Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86588
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊哲人(Jer-Ren Yang)
dc.contributor.authorPo-Jui Taien
dc.contributor.author戴伯叡zh_TW
dc.date.accessioned2023-03-20T00:04:55Z-
dc.date.copyright2022-08-12
dc.date.issued2022
dc.date.submitted2022-08-10
dc.identifier.citation[1] Li, Q.L., et al., Effects of AlCoCrFeNiTi high-entropy alloy on microstructure and mechanical properties of pure aluminum. Journal of Materials Science & Technology, 2020. 52: p. 1-11. [2] Dursun, T. and C. Soutis, Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015), 2014. 56: p. 862-871. [3] Warren, A. Developments and challenges for aluminum--A boeing perspective. in Materials forum. 2004. [4] Chen, X., H. Yan, and X. Jie, Effects of Ti addition on microstructure and mechanical properties of 7075 alloy. International Journal of Cast Metals Research, 2015. 28(3): p. 151-157. [5] Qian, X.M., N. Parson, and X.G. Chen, Effects of Mn addition and related Mn-containing dispersoids on the hot deformation behavior of 6082 aluminum alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019. 764. [6] Zhao, P.Z. and T. Tsuchida, Effect of fabrication conditions and Cr, Zr contents on the grain structure of 7075 and 6061 aluminum alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 499(1-2): p. 78-82. [7] Hussey, R.J. and J. Wilson, Light Alloys: Directory and Databook. 2013: Springer Science & Business Media. [8] Li, H.-Y., et al., Establishment of continuous cooling transformation diagrams of aluminum alloys using in situ voltage measurement. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 1944-1949. [9] Hornbogen, E., Hundred years of precipitation hardening. Journal of light metals, 2001. 1(2): p. 127-132. [10] Polmear, I., Light alloys: from traditional alloys to nanocrystals. 2005: Elsevier. [11] Polmear, I. Aluminium Alloys--A Century of Age Hardening. in Materials forum. 2004. [12] Aoba, T., M. Kobayashi, and H. Miura, Effects of aging on mechanical properties and microstructure of multi-directionally forged 7075 aluminum alloy. Materials Science and Engineering: A, 2017. 700: p. 220-225. [13] Rooy, E.L., Introduction to aluminum and aluminum alloys. ASM International, Metals Handbook, Tenth Edition., 1990. 2: p. 3-14. [14] Li, X., et al., Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy. Science in China Series E: Technological Sciences, 2009. 52(1): p. 67-71. [15] Zhao, Z.X., et al., Effects of Aging on the Microstructure and Properties of 7075 Al Sheets. Materials, 2020. 13(18). [16] Speidel, M.O., 1975: p. 631. [17] Cina, B. and R. Gan, Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking. US patent, 1974. 3856584. [18] Bucci, R., C. Warren, and E. Starke Jr, Need for new materials in aging aircraft structures. Journal of Aircraft, 2000. 37(1): p. 122-129. [19] Peng, G., et al., Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy. Materials Science and Engineering: A, 2011. 528(12): p. 4014-4018. [20] Marlaud, T., et al., Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta materialia, 2010. 58(14): p. 4814-4826. [21] Davis, J.R., Aluminum and aluminum alloys. 1993: ASM international. [22] Ardell, A.J., Precipitation hardening. Metallurgical Transactions A, 1985. 16(12): p. 2131-2165. [23] Suarez, O.M., Precipitation hardening of a novel aluminum matrix composite. Materials Characterization, 2002. 49(2): p. 187-191. [24] Chen, J.Z., et al., Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 500(1-2): p. 34-42. [25] Lin, Y.C., et al., Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013. 565: p. 420-429. [26] Chen, Z.W., et al., Precipitation sequence and hardening effect in 7A85 aluminum alloy. Journal of Alloys and Compounds, 2021. 875. [27] Xu, X., et al., Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: atomic-scale HAADF-STEM investigation. Materials Science and Engineering: A, 2017. 691: p. 60-70. [28] Tehinse, O., Response of 7075 and 7050 aluminium alloys to high temperature pre-precipitation heat treatment. 2014. [29] MacKenzie, D.S. and G.E. Totten, Handbook of aluminum. 2003: Dekker New York. [30] Wang, K., et al., Anisotropic microstructure and thixo-compression deformation behavior of extruded 7075 aluminum alloy in semi-solid state. Materials Science and Engineering: A, 2022. 833: p. 142514. [31] Chung, T.F., et al., Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Materialia, 2018. 149: p. 377-387. [32] 吳建霆, 原子級空間解析之電子激發能譜檢測技術與其在奈米材料之應用. 科儀新知, 2016(206): p. 6-18. [33] Chung, T.F., et al., An atomic scale structural investigation of nanometre-sized eta precipitates in the 7050 aluminium alloy. Acta Materialia, 2019. 