請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86611
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳示國(Shih-Kuo Chen) | |
dc.contributor.author | Yu-Yau Shan | en |
dc.contributor.author | 單禹堯 | zh_TW |
dc.date.accessioned | 2023-03-20T00:06:24Z | - |
dc.date.copyright | 2022-08-31 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-08 | |
dc.identifier.citation | Abrahamson, E.E., and Moore, R.Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916, 172-191. Aguilar-Roblero, R., Quinto, D., Báez-Ruíz, A., Chávez, J.L., Belin, A.C., Díaz-Muñoz, M., Michel, S., and Lundkvist, G. (2016). Ryanodine-sensitive intracellular Ca(2+) channels are involved in the output from the SCN circadian clock. Eur J Neurosci 44, 2504-2514. Akerstedt, T. (2007). Altered sleep/wake patterns and mental performance. Physiol Behav 90, 209-218. Albus, H., Bonnefont, X., Chaves, I., Yasui, A., Doczy, J., van der Horst, G.T., and Meijer, J.H. (2002). Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol 12, 1130-1133. Albus, H., Vansteensel, M.J., Michel, S., Block, G.D., and Meijer, J.H. (2005). A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15, 886-893. Altimus, C.M., Güler, A.D., Villa, K.L., McNeill, D.S., Legates, T.A., and Hattar, S. (2008). Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci U S A 105, 19998-20003. Arendt, J. (2009). Managing jet lag: Some of the problems and possible new solutions. Sleep Med Rev 13, 249-256. Arendt, J., and Marks, V. (1982). Physiological changes underlying jet lag. Br Med J (Clin Res Ed) 284, 144-146. Bass, J., and Takahashi, J.S. (2010). Circadian integration of metabolism and energetics. Science 330, 1349-1354. Carlezon, W.A., Jr., Duman, R.S., and Nestler, E.J. (2005). The many faces of CREB. Trends Neurosci 28, 436-445. Cheikh Hussein, L.E., Fontanaud, P., Mollard, P., and Bonnefont, X. (2021). Nested calcium dynamics support daily cell unity and diversity in the suprachiasmatic nuclei of free-behaving mice. bioRxiv, 2021.2012.2014.472553. Chien, Y.-F., Lin, J.-Y., Yeh, P.-T., Hsu, K.-J., Tsai, Y.-H., Chen, S.-K., and Chu, S.-W. (2021). Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. Biomed Opt Express 12, 162-172. Cho, K. (2001). Chronic 'jet lag' produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 4, 567-568. Cho, K., Ennaceur, A., Cole, J.C., and Suh, C.K. (2000). Chronic jet lag produces cognitive deficits. J Neurosci 20, Rc66. Collins, B., Pierre-Ferrer, S., Muheim, C., Lukacsovich, D., Cai, Y., Spinnler, A., Herrera, C.G., Wen, S., Winterer, J., Belle, M.D.C., et al. (2020). Circadian VIPergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron 108, 486-499.e485. Colwell, C.S. (2011). Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12, 553-569. Davidson, A.J., Castanon-Cervantes, O., Leise, T.L., Molyneux, P.C., and Harrington, M.E. (2009). Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29, 171-180. Davis, S., Mirick, D.K., and Stevens, R.G. (2001). Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93, 1557-1562. Denk, W., Strickler, J.H., and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76. Enoki, R., Kuroda, S., Ono, D., Hasan, M.T., Ueda, T., Honma, S., and Honma, K. (2012). Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 109, 21498-21503. Enoki, R., Oda, Y., Mieda, M., Ono, D., Honma, S., and Honma, K.I. (2017a). Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 114, E2476-e2485. Enoki, R., Ono, D., Kuroda, S., Honma, S., and Honma, K.I. (2017b). Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus. Sci Rep 7, 41733. Fernandez, D.C., Fogerson, P.M., Lazzerini Ospri, L., Thomsen, M.B., Layne, R.M., Severin, D., Zhan, J., Singer, J.H., Kirkwood, A., Zhao, H., et al. (2018). Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 175, 71-84 e18. Forbes-Robertson, S., Dudley, E., Vadgama, P., Cook, C., Drawer, S., and Kilduff, L. (2012). Circadian disruption and remedial interventions: effects and interventions for jet lag for athletic peak performance. Sports Med 42, 185-208. Fève-Montange, M., Van Cauter, E., Refetoff, S., Désir, D., Tourniaire, J., and Copinschi, G. (1981). Effects of 'jet lag' on hormonal patterns. II. Adaptation of melatonin circadian periodicity. J Clin Endocrinol Metab 52, 642-649. Fuchikawa, T., Eban-Rothschild, A., Nagari, M., Shemesh, Y., and Bloch, G. (2016). Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun 7, 11662. Gallego, M., and Virshup, D.M. (2007). Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8, 139-148. Gau, D., Lemberger, T., von Gall, C., Kretz, O., Le Minh, N., Gass, P., Schmid, W., Schibler, U., Korf, H.W., and Schütz, G. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245-253. Giebultowicz, J. (2004). Chronobiology: Biological Timekeeping. Integrative and Comparative Biology 44, 266-266. Greenham, K., and McClung, C.R. (2015). Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16, 598-610. Hastings, M.H., Maywood, E.S., and Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19, 453-469. Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070. Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hofmann, F., Foster, R.G., et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76-81. Helmchen, F., and Denk, W. (2005). Deep tissue two-photon microscopy. Nat Methods 2, 932-940. Hong, J.H., Jeong, B., Min, C.H., and Lee, K.J. (2012). Circadian waves of cytosolic calcium concentration and long-range network connections in rat suprachiasmatic nucleus. Eur J Neurosci 35, 1417-1425. Iglesias, R., Terrés, A., and Chavarria, A. (1980). Disorders of the menstrual cycle in airline stewardesses. Aviat Space Environ Med 51, 518-520. Ikeda, M., and Ikeda, M. (2014). Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons. J Neurosci 34, 12029-12038. Ikeda, M., Sugiyama, T., Wallace, C.S., Gompf, H.S., Yoshioka, T., Miyawaki, A., and Allen, C.N. (2003). Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38, 253-263. Inouye, S.T., and Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic 'island' containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76, 5962-5966. Irwin, R.P., and Allen, C.N. (2007). Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27, 11748-11757. Jones, J.R., Simon, T., Lones, L., and Herzog, E.D. (2018). SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. J Neurosci 38, 7986-7995. K Svoboda, a., and Block, S.M. (1994). Biological Applications of Optical Forces. Annual Review of Biophysics and Biomolecular Structure 23, 247-285. Kahan, A., Greenbaum, A., Jang, M.J., Robinson, J.E., Cho, J.R., Chen, X., Kassraian, P., Wagenaar, D.A., and Gradinaru, V. (2021). Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses. Cell Rep 36, 109744. Karlsson, B., Alfredsson, L., Knutsson, A., Andersson, E., and Torén, K. (2005). Total mortality and cause-specific mortality of Swedish shift- and dayworkers in the pulp and paper industry in 1952-2001. Scand J Work Environ Health 31, 30-35. King, V.M., Chahad-Ehlers, S., Shen, S., Harmar, A.J., Maywood, E.S., and Hastings, M.H. (2003). A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur J Neurosci 17, 822-832. Knutsson, A., Hammar, N., and Karlsson, B. (2004). Shift workers' mortality scrutinized. Chronobiol Int 21, 1049-1053. LeGates, T.A., Fernandez, D.C., and Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15, 443-454. Liu, A.C., Welsh, D.K., Ko, C.H., Tran, H.G., Zhang, E.E., Priest, A.A., Buhr, E.D., Singer, O., Meeker, K., Verma, I.M., et al. (2007). Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129, 605-616. Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245-247. Maywood, E.S., Drynan, L., Chesham, J.E., Edwards, M.D., Dardente, H., Fustin, J.M., Hazlerigg, D.G., O'Neill, J.S., Codner, G.F., Smyllie, N.J., et al. (2013). Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proc Natl Acad Sci U S A 110, 9547-9552. Meijer, J.H., and Michel, S. (2015). Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552, 75-102. Meijer, J.H., and Schwartz, W.J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18, 235-249. Michel, S., Itri, J., Han, J.H., Gniotczynski, K., and Colwell, C.S. (2006). Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7, 15. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y., and Okamura, H. (2001). Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15, 995-1006. Moore, R.Y., and Eichler, V.B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42, 201-206. Moore, R.Y., and Speh, J.C. (1993). GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150, 112-116. Nakai, J., Ohkura, M., and Imoto, K. (2001). A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19, 137-141. Nakamura, W., Honma, S., Shirakawa, T., and Honma, K. (2002). Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci 5, 399-400. Nakamura, W., Yamazaki, S., Takasu, N.N., Mishima, K., and Block, G.D. (2005). Differential response of Period 1 expression within the suprachiasmatic nucleus. J Neurosci 25, 5481-5487. Narasimamurthy, R., Hunt, S.R., Lu, Y., Fustin, J.M., Okamura, H., Partch, C.L., Forger, D.B., Kim, J.K., and Virshup, D.M. (2018). CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci U S A 115, 5986-5991. Noguchi, T., Leise, T.L., Kingsbury, N.J., Diemer, T., Wang, L.L., Henson, M.A., and Welsh, D.K. (2017). Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. eNeuro 4. Noseda, R., Kainz, V., Jakubowski, M., Gooley, J.J., Saper, C.B., Digre, K., and Burstein, R. (2010). A neural mechanism for exacerbation of headache by light. Nat Neurosci 13, 239-245. Page, A.J., Christie, S., Symonds, E., and Li, H. (2020). Circadian regulation of appetite and time restricted feeding. Physiol Behav 220, 112873. Papantoniou, K., Devore, E.E., Massa, J., Strohmaier, S., Vetter, C., Yang, L., Shi, Y., Giovannucci, E., Speizer, F., and Schernhammer, E.S. (2018). Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer 143, 2709-2717. Park, J., Zhu, H., O'Sullivan, S., Ogunnaike, B.A., Weaver, D.R., Schwaber, J.S., and Vadigepalli, R. (2016). Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock. Front Neurosci 10, 481. Pennartz, C.M., Hamstra, R., and Geurtsen, A.M. (2001). Enhanced NMDA receptor activity in retinal inputs to the rat suprachiasmatic nucleus during the subjective night. J Physiol 532, 181-194. Pfeffer, M., Müller, C.M., Mordel, J., Meissl, H., Ansari, N., Deller, T., Korf, H.W., and von Gall, C. (2009). The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J Neurosci 29, 6114-6123. Rajaratnam, S.M., and Arendt, J. (2001). Health in a 24-h society. Lancet 358, 999-1005. Ralph, M.R., Foster, R.G., Davis, F.C., and Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975-978. Rensing, L., and Ruoff, P. (2002). Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19, 807-864. Sack, R.L. (2009). The pathophysiology of jet lag. Travel Med Infect Dis 7, 102-110. Schwartz, W.J., Gross, R.A., and Morton, M.T. (1987). The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci U S A 84, 1694-1698. Solt, L.A., Kojetin, D.J., and Burris, T.P. (2011). The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 3, 623-638. Squirrell, J.M., Wokosin, D.L., White, J.G., and Bavister, B.D. (1999). Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17, 763-767. Srinivasan, V., Singh, J., Pandi-Perumal, S.R., Brown, G.M., Spence, D.W., and Cardinali, D.P. (2010). Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther 27, 796-813. Stephan, F.K., and Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69, 1583-1586. Stowie, A., Qiao, Z., Buonfiglio, D.D.C., Beckner, D.M., Ehlen, J.C., Benveniste, M., and Davidson, A.J. (2022). Arginine-Vasopressin Expressing Neurons in the Murine Suprachiasmatic Nucleus Exhibit a Circadian Rhythm in Network Coherence <em>In Vivo</em>. bioRxiv, 2021.2012.2007.471437. Todd, W.D., Venner, A., Anaclet, C., Broadhurst, R.Y., De Luca, R., Bandaru, S.S., Issokson, L., Hablitz, L.M., Cravetchi, O., Arrigoni, E., et al. (2020). Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nature Communications 11, 4410. Tomlinson, W.J. (1980). Applications of GRIN-rod lenses in optical fiber communication systems. Appl Opt 19, 1127-1138. Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., and Warman, M.L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52, 54. Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M., and Hashimoto, S. (2005). System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37, 187-192. Wang, Q., Shui, B., Kotlikoff, M.I., and Sondermann, H. (2008). Structural basis for calcium sensing by GCaMP2. Structure 16, 1817-1827. Waterhouse, J., Reilly, T., Atkinson, G., and Edwards, B. (2007). Jet lag: trends and coping strategies. Lancet 369, 1117-1129. Weaver, D.R. (1998). The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13, 100-112. Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706. Welsh, D.K., Takahashi, J.S., and Kay, S.A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72, 551-577. Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., and Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci 23, 456-467. Winget, C.M., DeRoshia, C.W., Markley, C.L., and Holley, D.C. (1984). A review of human physiological and performance changes associated with desynchronosis of biological rhythms. Aviat Space Environ Med 55, 1085-1096. Yamaguchi, Y., Suzuki, T., Mizoro, Y., Kori, H., Okada, K., Chen, Y., Fustin, J.M., Yamazaki, F., Mizuguchi, N., Zhang, J., et al. (2013). Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342, 85-90. Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G.D., Sakaki, Y., Menaker, M., and Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682-685. Yoo, S.H., Mohawk, J.A., Siepka, S.M., Shan, Y., Huh, S.K., Hong, H.K., Kornblum, I., Kumar, V., Koike, N., Xu, M., et al. (2013). Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091-1105. Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S.M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101, 5339-5346. Yoshikawa, T., Pauls, S., Foley, N., Taub, A., LeSauter, J., Foley, D., Honma, K.-I., Honma, S., and Silver, R. (2021). Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoids. eneuro 8, ENEURO.0078-0021.2021. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86611 | - |
dc.description.abstract | 地球上的生物依靠體內的晝夜節律以應對二十四小時的日夜週期變化,而在哺乳類動物中,下視丘的視交叉上核(Suprachiasmatic nucleus, SCN)作為中樞節律器調控眾多生理功能。現代社會中人們頻繁地到世界各地旅遊並跨越不同時區,因此常受時差(jet lag)影響產生睡眠障礙。過去對於時差的研究使用活體外腦片紀錄的方式,發現視交叉上核中的神經細胞的時鐘基因在經歷時差後變得較不同步,並需要幾天的時間逐漸重新適應到新的時區。然而究竟在活體內視交叉上核內的神經活性如何被時差影響仍然未知。藉由在梯度折射率透鏡(gradient index lens, GRIN Lens)、鈣離子影像技術及雙光子顯微鏡,我們得以在清醒小鼠內紀錄視交叉上核內的神經活性。我們發現視交叉上核內神經的鈣離子活動相關性會迅速被外界光線提升,且不會在經歷時差後有所降低;另一方面視交叉上核神經的基礎鈣離子濃度原本具有日夜週期的變化,但卻會在經歷時差後被擾亂,且部分神經會重新適應到新時區。而無法重新適應的神經們彼此之間又具有較強的鈣離子活動相關性,因此他們可能是屬於同一未知功能的神經迴路。綜上所述我們的結果顯示鈣離子活動和基礎鈣離子濃度應該是被兩種不同機制調控,其中後者可能是由生理時鐘基因調控,並負責同步行為與外界光週期。 | zh_TW |
dc.description.abstract | Living creatures on Earth rely on their intrinsic circadian rhythms to anticipate the external day and night cycle. The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus serves as the central pacemaker to coordinate individual periphery oscillators and govern various physiological functions critical to health. When rapidly crossing several time zones by flight, people often experience jet lag and suffer unsettled sleep-wake cycles. A previous study using in vitro single-cell imaging has revealed that the phases of PER2, a core clock gene, expressions in the SCN neurons become less synchronized after jet lag and require a couple of days to gradually be re-entrained to the new light-dark cycle. However, further in vivo evidence about how jet lag affects SCN neuronal activities is still deficient. In this study, by a combination of gradient index (GRIN) lenses, Ca2+ imaging, and two-photon microscopy, we were able to record single-cell SCN neuronal activities in head-fixed awake mice. We found that the synchrony of transient Ca2+ activities of SCN neurons was acutely enhanced by external light and not altered after jet lag exposure; on the other hand, basal Ca2+ levels of most neurons originally exhibiting daily fluctuations higher in the daytime were disturbed by jet lag, and some neurons achieved re-entrainment of their basal Ca2+ fluctuations to the new light-dark cycle. Moreover, those SCN neurons incapable of re-entrainment exhibited stronger correlations of transient Ca2+ activities to each other, implying they might belong to the same circuit with unknown functions instead of photoentrainment. Together, our findings demonstrate that transient Ca2+ activities and basal Ca2+ levels could be controlled by different mechanisms, with the former acutely responding to light input and the latter probably mediated by clock genes and accounting for photoentrainment of behavior rhythms. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:06:24Z (GMT). No. of bitstreams: 1 U0001-0208202217072500.pdf: 5173743 bytes, checksum: 9ec177eba958b76f56d11f47cb9c5ccf (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 論文口試委員審定書 i 誌 謝 ii 摘 要 iv Abstract v Contents vii Chapter I Introduction 1 1.1 Circadian rhythms 1 1.1.1 Molecular clock 2 1.2 Suprachiasmatic nucleus: central pacemaker of mammals 4 1.2.1 Structure and subpopulations 4 1.2.2 Rhythmicity of the SCN 5 1.2.3 Synchrony of the SCN 7 1.2.4 Retinal input and photoentrainment 8 1.2.5 Output 9 1.3 Jet lag 10 1.3.1 Circadian disruption in jet lag 11 1.4 In vivo Ca2+ imaging 11 1.4.1 GCaMP 11 1.4.2 Two-photon microscopy 12 1.4.3 Gradient index (GRIN) lenses 13 Statement of