Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86598
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor單偉彌(Vianney Denis)
dc.contributor.authorYu-Wen Chenen
dc.contributor.author陳雨雯zh_TW
dc.date.accessioned2023-03-20T00:05:32Z-
dc.date.copyright2022-08-15
dc.date.issued2022
dc.date.submitted2022-08-09
dc.identifier.citationAnthony, K. R., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G., & Middlebrook, R. (2009). Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional Ecology, 23(3), 539-550. Barneah, O., Weis, V. M., Perez, S., & Benayahu, Y. (2004). Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Marine Ecology Progress Series, 275, 89-95. Bourne, D., Iida, Y., Uthicke, S., & Smith-Keune, C. (2008). Changes in coral-associated microbial communities during a bleaching event. The ISME journal, 2(4), 350-363. Bourne, D. G., Morrow, K. M., & Webster, N. S. (2016). Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annual Review of Microbiology, 70(1), 317-40. Brown, B. E. (1997). Coral bleaching: causes and consequences. Coral Reefs, 16(1), S129-S138. Cárdenas, A., Rodriguez-r, L. M., Pizarro, V., Cadavid, L. F., & Arévalo-Ferro, C. (2012). Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. The ISME journal, 6(3), 502-512. Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable‐isotope‐ratio and gas‐ratio measurement results. Rapid Communications in Mass Spectrometry, 25(17), 2538-2560. Dai, C.F. (2022). Corals of Taiwan Vol.2: Octocorallia. Owl Publishing House Co., LTD. [in Chinese] Darling, E. S., Alvarez‐Filip, L., Oliver, T. A., McClanahan, T. R., & Côté, I. M. (2012). Evaluating life‐history strategies of reef corals from species traits. Ecology Letters, 15(12), 1378-1386. Darling, E. S., McClanahan, T. R., & Côté, I. M. (2013). Life histories predict coral community disassembly under multiple stressors. Global Change Biology, 19(6), 1930-1940. Darling, E. S., McClanahan, T. R., Maina, J., Gurney, G. G., Graham, N. A., Januchowski-Hartley, F., ... & Mouillot, D. (2019). Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature Ecology & Evolution, 3(9), 1341-1350. Easson, C. G., Matterson, K. O., Freeman, C. J., Archer, S. K., & Thacker, R. W. (2015). Variation in species diversity and functional traits of sponge communities near human populations in Bocas del Toro, Panama. PeerJ, 3, e1385. Fitt, W. K., McFarland, F. K., Warner, M. E., & Chilcoat, G. C. (2000). Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography, 45(3), 677-685. France, S. C., & Hoover, L. L. (2002). DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia, 471(1), 149-155. Gignoux-Wolfsohn, S.A., & Vollmer, S.V. (2015). Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS ONE, 10(8), e0134416. Gili, J.M., & Coma, R. (1998). Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology & Evolution. 13(8):316-321. Gómez, I., Navarro, N. P., & Huovinen, P. (2019). Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Progress in Oceanography, 174, 17-27. Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088), 1186-1189. Grottoli, A. G., Tchernov, D., & Winters, G. (2017). Physiological and biogeochemical responses of super-corals to thermal stress from the Northern Gulf of Aqaba, Red Sea. Frontiers in Marine Science, 215. Grottoli, A. G., Dalcin Martins, P., Wilkins, M. J., Johnston, M. D., Warner, M. E., Cai, W. J., ... & Schoepf, V. (2018). Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE, 13(1), e0191156. Haydon, T. D., Suggett, D. J., Siboni, N., Kahlke, T., Camp, E. F., & Seymour, J. R. (2022). Temporal variation in the microbiome of tropical and temperate octocorals. Microbial Ecology, 83(4), 1073-1087. Hayes, R. L., & Bush, P. G. (1990). Microscopic observations of recovery in the reef-building scleractinian coral, Montastrea annularis, after bleaching on a Cayman reef. Coral Reefs, 8(4), 203-209. Hsu, T. H. T., Carlu, L., Hsieh, Y. E., Lai, T. Y. A., Wang, C. W., Huang, C. Y., ... & Denis, V. (2020). Stranger things: organismal traits of two octocorals associated with singular Symbiodiniaceae in a high-latitude coral community from Northern Taiwan. Frontiers in Marine Science, 1158. Hughes, A. D., & Grottoli, A. G. (2013). Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE, 8(11), e81172. Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., ... & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377. Hughes, T. P., Kerry, J. T., Connolly, S. R., Baird, A. H., Eakin, C. M., Heron, S. F., ... & Torda, G. (2019). Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Climate Change, 9(1), 40-43. Jeffrey, S. T., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194. Jeng, M. S., Huang, H. D., Dai, C. F., Hsiao, Y. C., & Benayahu, Y. (2011). Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral Reefs, 30(4), 925-933. Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., ... & Turner, M. G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14(7), 369-378. Jones, A. M., Berkelmans, R., van Oppen, M. J., Mieog, J. C., & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1359-1365. Kavousi, J., Denis, V., Sharp, V., Reimer, J. D., Nakamura, T., & Parkinson, J. E. (2020). Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Marine Biology, 167(2), 1-15. Lasker, H. R., Bramanti, L., Tsounis, G., & Edmunds, P. J. (2020). The rise of octocoral forests on Caribbean reefs. In Advances in Marine Biology (Vol. 87, No. 1, pp. 361-410). Academic Press. Lee, S. T., Davy, S. K., Tang, S. L., & Kench, P. S. (2016). Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Frontiers in Microbiology, 7, 371. Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L., & Matsui, Y. (2013). Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PLoS ONE, 8(5), e63267. Lodwig, E. M., Hosie, A. H., Bourdes, A., Findlay, K., Allaway, D., Karunakaran, R., ... & Poole, P. S. (2003). Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature, 422(6933), 722-726. Madin, J. S., Anderson, K. D., Andreasen, M. H., Bridge, T. C., Cairns, S. D., Connolly, S. R., ... & Baird, A. H. (2016). The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data, 3(1), 1-22. McCauley, M., Jackson, C. R., & Goulet, T. L. (2020). Microbiomes of Caribbean octocorals vary over time but are resistant to environmental change. Frontiers in Microbiology, 11, 1272. McDevitt-Irwin, J. M., Baum, J. K., Garren, M., & Vega Thurber, R. L. (2017). Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science, 262. McFadden, C. S., Tullis, I. D., Breton Hutchinson, M., Winner, K., & Sohm, J. A. (2004). Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Marine Biotechnology, 6(6), 516-526. McFadden, C. S., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A., & France, S. C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. Molecular Ecology Resources, 11(1), 19-31. McWilliam, M., Hoogenboom, M. O., Baird, A. H., Kuo, C. Y., Madin, J. S., & Hughes, T. P. (2018). Biogeographical disparity in the functional diversity and redundancy of corals. Proceedings of the National Academy of Sciences, 115(12), 3084-3089. Mouillot, D., Graham, N. A., Villéger, S., Mason, N. W., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3), 167-177. Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., ... & Bellwood, D. R. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences, 111(38), 13757-13762. Moynihan, M. A., Goodkin, N. F., Morgan, K. M., Kho, P. Y., Lopes dos Santos, A., Lauro, F. M., ... & Martin, P. (2022). Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. The ISME journal, 16(1), 233-246. Nir, O., Gruber, D. F., Einbinder, S., Kark, S., & Tchernov, D. (2011). Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs, 30(4), 1089-1100. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., & Bay, R. A. (2014). Mechanisms of reef coral resistance to future climate change. Science, 344(6186), 895-898. Park, J. S., Han, J., Suh, S. S., Kim, H. J., Lee, T. K., & Jung, S. W. (2022). Characterization of bacterial community structure in two alcyonacean soft corals (Litophyton sp. and Sinularia sp.) from Chuuk, Micronesia. Coral Reefs, 41(3), 563-574. Peixoto, R. S., Rosado, P. M., Leite, D. C. D. A., Rosado, A. S., & Bourne, D. G. (2017). Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Frontiers in Microbiology, 8, 341. Pisapia, C., Anderson, K., & Pratchett, M. S. (2014). Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance. PLoS ONE, 9(3), e91529. Poland, D. M., Mansfield, J. M., Hannes, A. R., Lewis, C. L. F., Shearer, T. L., Connelly, S. J., ... & Coffroth, M. A. (2013). Variation in Symbiodinium communities in juvenile Briareum asbestinum (Cnidaria: Octocorallia) over temporal and spatial scales. Marine Ecology Progress Series, 476, 23-37. Pootakham, W., Mhuantong, W., Putchim, L., Yoocha, T., Sonthirod, C., Kongkachana, W., ... & Tangphatsornruang, S. (2018). Dynamics of coral‐associated microbiomes during a thermal bleaching event. Microbiologyopen, 7(5), e00604. Price, J. T., McLachlan, R. H., Jury, C. P., Toonen, R. J., Wilkins, M. J., & Grottoli, A. G. (2021). Effect of species, provenance, and coral physiology on the composition of Hawaiian coral-associated microbial communities. Coral Reefs, 40(5), 1537-1548. Pupier, C. A., Bednarz, V. N., & Ferrier-Pagès, C. (2018). Studies with soft corals–recommendations on sample processing and normalization metrics. Frontiers in Marine Science, 5, 348. Rossi, S., Schubert, N., Brown, D., Soares, M. D. O., Grosso, V., Rangel-Huerta, E., & Maldonado, E. (2018). Linking host morphology and symbiont performance in octocorals. Scientific Reports, 8(1), 1-14. Rossi, S., Schubert, N., Brown, D., Gonzalez-Posada, A., & Soares, M. O. (2020). Trophic ecology of Caribbean octocorals: autotrophic and heterotrophic seasonal trends. Coral Reefs, 39(2), 433-449. Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., ... & Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125-141. Santos, M. E. A., Baker, D. M., Conti-Jerpe, I. E., & Reimer, J. D. (2021). Populations of a widespread hexacoral have trophic plasticity and flexible syntrophic interactions across the Indo-Pacific Ocean. Coral Reefs, 40(2), 543-558. Senaviratna, N. A. M. R., & Cooray, T. M. J. A. (2019). Diagnosing multicollinearity of logistic regression model. Asian Journal of Probability and Statistics, 5(2), 1-9. Spring, S., Scheuner, C., Göker, M., & Klenk, H. P. (2015). A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Frontiers in Microbiology, 6, 281. Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L., & Denis, V. (2020). Toward a standardised protocol for the stable isotope analysis of scleractinian corals. Rapid Communications in Mass Spectrometry, 34(8), e8663. Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L., & Denis, V. (2021). Trophic plasticity of mixotrophic corals under contrasting environments. Functional Ecology, 35(12), 2841-2855. Sun, F., Yang, H., Shi, Q., & Wang, G. (2022). Changes in coral bacterial communities during a natural bleaching event linked to El Niño in the South China Sea. Regional Studies in Marine Science, 53, 102383. Szmant, A., & Gassman, N. J. (1990). The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs, 8(4), 217-224. Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T., & Ogawa, H. (2006). Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. Journal of Experimental Marine Biology and Ecology, 336(1), 110-119. Tanaka, Y., Suzuki, A., & Sakai, K. (2018). The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. The ISME journal, 12(3), 860-868. Tremblay, P., Maguer, J. F., Grover, R., & Ferrier-Pagès, C. (2015). Trophic dynamics of scleractinian corals: stable isotope evidence. The Journal of Experimental Biology, 218(8), 1223-1234. van de Water, J. A., Melkonian, R., Junca, H., Voolstra, C. R., Reynaud, S., Allemand, D., & Ferrier-Pagès, C. (2016). Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Scientific Reports, 6(1), 1-7. van Oppen, M. J., & Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9), 557-567. Verseveldt, J. (1974). Alcyonacea (Octocorallia) from the Red Sea, with a discussion of a new Sinularia species from Ceylon. Israel Journal of Ecology and Evolution, 23(1), 1-37. Vijayan, A., Vattiringal Jayadradhan, R. K., Pillai, D., Prasannan Geetha, P., Joseph, V., & Isaac Sarojini, B. S. (2021). Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. Journal of Basic Microbiology, 61(2), 88-109. Wall, C. B., Ritson‐Williams, R., Popp, B. N., & Gates, R. D. (2019). Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnology and Oceanography, 64(5), 2011-2028. Welsh, R. M., Rosales, S. M., Zaneveld, J. R., Payet, J. P., McMinds, R., Hubbs, S. L., & Thurber, R. L. V. (2015). Alien vs. Predator: Pathogens open niche space for opportunists, unless controlled by predators. PeerJ 5:e3315. Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., ... & Rothberg, J. M. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872-876. Winters, G., Holzman, R., Blekhman, A., Beer, S., & Loya, Y. (2009). Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring. Journal of Experimental Marine Biology and Ecology, 380(1-2), 25-35. Woo, S., Yang, S. H., Chen, H. J., Tseng, Y. F., Hwang, S. J., De Palmas, S., ... & Tang, S. L. (2017). Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum. PLoS ONE, 12(8), e0183663. Woo, S. (2021). Bacterial Community Composition change in Temperate Octocoral, Scleronephthya gracillimum Responding to Season and Heat Stress. In KMB 2021 48th Annual Meeting & International Symposium (pp. 105-105). The Korean Society for Microbiology and Biotechnology. Xiang, N., Hassenrück, C., Pogoreutz, C., Rädecker, N., Simancas-Giraldo, S. M., Voolstra, C. R., ... & Gärdes, A. (2022). Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Applied and Environmental Microbiology, 88(2), e01886-21. Yesson, C., Taylor, M. L., Tittensor, D. P., Davies, A. J., Guinotte, J., Baco, A., ... & Rogers, A. D. (2012). Global habitat suitability of cold‐water octocorals. Journal of Biogeography, 39(7), 1278-1292. Ziegler, M., Roder, C., Büchel, C., & Voolstra, C. R. (2015). Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association. Marine Ecology Progress Series, 533, 149-161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86598-
dc.description.abstract在氣候變化的情況下,夏季海洋熱浪引發更頻繁、更劇烈的白化事件。在2020年,臺灣經歷了歷史上最嚴峻且最廣泛的白化事件。處在亞熱帶地區的北臺灣,在淺水區的珊瑚受到了輕微的影響,而更深的水域(水下5公尺以下)則幾乎不受影響。唯有一類的珊瑚例外:錦花軟珊瑚(Litophyton sp.)在15公尺深處依然展現明顯的白化。因此,本研究將為期一年追蹤此珊瑚於白化事件後的復原狀況。珊瑚的採集於2020年9月(T1)、2021年1月(T2)、5月(T3)和8月(T4)在北臺灣鼻頭進行季節性的採樣,測量了其珊瑚內微生物的組成及性能的表徵,包括:珊瑚宿主的穩定碳和氮同位素、有機質、葉綠素a和c濃度、內共生藻類含量、宿主蛋白和內共生藻類蛋白質濃度。此次研究也與2019 年 4 月(T0)對同種珊瑚在同一地點的研究中之生物表徵數據合併,以了解白化事件所帶來之影響。此外,此研究也調查了從T1到T4這些與珊瑚相關微生物群的差異,並探究其主要影響組成的分類群。研究結果表明所有測量的表徵在不同的採樣時間下都有顯著的變化,特別是在T1-T2和T0-T3-T4之間。這兩組在主成分分析中也易於區分,相對於對照組(T0)可分為珊瑚忍受白化影響(T1和T2)和從白化中恢復(T3和T4)時期。然而,綜觀所有採樣期間,有些特徵呈現的數值仍然與T0有所差異。在微生物方面,在T2呈現高度多樣性的群落明顯不同於其他採樣時期。然而,就相對豐度而言,T4的微生物群組成在視覺上似乎與T1和T3不同。未來的研究應針對微生物組的組成是影響生物表徵的原因,還是受生物表徵影響的結果。此研究表明錦花軟珊瑚可呈現出對白化事件有一定程度的忍受和恢復之能力,可讓此物種因應在日益溫暖的海洋環境中之生存策略。zh_TW
dc.description.abstractUnder climate change, summer marine heatwaves trigger more frequent and intense bleaching episodes. In 2020, Taiwan underwent the most severe and widespread bleaching event in its recent history. Northern subtropical assemblages were mildly impacted in shallow waters, but deeper waters (< 5m) were almost unaffected. Litophyton sp. was the exception as this octocoral presented obvious signs of bleaching down to -15 m. Fortunately, this octocoral was part of a long-term survey of octocoral organismal performance. Therefore, I scrutinized directly how this species endured and recovered from the bleaching event. Colonies of Litophyton sp. were seasonally sampled in September (T1), January (T2), May (T3) and August (T4) from 2020 to 2021 at Bitou, Taiwan. Organismal traits depicting organismal performance were measured in