請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86591
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃彥婷(Yen-Ting Hwang) | |
dc.contributor.author | Hsing-Hung Chou | en |
dc.contributor.author | 周興泓 | zh_TW |
dc.date.accessioned | 2023-03-20T00:05:07Z | - |
dc.date.copyright | 2022-08-15 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-09 | |
dc.identifier.citation | Aemisegger, F., and Coauthors, 2021: How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region. Weather Clim. Dynam., 2, 281-309. Chan, D., Y. Zhang, Q. Wu, and X. Dai, 2020: Quantifying the dynamics of the interannual variabilities of the wintertime East Asian Jet Core. Climate Dynamics, 54, 2447-2463. Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The Origin of the Subtropical Anticyclones. Journal of the Atmospheric Sciences, 58, 1827-1835. Chen, T.-C., 2005: The Structure and Maintenance of Stationary Waves in the Winter Northern Hemisphere. Journal of the Atmospheric Sciences, 62, 3637-3660. Cherchi, A., T. Ambrizzi, S. Behera, A. C. V. Freitas, Y. Morioka, and T. Zhou, 2018: The Response of Subtropical Highs to Climate Change. Current Climate Change Reports, 4, 371-382. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597. Emanuel, K. A., 1995: On Thermally Direct Circulations in Moist Atmospheres. Journal of Atmospheric Sciences, 52, 1529-1534. Funatsu, B. M., and D. W. Waugh, 2008: Connections between Potential Vorticity Intrusions and Convection in the Eastern Tropical Pacific. Journal of the Atmospheric Sciences, 65, 987-1002. Held, I. M., and A. Y. Hou, 1980: Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. Journal of Atmospheric Sciences, 37, 515-533. Held, I. M., M. Ting, and H. Wang, 2002: Northern Winter Stationary Waves: Theory and Modeling. Journal of Climate, 15, 2125-2144. Homeyer, C. R., and K. P. Bowman, 2013: Rossby Wave Breaking and Transport between the Tropics and Extratropics above the Subtropical Jet. Journal of the Atmospheric Sciences, 70, 607-626. Hoskins, B. J., I. N. James, and G. H. White, 1983: The Shape, Propagation and Mean-Flow Interaction of Large-Scale Weather Systems. Journal of Atmospheric Sciences, 40, 1595-1612. Hsu, C. J., and R. A. Plumb, 2000: Nonaxisymmetric Thermally Driven Circulations and Upper-Tropospheric Monsoon Dynamics. Journal of the Atmospheric Sciences, 57, 1255-1276. Hsu, P.-C., and T. Li, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part II: Apparent Heat and Moisture Sources and Eddy Momentum Transport. Journal of Climate, 24, 942-961. Huffman, G. J., and Coauthors, 2001: Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. Journal of Hydrometeorology, 2, 36-50. Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the Relationships among Low-Cloud Structure, Sea Surface Temperature, and Atmospheric Circulation in the Summertime Northeast Pacific. Journal of Climate, 8, 1140-1155. Lau, K. M., and J. S. Boyle, 1987: Tropical and Extratropical Forcing of the Large-Scale Circulation: A Diagnostic Study. Monthly Weather Review, 115, 400-428. Lee, S., and H.-k. Kim, 2003: The Dynamical Relationship between Subtropical and Eddy-Driven Jets. Journal of the Atmospheric Sciences, 60, 1490-1503. Li, C., and J. J. Wettstein, 2012: Thermally Driven and Eddy-Driven Jet Variability in Reanalysis. Journal of Climate, 25, 1587-1596. Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic Subtropical High and Its Role in the Intensification of Summer Rainfall Variability in the Southeastern United States. Journal of Climate, 24, 1499-1506. Lindzen, R. S., and A. V. Hou, 1988: Hadley Circulations for Zonally Averaged Heating Centered off the Equator. Journal of Atmospheric Sciences, 45, 2416-2427. Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the Subtropical Anticyclone and Diabatic Heating. Journal of Climate, 17, 682-698. Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking Waves at the Tropopause in the Wintertime Northern Hemisphere: Climatological Analyses of the Orientation and the Theoretical LC1/2 Classification. Journal of the Atmospheric Sciences, 64, 2576-2592. Moore, R. W., O. Martius, and T. Spengler, 2010: The Modulation of the Subtropical and Extratropical Atmosphere in the Pacific Basin in Response to the Madden–Julian Oscillation. Monthly Weather Review, 138, 2761-2779. Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational Evaluation of a Convective Quasi-Equilibrium View of Monsoons. Journal of Climate, 23, 4416-4428. Nigam, S., and S. C. Chan, 2009: On the Summertime Strengthening of the Northern Hemisphere Pacific Sea Level Pressure Anticyclone. Journal of Climate, 22, 1174-1192. Postel, G. A., and M. H. Hitchman, 1999: A Climatology of Rossby Wave Breaking along the Subtropical Tropopause. Journal of the Atmospheric Sciences, 56, 359-373. Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical Anticyclones and Summer Monsoons. Journal of Climate, 14, 3192-3211. Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby Wave Breaking on U.S. West Coast Winter Precipitation during ENSO Events. Journal of Climate, 26, 6360-6382. Schneider, E. K., 1987: A Simplified Model of the Modified Hadley Circulation. Journal of Atmospheric Sciences, 44, 3311-3328. Schneider, T., 2006: The General Circulation of the Atmosphere. Annual Review of Earth and Planetary Sciences, 34, 655-688. Schneider, T., and S. Bordoni, 2008: Eddy-Mediated Regime Transitions in the Seasonal Cycle of a Hadley Circulation and Implications for Monsoon Dynamics. Journal of the Atmospheric Sciences, 65, 915-934. Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air–Sea Interaction and the Seasonal Cycle of the Subtropical Anticyclones. Journal of Climate, 16, 1948-1966. Shaw, T. A., and A. Voigt, 2016a: Understanding the Links between Subtropical and Extratropical Circulation Responses to Climate Change Using Aquaplanet Model Simulations. Journal of Climate, 29, 6637-6657. ——, 2016b: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophysical Research Letters, 43, 4566-4575. Song, F., L. R. Leung, J. Lu, and L. Dong, 2018: Future Changes in Seasonality of the North Pacific and North Atlantic Subtropical Highs. Geophysical Research Letters, 45, 11,959-911,968. Sprenger, M., and Coauthors, 2017: Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim. Bulletin of the American Meteorological Society, 98, 1739-1748. Takaya, K., and H. Nakamura, 2001: A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. Journal of the Atmospheric Sciences, 58, 608-627. Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quarterly Journal of the Royal Meteorological Society, 119, 17-55. Ting, M., 1994: Maintenance of Northern Summer Stationary Waves in a GCM. Journal of Atmospheric Sciences, 51, 3286-3308. Vallis, G. K., 2017: The Overturning Circulation: Hadley and Ferrel Cells. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2 ed., G. K. Vallis, Ed., Cambridge University Press, 511-538. Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophysical Research Letters, 27, 3857-3860. Webster, P. J., and J. R. Holton, 1982: Cross-Equatorial Response to Middle-Latitude Forcing in a Zonally Varying Basic State. Journal of Atmospheric Sciences, 39, 722-733. Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. Journal of the Atmospheric Sciences, 64, 1569-1586. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. Journal of Atmospheric Sciences, 30, 611-627. Zhai, J., and W. Boos, 2015: Regime Transitions of Cross-Equatorial Hadley Circulations with Zonally Asymmetric Thermal Forcings. Journal of the Atmospheric Sciences, 72, 3800-3818. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86591 | - |
dc.description.abstract | 本研究探討北太平洋副熱帶高壓在北半球冬季與冬季轉春季時期的控制因子。我們的分析顯示北太平洋洋盆的西風噴流對於控制副熱帶高壓的強度及位置具有關鍵的作用。其中,噴流強度在緯向上的差異使冬季沉降場有兩個不同的來源:西、中太平洋受平均翻轉環流 (time-mean overturning circulation) 控制與東太平洋受反氣旋式羅士培波碎裂 (anticyclonic Rossby wave breaking) 影響。準確來說,在西、中太平洋較強的噴流抑制了該區的羅士培波碎裂,這使此處有較強風切渦度的帶狀副熱帶高壓被熱帶對流透過熱力驅動區域哈德里胞 (thermally-driven local Hadley cell) 以及噴流出區的地轉調整環流所主導。另一方面,相較於西邊的強西風噴流,東太平洋較弱的西風以及其伴隨的位渦 (potential vorticity) 梯度使此處較容易發生羅士培波碎裂。透過羅士培波碎裂的合成分析,我們也發現波動碎裂可以加強東太平洋局部的沉降進而使該區有更強的曲率渦度與封閉反氣旋環流。針對副熱帶高壓的季節轉換,我們發現東太平洋有較強曲率渦度的封閉高壓在冬季轉春季時於中太平洋明顯的快速向西擴張,而此西擴可歸因於中太平洋的噴流於此時期減小,並與南半球熱帶加熱的削弱有關。此季節轉換的分析也進一步支持我們將噴流視為副熱帶高壓控制因子的猜想。而這樣由噴流參與其中的概念不只揭示了冬季北太平洋副熱帶高壓的控制因子,也為研究外熱帶-熱帶交互作用的過程提供了可能的框架。 | zh_TW |
dc.description.abstract | This study investigates the controlling factors of the North Pacific subtropical high, focusing on boreal winter and the rapid transition in spring. We show that the jet in the Pacific basin plays a critical role in controlling the strength and the location of the North Pacific subtropical high. Specifically, the zonal differences in the jet strength lead to two distinct sources of subsidence in winter: the time-mean overturning in the west and the anticyclonic Rossby wave breaking in the east. The strong jet in the western and central North Pacific inhibits wave breaking. The subtropical high belt with strong shear vorticity in this region is then controlled by the tropical convection through the thermally-driven local Hadley cell and the time-mean geostrophic adjustment at the jet exit region. On the other hand, the weak jet and associated PV gradient in the eastern Pacific result in higher wave breaking frequency. The composite analysis of Rossby wave breaking days further suggests the strengthening effect of wave breaking on the local subsidence and the closed anticyclone with relatively strong curvature vorticity. From winter to spring, the closed anticyclone in the eastern Pacific rapidly expands westward, which can be attributed to the weakening of the jet and the upstream Southern Hemispheric tropical heating. The seasonal transition supports the hypothesis of the jet in controlling the North Pacific subtropical high in winter. The proposed concept of the jet-mediated controlling factor of the subtropical high also provides a framework to investigate the mechanisms of the extratropical-tropical interaction. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:05:07Z (GMT). No. of bitstreams: 1 U0001-0808202202504200.pdf: 6246447 bytes, checksum: 229786f4db009f2836c7bbad827cc341 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝........................................................................ i 中文摘要.................................................................... ii Abstract.................................................................... iv Contents.................................................................... vi List of Figures............................................................. viii 1. Introduction ............................................................ 1 2. Data and Methods......................................................... 7 2.1 Data Description........................................................ 7 2.2 Dynamical Constraint on the Thermally-Driven Divergent Circulation ..... 8 2.3 Theoretical Boundary of Thermally-driven Hadley Cell ................... 10 2.4 Seasonal Mean Ageostrophic Wind Budget Decomposition ................... 12 2.5 Wave Activity Flux ..................................................... 15 2.6 Identification of Anticyclonic Rossby Wave Breaking..................... 15 3. The Wintertime Circulation............................................... 18 3.1 The Role of the Thermally-driven Local Hadley Cell on Basin Scale....... 18 3.2 The Influence of Rossby Wave Breaking on the Anticyclone ............... 24 3.3 The Unified Controlling Factor: Westerly Jet in the Pacific Basin....... 29 4. The Transition from Winter to Spring..................................... 33 5. Conclusion and Discussion................................................ 40 References ................................................................. 45 Figures..................................................................... 52 | |
dc.language.iso | en | |
dc.title | 北太平洋副熱帶高壓冬季及冬春轉換的控制因子 | zh_TW |
dc.title | The Controlling Factors of the North Pacific Subtropical High in Winter and Winter-to-Spring Transition | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林和(Ho Lin) | |
dc.contributor.oralexamcommittee | 陳世楠(Shih-Nan Chen),梁禹喬(Yu-Chiao Liang) | |
dc.subject.keyword | 北太平洋副熱帶高壓,羅士培波碎裂,哈德里胞,東亞西風噴流, | zh_TW |
dc.subject.keyword | North Pacific subtropical high,Rossby wave breaking,Hadley cell,East Asian jet, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202202128 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-08-10 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-05 | - |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0808202202504200.pdf | 6.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。