Purpose 15 Chapter II Materials and Methods 17 2.1 Animals 17 2.2 Genotyping 17 2.2.1 DNA extraction 17 2.2.2 Polymerase chain reaction (PCR) 18 2.3 Stereotaxic surgery 18 2.4 Experimental design 20 2.5 Two-photon microscopic image acquisition 21 2.6 Image analysis and statistics 21 2.6.1 Motion correction and ROI definition 22 2.6.2 Production of fluorescence intensity traces, detrend and ΔF/F0 definition 22 2.6.3 Correlation analysis 23 2.6.4 K-means clustering analysis on basal Ca2+ fluctuations 24 Chapter III Results 25 3.1 SCN neuronal activities were successfully visualized by in vivo Ca2+ imaging through GRIN lenses with two-photon microscopy 25 3.2 The correlations among transient Ca2+ activities of SCN neurons showed variation relative higher during the day and reducing right after nightfall but were not affected by jet lag 26 3.3 Basal Ca2+ levels of SCN neurons exhibited fluctuations which were altered after jet lag with some neurons successfully re-entrained to the new LD schedule 27 3.4 The neuron group failing to accomplish re-entrainment displayed significantly stronger intra-cluster correlations than inter-cluster correlations 29 3.5 The SCN neurons within the same groups seemed to be spatially close to each other 30 Chapter IV Discussion 32 4.1 The transient Ca2+ activities and basal Ca2+ fluctuations in SCN neurons could be modulated by distinct mechanisms 32 4.2 The SCN neurons achieved re-entrainment of their basal Ca2+ rhythms might drive the photoentrainment of behaviors 33 4.3 The SCN neurons with basal Ca2+ fluctuations unable to be re-entrained might belong to a dissociable circuit with distinct functions instead of photoentrainment 35 Significance of the work 37 References 38 Figures 52 Figure 1. Experimental design. 52 Figure 2. Schematic of GRIN lens implantation and AAV injection stereotaxic surgery. 53 Figure 3. Average images though GRIN lenses in VIPcre/+; and AVPcre/+; tdTomato/+ mice. 54 Figure 4. Illustrations for data analysis. 55 Figure 5. Population correlation coefficients among SCN neuronal transient Ca2+ activities before and after jet lag. 56 Figure 6. Heat map of basal Ca2+ levels on Baseline. 57 Figure 7. Heat maps of basal Ca2+ levels on Baseline2 and Day1-4. 58 Figure 8. Heap maps of correlations between Baseline2 and Day1-4. 59 Figure 9. K-means clustering heat maps of basal Ca2+ levels on Baseline2 and Day1-4. 60 Figure 10. Correlation coefficients among transient Ca2+ activities of SCN neurons within C1 to C5 before and after jet lag. 61 Figure 11. Averages of daytime or nighttime correlation coefficients among transient Ca2+ activities of SCN neurons within C1 to C5 before and after jet lag. 62 Figure 12. Correlation coefficients among transient Ca2+ activities of SCN neurons within same group and between another group before and after jet lag. 63 Figure 13. Intra- or inter-group correlation coefficients of transient Ca2+ activities during daytime and nighttime. 65 Figure 14. Spatial distributions of different clusters and groups. 66 Figure 15. VIP and AVP neurons distributions in different clusters and groups. 67 Figure 16. Graphic summary. 68 Tables 69 Table 1. List of primers for genotyping. 69 Appendix 70 Poster for 2020 Taiwan Society for Neuroscience (TSFN) 70 Poster for 2022 Poster Contest, Department of Life Science, National Taiwan University 71 Programing design for detrend, ΔF/F0 and PCCs calculation 72 Programing design for K-means clustering analysis 75 | |
dc.language.iso | en | |
dc.title | 藉由內視鏡在活體內觀察經歷時差時視交叉上核之神經活性 | zh_TW |
dc.title | Visualizing the suprachiasmatic nucleus in vivo during jet lag by intracranial endoscope implantation | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0003-4157-9250 | |
dc.contributor.oralexamcommittee | 吳順吉(Shun-Chi Wu),吳玉威(Yu-Wei Wu),黃雯華(Wendy Hwang-Verslues) | |
dc.subject.keyword | 晝夜節律,時差,視交叉上核,活體鈣離子影像,梯度折射率透鏡,雙光子顯微鏡, | zh_TW |
dc.subject.keyword | circadian rhythms,jet lag,suprachiasmatic nucleus,in vivo Ca2+ imaging,GRIN lenses,two-photon microscopy, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202201980 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-08 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
dc.date.embargo-lift | 2027-08-26 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0208202217072500.pdf 此日期後於網路公開 2027-08-26 | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。