individual colonies, including host δ13C and δ15N values, organic matter, chlorophyll a and c concentrations, algal endosymbiont content, host protein and algal endosymbiont protein concentrations. Organismal trait composition was tested for differences among sampling periods and merged the dataset from an earlier study on the same species and site in April 2019 (T0). Finally, I looked at variations in microbiome communities associated with those corals from T1 to T4 and identified influential taxa of changes. The results showed obvious differences in all organismal traits, especially between T1-T2 and T3-T4, which were similar to T0 on pigment concentration, algal endosymbiont content and δ15N values. Those two groups were distinguished in a Principal Component Analysis with vector’s characteristics discriminating colonies enduring (T1 and T2) and recovering (T3 and T4) from bleaching with regard to T0. Yet, some traits such as organic matter still differed with T0 through all the sampling periods. Regarding individual microbiome, high alpha diversity was delineated at T2. Furthermore, beta diversity can clearly be distinguished from a community delineated by other sampling periods. Nevertheless, community composition at T4 seems visually to differ from T1 and T3 in terms of relative contribution. Yet, my study indicates that Litophyton sp. presents a certain ability to endure and recover from bleaching, shedding light on an important strategy that may allow this species to be naturally selected in a warmer ocean. Future works should decipher whether the microbiome composition is a cause or a consequence of organismal performance.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:05:32Z (GMT). No. of bitstreams: 1
U0001-0308202215165100.pdf: 3921589 bytes, checksum: f7b677a4d04201f731fd6b5fdf80cd1b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書-I 誌謝-II 中文摘要-III Abstract-IV Contents-VI Lists of Figures-VIII Chapter 1 Introduction-1 1.1 Threats to coral reef-1 1.2 Trait-based approaches-1 1.3 Intraspecific variance-2 1.4 Soft corals-3 1.5 Aims-6 Chapter 2 Materials and Methods-7 2.1 Sample collection and species confirmation-7 2.2 Organismal Traits-8 2.2.1 Isotopic values-9 2.2.2. Other organismal traits-11 2.2.2.1 Ash-free dry weight-11 2.2.2.2 Chlorophyll a and c concentrations-12 2.2.2.3 Algal endosymbiont cell-12 2.2.2.4 Host and algal endosymbiont protein concentrations-13 2.3 Microbiome-13 2.4 Data analysis-15 Chapter 3 Results-17 Chapter 4 Discussion-31 4.1 Enduring bleaching-31 4.2 Recovering from bleaching-35 4.3 Relationships with organismal traits and microbial community-38 Chapter 5 Conclusions-41 Reference-42 Supplementary Information-57
dc.language.isoen
dc.subject同位素zh_TW
dc.subject種內差異zh_TW
dc.subject彈性zh_TW
dc.subject軟珊瑚zh_TW
dc.subject細菌族群zh_TW
dc.subject同位素zh_TW
dc.subject種內差異zh_TW
dc.subject彈性zh_TW
dc.subject軟珊瑚zh_TW
dc.subject細菌族群zh_TW
dc.subjectplasticityen
dc.subjectplasticityen
dc.subjectintraspecific variationen
dc.subjectbacterial compositionen
dc.subjectstable isotopeen
dc.subjectintraspecific variationen
dc.subjectsoft coralsen
dc.subjectstable isotopeen
dc.subjectbacterial compositionen
dc.subjectsoft coralsen
dc.title錦花軟珊瑚於白化事件後的生物表徵及微生物群探討zh_TW
dc.titleRecovering from heat stress: organismal traits and microbiome composition in the Alcyonarian Litophyton sp. following a bleaching eventen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor楊姍樺(Shan-Hua Yang)
dc.contributor.oralexamcommittee楊松穎(Sung-Yin Yang),鍾明宗(Ming-Tsung Chung)
dc.subject.keyword同位素,種內差異,彈性,軟珊瑚,細菌族群,zh_TW
dc.subject.keywordstable isotope,intraspecific variation,plasticity,soft corals,bacterial composition,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202202013
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
dc.date.embargo-lift2024-08-15-
Appears in Collections:海洋研究所

Files in This Item:
File SizeFormat 
U0001-0308202215165100.pdf3.83 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved