Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86613Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許秉寧 | zh_TW |
| dc.contributor.advisor | Ping-Ning Hsu | en |
| dc.contributor.author | 廖至宣 | zh_TW |
| dc.contributor.author | Chih-Hsuan Liao | en |
| dc.date.accessioned | 2023-03-20T00:06:32Z | - |
| dc.date.available | 2025-01-01 | - |
| dc.date.copyright | 2022-10-03 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Amsen, D., van Gisbergen, K., Hombrink, P., and van Lier, R.A.W. (2018). Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol 19, 538-546. 10.1038/s41590-018-0114-2.
Bartsch, L.M., Damasio, M.P.S., Subudhi, S., and Drescher, H.K. (2020). Tissue-Resident Memory T Cells in the Liver-Unique Characteristics of Local Specialists. Cells 9. 10.3390/cells9112457. Bukowski, J.F., Woda, B.A., Habu, S., Okumura, K., and Welsh, R.M. (1983). Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 131, 1531-1538. Chang, C.H., Chen, Y.C., Zhang, W., Leung, P.S., Gershwin, M.E., and Chuang, Y.H. (2015). Innate immunity drives the initiation of a murine model of primary biliary cirrhosis. PLoS One 10, e0121320. 10.1371/journal.pone.0121320. Chuang, Y.H., Lian, Z.X., Tsuneyama, K., Chiang, B.L., Ansari, A.A., Coppel, R.L., and Gershwin, M.E. (2006). Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 26, 232-240. 10.1016/j.jaut.2006.04.001. Chung, B.K., Guevel, B.T., Reynolds, G.M., Gupta Udatha, D.B., Henriksen, E.K., Stamataki, Z., Hirschfield, G.M., Karlsen, T.H., and Liaskou, E. (2017). Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis. J Autoimmun 77, 45-54. 10.1016/j.jaut.2016.10.003. Constant, S.L., and Bottomly, K. (1997). Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15, 297-322. 10.1146/annurev.immunol.15.1.297. Doherty, D.G., Norris, S., Madrigal-Estebas, L., McEntee, G., Traynor, O., Hegarty, J.E., and O''Farrelly, C. (1999). The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 163, 2314-2321. Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M., Le Bourhis, L., Soudais, C., Treiner, E., and Lantz, O. (2011). Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250-1259. 10.1182/blood-2010-08-303339. Elsegood, C.L., Chan, C.W., Degli-Esposti, M.A., Wikstrom, M.E., Domenichini, A., Lazarus, K., van Rooijen, N., Ganss, R., Olynyk, J.K., and Yeoh, G.C. (2015). Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 62, 1272-1284. 10.1002/hep.27977. Fernandez-Ruiz, D., Ng, W.Y., Holz, L.E., Ma, J.Z., Zaid, A., Wong, Y.C., Lau, L.S., Mollard, V., Cozijnsen, A., Collins, N., et al. (2016). Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity 45, 889-902. 10.1016/j.immuni.2016.08.011. Finck, R., Simonds, E.F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe''er, D., Nolan, G.P., and Bendall, S.C. (2013). Normalization of mass cytometry data with bead standards. Cytometry A 83, 483-494. 10.1002/cyto.a.22271. Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174. 10.1038/nri2506. Guidotti, L.G., Inverso, D., Sironi, L., Di Lucia, P., Fioravanti, J., Ganzer, L., Fiocchi, A., Vacca, M., Aiolfi, R., Sammicheli, S., et al. (2015). Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 161, 486-500. 10.1016/j.cell.2015.03.005. Gulamhusein, A.F., and Hirschfield, G.M. (2020). Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 17, 93-110. 10.1038/s41575-019-0226-7. Han, G., Chen, S.Y., Gonzalez, V.D., Zunder, E.R., Fantl, W.J., and Nolan, G.P. (2017). Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry A 91, 1150-1163. 