. 'Ankle-Brachial Index.' https://www.vascularcentre.co.za/ankle-brachial-index/ (accessed Feb 9,2022. H. C. Stary et al., 'A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association,' Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, vol. 12, no. 1, pp. 120-134, 1992/01/01 1992, doi: 10.1161/01.ATV.12.1.120. G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, 'A new constitutive framework for arterial wall mechanics and a comparative study of material models,' Journal of elasticity and the physical science of solids, vol. 61, no. 1, pp. 1-48, 2000. T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, 'Hyperelastic modelling of arterial layers with distributed collagen fibre orientations,' Journal of The Royal Society Interface, vol. 3, no. 6, pp. 15-35, 2006, doi: doi:10.1098/rsif.2005.0073. A. American Heart Association. 'Understand Your Risks to Prevent a Heart Attack.' https://www.heart.org/en/health-topics/heart-attack/understand-your-risks-to-prevent-a-heart-attack (accessed. D. K. Arnett et al., '2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,' Journal of the American College of Cardiology, vol. 74, no. 10, pp. e177-e232, 2019/09/10/ 2019, doi: https://doi.org/10.1016/j.jacc.2019.03.010. R. Ross, 'The pathogenesis of atherosclerosis: a perspective for the 1990s,' Nature, vol. 362, no. 6423, pp. 801-9, Apr 29 1993, doi: 10.1038/362801a0. W. R. Milnor, 'Hemodynamics,' Cardiac dynamics, 1989. J. Blacher, M. E. Safar, A. P. Guerin, B. Pannier, S. J. Marchais, and G. M. London, 'Aortic pulse wave velocity index and mortality in end-stage renal disease,' Kidney International, vol. 63, no. 5, pp. 1852-1860, 2003/05/01/ 2003, doi: https://doi.org/10.1046/j.1523-1755.2003.00932.x. T. Kanda, E. Nakamura, T. Moritani, and Y. Yamori, 'Arterial pulse wave velocity and risk factors for peripheral vascular disease,' European Journal of Applied Physiology, vol. 82, no. 1, pp. 1-7, 2000/05/01 2000, doi: 10.1007/s004210050644. J. Blacher, R. Asmar, S. Djane, G. M. London, and M. E. Safar, 'Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients,' Hypertension, vol. 33, no. 5, pp. 1111-1117, 1999, doi: doi:10.1161/01.HYP.33.5.1111. P. Boutouyrie, M. Briet, C. Collin, S. Vermeersch, and B. Pannier, 'Assessment of pulse wave velocity,' Artery Research, vol. 3, no. 1, pp. 3-8, 2009/02/01/ 2009, doi: https://doi.org/10.1016/j.artres.2008.11.002. H. Tanaka et al., 'Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness,' Journal of Hypertension, vol. 27, no. 10, pp. 2022-2027, 2009, doi: 10.1097/HJH.0b013e32832e94e7. A. Yamashina et al., '<B>Brachial-Ankle Pulse Wave Velocity as a Marker of Atherosclerotic Vascular Damage and Cardiovascular Risk</B>,' Hypertension Research, vol. 26, no. 8, pp. 615-622, 2003, doi: 10.1291/hypres.26.615. A. Yamashina et al., '<B>Validity, Reproducibility, and Clinical Significance of Noninvasive Brachial-Ankle Pulse Wave Velocity Measurement</B>,' Hypertension Research, vol. 25, no. 3, pp. 359-364, 2002, doi: 10.1291/hypres.25.359. S. Tsuchikura et al., 'Brachial-ankle Pulse Wave Velocity as an Index of Central Arterial Stiffness,' Journal of Atherosclerosis and Thrombosis, vol. 17, no. 6, pp. 658-665, 2010, doi: 10.5551/jat.3616. J. Cho and H. J. Baek, 'A Comparative Study of Brachial–Ankle Pulse Wave Velocity and Heart–Finger Pulse Wave Velocity in Korean Adults,' Sensors, vol. 20, no. 7, p. 2073, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/7/2073. V. Aboyans et al., 'Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association,' Circulation, vol. 126, no. 24, pp. 2890-2909, 2012. M. Y. Cortez-Cooper, J. A. Supak, and H. Tanaka, 'A new device for automatic measurements of arterial stiffness and ankle-brachial index,' American Journal of Cardiology, vol. 91, no. 12, pp. 1519-1522, 2003. P. Pignoli, E. Tremoli, A. Poli, P. Oreste, and R. Paoletti, 'Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging,' Circulation, vol. 74, no. 6, pp. 1399-1406, 1986, doi: doi:10.1161/01.CIR.74.6.1399. G. Gamble, J. Zorn, G. Sanders, S. MacMahon, and N. Sharpe, 'Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery,' Stroke, vol. 25, no. 1, pp. 11-16, 1994, doi: doi:10.1161/01.STR.25.1.11. [25] I. B. Wilkinson et al., 'Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis,' Journal of Hypertension, vol. 16, no. 12, pp. 2079-2084, 1998. [Online]. Available: https://journals.lww.com/jhypertension/Fulltext/1998/16121/Reproducibility_of_pulse_wave_velocity_and.33.aspx. Y. Fung, 'Elasticity of soft tissues in simple elongation,' American Journal of Physiology-Legacy Content, vol. 213, no. 6, pp. 1532-1544, 1967, doi: 10.1152/ajplegacy.1967.213.6.1532. T. Aoki, T. Ohashi, T. Matsumoto, and M. Sato, 'The pipette aspiration applied to the local stiffness measurement of soft tissues,' Annals of biomedical engineering, vol. 25, no. 3, pp. 581-587, 1997. J.-L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, 'Ultrasound elastography: principles and techniques,' Diagnostic and interventional imaging, vol. 94, no. 5, pp. 487-495, 2013. R. M. Sigrist, J. Liau, A. El Kaffas, M. C. Chammas, and J. K. Willmann, 'Ultrasound elastography: review of techniques and clinical applications,' Theranostics, vol. 7, no. 5, p. 1303, 2017. I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, 'Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,' Physics in Medicine & Biology, vol. 56, no. 7, p. 2245, 2011. M. Bernal, I. Nenadic, M. W. Urban, and J. F. Greenleaf, 'Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes,' The Journal of the Acoustical Society of America, vol. 129, no. 3, pp. 1344-1354, 2011, doi: 10.1121/1.3533735. G.-Y. Li, Y. Zheng, Y.-X. Jiang, Z. Zhang, and Y. Cao, 'Guided wave elastography of layered soft tissues,' Acta Biomaterialia, vol. 84, pp. 293-304, 2019/01/15/ 2019, doi: https://doi.org/10.1016/j.actbio.2018.12.002. G.-Y. Li, Q. He, G. Xu, L. Jia, J. Luo, and Y. Cao, 'An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves,' Journal of Biomechanics, vol. 51, pp. 97-104, 2017/01/25/ 2017, doi: https://doi.org/10.1016/j.jbiomech.2016.12.006. J. Achenbach, Wave propagation in elastic solids. Elsevier, 2012. K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012. D. Griffin and L. Jae, 'Signal estimation from modified short-time Fourier transform,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 2, pp. 236-243, 1984, doi: 10.1109/TASSP.1984.1164317. A. Graps, 'An introduction to wavelets,' IEEE Computational Science and Engineering, vol. 2, no. 2, pp. 50-61, 1995, doi: 10.1109/99.388960. Y.-T. Liu, S.-S. Lee, H.-C. Lee, and C.-K. Lee, 'Estimating the elasticity properties of arterial phantoms using fiber-based laser doppler vibrometry,' in Optical Sensing and Detection VII, 2022, vol. 12139: SPIE. F. J. Giessibl, 'Advances in atomic force microscopy,' Reviews of Modern Physics, vol. 75, no. 3, pp. 949-983, 07/29/ 2003, doi: 10.1103/RevModPhys.75.949. A. Vinckier and G. Semenza, 'Measuring elasticity of biological materials by atomic force microscopy,' FEBS Letters, vol. 430, no. 1, pp. 12-16, 1998/06/23/ 1998, doi: https://doi.org/10.1016/S0014-5793(98)00592-4. M. Radmacher, M. Fritz, and P. K. Hansma, 'Imaging soft samples with the atomic force microscope: gelatin in water and propanol,' Biophysical Journal, vol. 69, no. 1, pp. 264-270, 1995/07/01/ 1995, doi: https://doi.org/10.1016/S0006-3495(95)79897-6. D. J. Hughes, C. F. Babbs, L. A. Geddes, and J. D. Bourland, 'Measurements of Young's modulus of elasticity of the canine aorta with ultrasound,' Ultrasonic Imaging, vol. 1, no. 4, pp. 356-367, 1979/10/01/ 1979, doi: https://doi.org/10.1016/0161-7346(79)90028-2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86626 | - |
| dc.description.abstract | 心血管疾病的診斷上動脈僵硬程度是一項非常重要的預測指標,近年來常見的臨床醫學診斷動脈硬化疾病主要以脈波傳遞時間與ABI指數作為評估指標。然而,上述兩種方法皆為間接式的評估指標,將無法反映真實動脈彈性性質,並且為全域式篩檢,無法進行特定區域局部性的動脈硬化篩檢。 因此,本研究提出以多層結構之動脈假體波傳理論,分別由薄板層、基底層與液體層等三層結構所組成,並求得其頻散曲線進而計算動脈組織之彈性係數。在實驗設計上,以外部氣體激發使產生表面波傳遞於動脈管壁表面上,以光纖式雷射都卜勒測速儀量測導波傳遞之振盪速度訊號,並且透過將探頭搭載於精密線性位移平台上,以多點式量測並計算相異位置感測點之時間差,進而計算得導波傳遞速度,將多個頻率之量測結果繪製與理論模型之頻散曲線,將其進行擬和求得其動脈管壁之材料彈性係數。 體外實驗量測分別以矽膠管與天然乳膠管模擬動脈組織並作為量測目標,以確認理論的可行性,為了能夠驗證量測之管壁彈性係數與真實彈性係數之誤差,本論文以AFM儀器針對軟性材料進行彈性係數量測,並與本研究之實驗量測之彈性係數進一步比較,體外實驗量測結果與真實之材料彈性具有一致性,且平均誤差分別為8.25%與7.14%。將上述分析方法應用於人體橈動脈實驗量測雖然在量測上操作不易,且仍然有許多改進空間,但結果仍就具有一定的可信度與應用可行性。 總結,本論文提出一套新穎的光學量測方法於檢測動脈彈性性質,於模擬人體動脈實驗已經得以驗證本論文所提出的方法,可以於未來應用於居家照護醫療裝置上,能作為心血管疾病的日常預防性篩檢。 | zh_TW |
| dc.description.abstract | Arterial stiffness is an important predictor to use when diagnosing cardiovascular disease. Recently, Pulse transit time and ankle branchial pressure index has been clinically identified as an index for evaluation of arteriosclerosis. Among these, pulse transit time is most often used in clinical medicine. However, the indirect method does not evaluate the actual material properties of arterial walls precisely, which may lead to misdiagnosis. Therefore, just considering pulse transit time is not suitable for evaluating arterial elasticity. In this research, we used a guided wave dispersion model to estimate the elastic properties of arterial phantoms. The theoretical assumptions were composed of a thin layer plate, the substrate layer and water-like fluid layer to simulate the blood vessels. In experimental setup, A fast air-puff valves was used to create a repetitive 80Hz to 200Hz low-frequency air-puff excitation to excite the guided wave propagation in the pipe wall. Polymer pipes were embedded in gelatin to simulate skin tissue and arteries. The system used a fiber-based laser doppler velocimetry to measure the velocity of the traveling waves on the pipe walls. Moreover, the probe was mounted on a linear translation stage and measuring the traveling waves velocity at multiple points. Then, the wave velocities were analyzed by the phase difference between the signal of different positions. The elastic property of the pipe was used to calculate the guided wave velocity by fitting a guided wave dispersion model. To verify the accuracy of this method, an atomic force microscope was used to measure the real elastic properties of the pipe and then compared to the proposed method. The prediction results of the silicon rubber pipe and latex pipe, the average error