10.1002/cyto.a.23283. Harada, K., Van de Water, J., Leung, P.S., Coppel, R.L., Ansari, A., Nakanuma, Y., and Gershwin, M.E. (1997). In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 25, 791-796. 10.1002/hep.510250402. Hirschfield, G.M., and Gershwin, M.E. (2013). The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 8, 303-330. 10.1146/annurev-pathol-020712-164014. Holz, L.E., Prier, J.E., Freestone, D., Steiner, T.M., English, K., Johnson, D.N., Mollard, V., Cozijnsen, A., Davey, G.M., Godfrey, D.I., et al. (2018). CD8(+) T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver. Cell Rep 25, 68-79 e64. 10.1016/j.celrep.2018.08.094. Hsueh, Y.H., Chen, H.W., Syu, B.J., Lin, C.I., Leung, P.S.C., Gershwin, M.E., and Chuang, Y.H. (2018). Endogenous IL-10 maintains immune tolerance but IL-10 gene transfer exacerbates autoimmune cholangitis. J Autoimmun 95, 159-170. 10.1016/j.jaut.2018.09.009. Kamizono, S., Duncan, G.S., Seidel, M.G., Morimoto, A., Hamada, K., Grosveld, G., Akashi, K., Lind, E.F., Haight, J.P., Ohashi, P.S., et al. (2009). Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206, 2977-2986. 10.1084/jem.20092176. Kano, A., Watanabe, Y., Takeda, N., Aizawa, S., and Akaike, T. (1997). Analysis of IFN-gamma-induced cell cycle arrest and cell death in hepatocytes. J Biochem 121, 677-683. 10.1093/oxfordjournals.jbchem.a021639. Katsumi, T., Tomita, K., Leung, P.S., Yang, G.X., Gershwin, M.E., and Ueno, Y. (2015). Animal models of primary biliary cirrhosis. Clin Rev Allergy Immunol 48, 142-153. 10.1007/s12016-015-8482-y. Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O''Farrelly, C., and Doherty, D.G. (2004). Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. Clin Immunol 113, 56-63. 10.1016/j.clim.2004.05.003. Kenna, T., Golden-Mason, L., Porcelli, S.A., Koezuka, Y., Hegarty, J.E., O''Farrelly, C., and Doherty, D.G. (2003). NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171, 1775-1779. 10.4049/jimmunol.171.4.1775. Kosaka, A., Wakita, D., Matsubara, N., Togashi, Y., Nishimura, S., Kitamura, H., and Nishimura, T. (2007). AsialoGM1+CD8+ central memory-type T cells in unimmunized mice as novel immunomodulator of IFN-gamma-dependent type 1 immunity. Int Immunol 19, 249-256. 10.1093/intimm/dxl140. Krawitt, E.L. (2008). Clinical features and management of autoimmune hepatitis. World J Gastroenterol 14, 3301-3305. 10.3748/wjg.14.3301. Mackay, L.K., Minnich, M., Kragten, N.A., Liao, Y., Nota, B., Seillet, C., Zaid, A., Man, K., Preston, S., Freestone, D., et al. (2016). Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459-463. 10.1126/science.aad2035. Manns, M.P., Lohse, A.W., and Vergani, D. (2015). Autoimmune hepatitis--Update 2015. J Hepatol 62, S100-111. 10.1016/j.jhep.2015.03.005. McNamara, H.A., Cai, Y., Wagle, M.V., Sontani, Y., Roots, C.M., Miosge, L.A., O''Connor, J.H., Sutton, H.J., Ganusov, V.V., Heath, W.R., et al. (2017). Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci Immunol 2. 10.1126/sciimmunol.aaj1996. Morita, M., Watanabe, Y., and Akaike, T. (1995). Protective effect of hepatocyte growth factor on interferon-gamma-induced cytotoxicity in mouse hepatocytes. Hepatology 21, 1585-1593. Pellicci, D.G., Patel, O., Kjer-Nielsen, L., Pang, S.S., Sullivan, L.C., Kyparissoudis, K., Brooks, A.G., Reid, H.H., Gras, S., Lucet, I.S., et al. (2009). Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Immunity 31, 47-59. 10.1016/j.immuni.2009.04.018. Racanelli, V., and Rehermann, B. (2006). The liver as an immunological organ. Hepatology 43, S54-62. 10.1002/hep.21060. Rodrigues, P.M., Perugorria, M.J., Santos-Laso, A., Bujanda, L., Beuers, U., and Banales, J.M. (2018). Primary biliary cholangitis: A tale of epigenetically-induced secretory failure? J Hepatol 69, 1371-1383. 10.1016/j.jhep.2018.08.020. Sahebjam, F., and Vierling, J.M. (2015). Autoimmune hepatitis. Front Med 9, 187-219. 10.1007/s11684-015-0386-y. Schenkel, J.M., and Masopust, D. (2014). Tissue-resident memory T cells. Immunity 41, 886-897. 10.1016/j.immuni.2014.12.007. Shimoda, S., Tsuneyama, K., Kikuchi, K., Harada, K., Nakanuma, Y., Nakamura, M., Ishibashi, H., Hisamoto, S., Niiro, H., Leung, P.S.C., et al. (2012). The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clinical & Experimental Immunology 168, 279-284. 10.1111/j.1365-2249.2012.04581.x. Stark, R., Wesselink, T.H., Behr, F.M., Kragten, N.A.M., Arens, R., Koch-Nolte, F., van Gisbergen, K., and van Lier, R.A.W. (2018). T RM maintenance is regulated by tissue damage via P2RX7. Sci Immunol 3. 10.1126/sciimmunol.aau1022. Su, G.L., Klein, R.D., Aminlari, A., Zhang, H.Y., Steinstraesser, L., Alarcon, W.H., Remick, D.G., and Wang, S.C. (2000). Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology 31, 932-936. 10.1053/he.2000.5634. Sucher, E., Sucher, R., Gradistanac, T., Brandacher, G., Schneeberger, S., and Berg, T. (2019). Autoimmune Hepatitis-Immunologically Triggered Liver Pathogenesis-Diagnostic and Therapeutic Strategies. J Immunol Res 2019, 9437043. 10.1155/2019/9437043. Sung, C.C., Horng, J.H., Siao, S.H., Chyuan, I.T., Tsai, H.F., Chen, P.J., and Hsu, P.N. (2021). Asialo GM1-positive liver-resident CD8 T cells that express CD44 and LFA-1 are essential for immune clearance of hepatitis B virus. Cell Mol Immunol 18, 1772-1782. 10.1038/s41423-020-0376-0. Wakabayashi, K., Lian, Z.X., Leung, P.S., Moritoki, Y., Tsuneyama, K., Kurth, M.J., Lam, K.S., Yoshida, K., Yang, G.X., Hibi, T., et al. (2008). Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48, 531-540. 10.1002/hep.22390. Wang, Y., and Zhang, C. (2019). The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 10, 1582. 10.3389/fimmu.2019.01582. Warren, A., Le Couteur, D.G., Fraser, R., Bowen, D.G., McCaughan, G.W., and Bertolino, P. (2006). T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44, 1182-1190. 10.1002/hep.21378. Wu, S.J., Yang, Y.H., Tsuneyama, K., Leung, P.S., Illarionov, P., Gershwin, M.E., and Chuang, Y.H. (2011). Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 53, 915-925. 10.1002/hep.24113. You, Z., Li, Y., Wang, Q., Zhao, Z., Li, Y., Qian, Q., Li, B., Zhang, J., Huang, B., Liang, J., et al. (2021). The Clinical Significance of Hepatic CD69(+) CD103(+) CD8(+) Resident-Memory T Cells in Autoimmune Hepatitis. Hepatology 74, 847-863. 10.1002/hep.31739. Younossi, Z.M., Bernstein, D., Shiffman, M.L., Kwo, P., Kim, W.R., Kowdley, K.V., and Jacobson, I.M. (2019). Diagnosis and Management of Primary Biliary Cholangitis. Am J Gastroenterol 114, 48-63. 10.1038/s41395-018-0390-3. Zhang, T., de Waard, A.A., Wuhrer, M., and Spaapen, R.M. (2019). The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 10, 90. 10.3389/fimmu.2019.00090. Zunder, E.R., Finck, R., Behbehani, G.K., Amir el, A.D., Krishnaswamy, S., Gonzalez, V.D., Lorang, C.G., Bjornson, Z., Spitzer, M.H., Bodenmiller, B., et al. (2015). Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10, 316-333. 10.1038/nprot.2015.020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86613 | - |
| dc.description.abstract | 原發性膽汁性膽管炎(Primary Biliary Cholangitis, PBC)是一種自體免疫肝臟疾病,其特徵為在病患體內產生針對粒線體自體抗原的自體抗體。誘發PBC的機制有非常多因素,然而肝臟內T細胞所誘發的免疫反應在此疾病下仍然未知。在所有T細胞族群之中,組織駐留記憶性T細胞(Tissue Resident Memory, TRM)是一群具備停留與維持於特定組織中的能力而得名的細胞。在本實驗室的先前研究中發現有一群特定表現無唾液酸神經節苷脂(ASGM1)的CD8 T細胞存在於小鼠肝臟中,並與其他文獻記載之肝臟駐留記憶性T細胞具備相似特性。我們發現這群細胞在B型肝炎高壓注射轉染模式中對於病毒清除非常重要。此外,在刀豆蛋白A引發之急性肝炎模式中也發現這群細胞會於早期快速產生IFN-γ並引發急性肝炎。為了更進一步剖析這群細胞,於此論文中我們利用2-辛炔酸-卵白蛋白(2-octynoic acid-ovalbumin, 2-OA-OVA)所誘發的自體免疫膽管炎動物模式用以模擬人體的原發性膽汁性膽管炎來探討這群細胞的角色。我們發現在誘發自體免疫膽管炎的野生型小鼠與缺乏先天性淋巴細胞的NFIL3-/-小鼠給予anti-ASGM1剔除性抗體都可以觀察到膽管炎有效被抑制,證明其為透過非自然殺手細胞(nature killer cell, NK cell)誘導的機制。我們以另一種得以剔除TRM的anti-CXCR3抗體以剔除細胞,亦可以觀察到小鼠的膽管炎被抑制。我們進一步以質譜流式細胞術進行分析並發現ASGM1陽性CD8 T細胞為主要干擾素γ (IFN-γ)來源並可能導致自體免疫膽管炎的產生。透過免疫組織化學染色可以觀察到給予anti-ASGM1和anti-CXCR3抗體都能抑制肝臟中IFN-γ的堆積。此外,在以anti-ASGM1消耗細胞後利用α-半乳糖神經醯胺(α-galactosylceramide, α-GalCer)刺激NKT細胞後,血清中IFN-γ濃度明顯降低。將α-Galcer刺激活化之NKT細胞與ASGM1陽性肝臟駐留CD8 T細胞共培養後觀察到產生IFN-γ之細胞數明顯較多。綜上所述,ASGM1陽性肝臟駐留CD8 T細胞在自體免疫膽管炎模式中是IFN-γ的主要來源,並對於膽管炎的發展扮演重要的角色。 | zh_TW |
| dc.description.abstract | Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by specific antimitochondrial antibodies (AMAs) targeted at mitochondrial autoantigens. The pathophysiology of PBC is multifactorial, whereas the detailed immune response triggered by the intrahepatic T lymphocytes still remains unknown. Among all T cell subsets, tissue-resident memory T cell (TRM) is a specific lineage of lymphocytes, given its name by the ability to reside and maintain in different tissues. In our previous study, we identified a distinct Asialo-GM1-positive (ASGM1+) CD8 T cell population in intrahepatic lymphocytes (IHLs) and exhibited similar properties with the previously reported liver-resident memory T cells. In the hepatitis B virus (HBV) hydrodynamic transfection model, we found that this population is crucial for the eradication of HBV. Moreover, this population was also identified as an early IFN-γ producer and critical for the initiation of the ConA-induced acute hepatitis model. To further dissect this specific population within this work, the role of ASGM1+ liver TRM cells was investigated in autoimmune cholangitis with 2-octynoic acid-ovalbumin (2-OA-OVA) immunization mouse model, comparing to the PBC disease in human bodies. We found that autoimmune cholangitis was suppressed by α-ASGM1 treatment through an NK cell-independent mechanism, with similar results shown by utilizing NFIL3-/- mice. We also applied an alternative way for liver TRM depletion by the α-CXCR3 treatment, which was also found capable of suppressing autoimmune cholangitis. Moreover, through Mass Cytometry (CyTOF) analysis, we found that ASGM1+ CD8 T cells were the main source of IFN-γ and might be responsible for the pathogenesis of autoimmune cholangitis. By immunohistochemical staining, we demonstrated that α-ASGM1 and α-CXCR3 treatment suppressed IFN-γ deposition in portal tracts. When mice were pre-treated with α-ASGM1 followed by α-galactosylceramide (α-GalCer) exposure, the serum level of IFN-γ was significantly suppressed but not IL-4. Further, when co-cultured with α-GalCer-stimulated NKT cells, we identified that ASGM1+ liver TRM cells were activated upon iNKT activation and contributed to IFN-γ production. Taken together, it was suggested that the ASGM1+ CD8 liver TRM cells were crucial for the development of 2-OA-OVA immunized autoimmune cholangitis and served as a source of IFN-γ deposition. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:06:32Z (GMT). No. of bitstreams: 1 U0001-0308202216332800.pdf: 6938110 bytes, checksum: e82cea899f61bbcb16a43008d4cab3c9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 II
誌謝 III 中文摘要 IV Abstract VI Contents VIII List of Figures X Chapter 1 Introduction 1 1. Synopses of structure and fundamental functions of the liver 1 2. Tissue-resident memory cells (TRM) 2 2.1. Liver-resident memory T cells 3 3. Autoimmune hepatitis (AIH) 5 4. Primary biliary cholangitis (PBC) 6 4.1. Xenobiotic-induced murine autoimmune cholangitis 7 5. Rationale and specific aims 9 Chapter 2 Materials and Methods 11 1. Materials 11 1.1. Mice 11 1.2. Kits 11 1.3. Antibodies 12 1.4. Chemicals and reagents 14 1.5. Buffer 16 1.6. List of primers 18 1.7. Antibodies for CyTOF analysis 18 2. Methods 21 2.1. Isolation of splenocytes (SPLs) and intrahepatic lymphocytes (IHLs) 21 2.2. Primary T cell culture 21 2.3. Xenobiotic-induced primary biliary cholangitis model establishment 22 2.4. In vivo depletion of intrahepatic lymphocytes (IHLs) 22 2.5. Histological examination 23 2.6. Determination of serum anti-PDC-E2 antibodies and cytokine levels 23 2.7. Quantitative real-time PCR analysis 24 2.8. Flow cytometric analysis of lymphocytes 24 2.9. Adoptive transfer 25 2.10. Single-cell mass cytometry (CyTOF) 26 2.11. Co-culture assay 27 2.12. Statistical analysis 27 Chapter 3 Results 28 1. A distinct ASGM1+ CD8+ T cell population persisted in the liver and exhibited phenotypic and functional liver TRM characteristics. 28 2. Autoimmune cholangitis and liver fibrosis were suppressed by α-ASGM1 treatment in 2-OA-OVA immunized autoimmune cholangitis. 29 3. 2-OA-OVA immunized autoimmune cholangitis was suppressed by α-ASGM1 treatment through an NK cell-independent mechanism. 31 4. Depleting ASGM1+ liver CD8+ T cells through alternative α-CXCR3 treatment also suppressed autoimmune cholangitis and liver fibrosis. 32 5. IFN-γ was produced by activated ASGM1+ liver CD8+ T cells under 2-OA-OVA immunized autoimmune cholangitis. 33 6. α-GalCer-stimulated iNKT cells contributed to IFN-γ production by ASGM1+ liver CD8+ T cells in 2-OA-OVA immunized autoimmune cholangitis. 35 Chapter 4 Discussion 37 Chapter 5 Figures 43 Chapter 6 References 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 2-辛炔酸-卵白蛋白 | zh_TW |
| dc.subject | 自體免疫性膽管炎 | zh_TW |
| dc.subject | 無唾液酸神經節苷脂 | zh_TW |
| dc.subject | 質譜流式細胞術 | zh_TW |
| dc.subject | 干擾素γ | zh_TW |
| dc.subject | CD8 T細胞 | zh_TW |
| dc.subject | 組織駐留記憶性T細胞 | zh_TW |
| dc.subject | Mass Cytometry (CyTOF) | en |
| dc.subject | Primary biliary cholangitis | en |
| dc.subject | 2-octynoic acid | en |
| dc.subject | Asialo-GM1 | en |
| dc.subject | Tissue resident memory T cell | en |
| dc.subject | CD8 T cell | en |
| dc.subject | Interferon-γ | en |
| dc.title | 表現無唾液酸神經節苷脂之肝臟駐留記憶性T細胞對原發性膽汁性膽管炎參與角色之研究 | zh_TW |
| dc.title | The Role of Asialo-GM1+ Liver Resident Memory T cells in Primary Biliary Cholangitis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.author-orcid | 0000-0002-7706-4702 | |
| dc.contributor.advisor-orcid | 許秉寧(0000-0003-4479-3391) | |
| dc.contributor.oralexamcommittee | 朱清良;楊宏志;莊雅惠 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Liang Chu;Hung-Chih Yang;Ya-Hui Chuang | en |
| dc.contributor.oralexamcommittee-orcid | 朱清良(0000-0002-8463-526X),楊宏志(0000-0003-3864-9895),莊雅惠(0000-0003-0857-0035) | |
| dc.subject.keyword | 自體免疫性膽管炎,2-辛炔酸-卵白蛋白,無唾液酸神經節苷脂,組織駐留記憶性T細胞,CD8 T細胞,干擾素γ,質譜流式細胞術, | zh_TW |
| dc.subject.keyword | Primary biliary cholangitis,2-octynoic acid,Asialo-GM1,Tissue resident memory T cell,CD8 T cell,Interferon-γ,Mass Cytometry (CyTOF), | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202202017 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2025-01-01 | - |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-110-2.pdf | 6.64 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