of the elastic modulus was found to be 8.25% and 7.14%. The results show good similarity and consistency of the two methods. And using the method to verify feasibility and accuracy of the elastic properties of radial arterial walls in vivo. In conclusion, we propose a novel technique for the assessment of mechanical properties of arterial walls in-vitro with high accuracy. Simulated experiments were performed to validate the proposed method. Our new proposed technique has been efficient to diagnose cardiovascular diseases more accurately for both home health care and for wearable devices. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:07:23Z (GMT). No. of bitstreams: 1 U0001-2807202222024700.pdf: 8213832 bytes, checksum: 2eca21192d2bc371562ab40405ae93f2 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 xi 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 人體動脈組織結構 3 1.2.2 心血管疾病(Cardiovascular disease, CVD) 4 1.2.3 動脈粥狀硬化(Atherosclerosis) 4 1.2.4 動脈硬化診斷評估指標 6 1.2.5 動脈硬化量測技術 9 1.2.6 生物組織黏彈性質量測 11 1.3 研究目標 13 1.4 論文架構 14 第2章 研究原理 15 2.1 管壁導波頻散模型(Guided wave dispersion model) 15 2.1.1 管壁波傳理論推導 15 2.1.2 以數值方法分析頻散曲線 17 2.2 都卜勒效應(Doppler effect) 18 2.3 雷射干涉原理 20 2.4 時頻分析(Time-Frequency analysis) 21 2.4.1 短時距傅立葉轉換法 21 2.4.2 連續小波轉換法 22 第3章 系統架設與參數校正實驗 24 3.1 氣體噴射系統架設與驗證 24 3.1.1 氣體噴射平台之架設 24 3.1.2 驅動頻率驗證 25 3.1.3 不同設定參數下實際氣體驅動頻率 26 3.2 雷射都卜勒測速儀於位移平台之驗證實驗 28 3.2.1 雷射都卜勒測速儀於位移平台之系統架設 28 第4章 體外動脈假體實驗 33 4.1 動脈假體製備 33 4.2 量測軟管彈性係數 34 4.2.1 AFM於彈性係數之量測 34 4.2.2 楊氏模數E與剪力模數 之關係 35 4.2.3 AFM量測軟質材料彈性係數結果探討 35 4.3 雷射位移計驗證實驗 36 4.3.1 雷射位移計實驗架設 37 4.3.2 雷射位移計量測結果探討 38 4.4 雷射都卜勒測速儀體外實驗量測 39 4.4.1 體外實驗架設設計 39 4.4.2 實驗光路校正 41 4.4.3 訊號處理與特徵圈選流程 44 4.4.4 體外假體實驗結果分析 45 第5章 橈動脈彈性量測實驗 51 5.1 人體實驗光路架構與校正 51 5.2 橈動脈彈性量測結果與探討 53 第6章 結論與未來展望 55 6.1 結論 55 6.2 未來展望 56 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 導波頻散模型 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 動脈僵硬程度 | zh_TW |
| dc.subject | 光纖式雷射都卜勒測速儀 | zh_TW |
| dc.subject | 連續小波轉換 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 動脈僵硬程度 | zh_TW |
| dc.subject | 導波頻散模型 | zh_TW |
| dc.subject | 光纖式雷射都卜勒測速儀 | zh_TW |
| dc.subject | 連續小波轉換 | zh_TW |
| dc.subject | Fiber-based laser doppler velocimetry | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Arterial stiffness | en |
| dc.subject | Guided wave propagation dispersion model | en |
| dc.subject | Continuous wavelet transform | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Continuous wavelet transform | en |
| dc.subject | Fiber-based laser doppler velocimetry | en |
| dc.subject | Guided wave propagation dispersion model | en |
| dc.subject | Arterial stiffness | en |
| dc.title | 以雷射都卜勒測速儀量測導波波傳行為並評估動脈假體剛性 | zh_TW |
| dc.title | Assessing arterial phantoms stiffness by guided wave propagation measurement using Laser Doppler Velocimetry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃君偉(Jiun-Woei Huang),李舒昇(Shu-sheng Lee),李翔傑(Hsiang-Chieh Lee) | |
| dc.subject.keyword | 心血管疾病,動脈僵硬程度,導波頻散模型,光纖式雷射都卜勒測速儀,連續小波轉換, | zh_TW |
| dc.subject.keyword | Cardiovascular disease,Arterial stiffness,Guided wave propagation dispersion model,Fiber-based laser doppler velocimetry,Continuous wavelet transform, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202201857 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-30 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202222024700.pdf | 8.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