174: p. 351-368. [34] Guinier, A., Structure of age-hardened aluminium-copper alloys. Nature, 1938. 142(3595): p. 569-570. [35] Preston, G., The diffraction of X-rays by age-hardening aluminium copper alloys. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938. 167(931): p. 526-538. [36] Nicholson, R. and J. Nutting, Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1958. 3(29): p. 531-535. [37] Rioja, R. and D. Laughlin, The early stages of GP zone formation in naturally aged Ai-4 wt pct cu alloys. Metallurgical Transactions A, 1977. 8(8): p. 1257-1261. [38] Son, S., et al., Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Materials letters, 2005. 59(6): p. 629-632. [39] Berg, L., et al., GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta materialia, 2001. 49(17): p. 3443-3451. [40] Buha, J., R. Lumley, and A. Crosky, Secondary ageing in an aluminium alloy 7050. Materials Science and Engineering: A, 2008. 492(1-2): p. 1-10. [41] Dupasquier, A., et al., Hardening nanostructures in an AlZnMg alloy. Philosophical Magazine, 2007. 87(22): p. 3297-3323. [42] Hansen, V., et al., Precipitates, zones and transitions during aging of Al-Zn-Mg-Zr 7000 series alloy. Materials science and technology, 2004. 20(2): p. 185-193. [43] Mukhopadhyay, A., Guinier-Preston zones in a high-purity Al-Zn-Mg alloy. Philosophical magazine letters, 1994. 70(3): p. 135-140. [44] Lervik, A., et al., Atomic structure of solute clusters in Al–Zn–Mg alloys. Acta Materialia, 2021. 205: p. 116574. [45] Sha, G. and A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta materialia, 2004. 52(15): p. 4503-4516. [46] Stiller, K., et al., Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 and 150 C. Materials Science and Engineering: A, 1999. 270(1): p. 55-63. [47] Li, X., et al., HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys. Acta materialia, 1999. 47(9): p. 2651-2659. [48] Yang, W., et al., Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants. Journal of alloys and compounds, 2014. 610: p. 623-629. [49] Wolverton, C., Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Materialia, 2001. 49(16): p. 3129-3142. [50] Li, Y.-Y., et al., High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy. Philosophical Magazine Letters, 2012. 92(4): p. 166-178. [51] Chung, T.F., et al., HR-STEM investigation of atomic lattice defects in different types of eta precipitates in creep-age forming Al-Zn-Mg-Cu aluminium alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2021. 815. [52] Chen, H.-L. and U.-S. Jeng, 小角度X光散射在高分子奈米結構解析之應用. 科儀新知, 2007. 29:2: p. 7-17. [53] Zhang, L.Y., H.Y. Luo, and J. Luo, Coupling magnetic-thermal field effect on precipitation kinetics of Al-Cu-Mg alloy investigated by SAXS and WAXS. Journal of Materials Research and Technology-Jmr&T, 2021. 15: p. 2611-2624. [54] Freiberg, D., et al., Precipitate Characterization in Model Al-Zn-Mg-(Cu) Alloys Using Small-Angle X-ray Scattering. Metals, 2020. 10(7). [55] Huang, Y.-C., et al., Evolution of Guinier-Preston zones in cold-rolled Al0. 2CoCrFeNi high-entropy alloy studied by synchrotron small-angle X-ray scattering. Materials Science and Engineering: A, 2020. 769: p. 138526. [56] Tsao, C.-S., SAXS on Nanostructure Evolution of Aluminum Alloys. 2004. [57] Graf, G., et al., Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD study. Acta Materialia, 2022. 227. [58] Liu, T., et al., Effects of rolling deformation on precipitation behavior and mechanical properties of Al-Zn-Mg-Cu alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022. 847. [59] Deschamps, A., et al., Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy. Materials Science and Engineering: A, 2009. 501(1-2): p. 133-139. [60] Luo, J., et al., Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy. Materials & Design, 2020. 187: p. 108402.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86588-
dc.description.abstract本篇論文主要研究7075鋁合金的析出強化,透過不同熱處理製程影響析出物的發展,可分為無自然時效(NA0d)及自然時效7天(NA7d)兩大類,並深入探討析出物大小、分佈及體積分率與機械性質之間的關係。 對於主要強化相η’析出物的研究,主要透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)進行觀察及統計,透過投影修正的方式還原圓盤狀η’析出物之圓形面積,再轉換為等效直徑進行比較,另外透過將η’析出物豎立的方式,得到η’析出物之厚度資訊。而小角度X-ray散射實驗(Small Angle X-ray Scattering, SAXS)則是用以彌補穿透式電子顯微鏡對於析出物定量上的不足,輔助確認η’析出物之大小以及體積分率,進而與硬度試驗及拉伸試驗結果作比對。對於析出物種類的鑑定,則仰賴高解析穿透式電子顯微鏡(High Resolution TEM, HRTEM)拍攝之高解析晶格影像,經過快速傅立葉轉換(Fast Fourier Transform, FFT)所得之繞射圖型,比對由CaRine Crystallography模擬之理論繞射圖型 於自然時效階段之TEM影像並無觀察到球狀的GPI Zone以及片狀的GPII Zone存在, 只能觀察到團狀的原子,且無法確定GPI Zone生成的數量,透過快速傅立葉轉換並無發現明顯的特殊繞射點, 但這些前期析出物確實提供了大量的強化效果。 η’析出物的大小,大致上隨著人工時效溫度升高而增大,將不同熱處理條件之硬度試驗結果與η’析出物的大小進行比對,隨著析出物由小到大,硬度由低到高再回到低,於NA0d120℃-24h的條件下達到最高硬度,與析出強化理論中的析出物臨界大小與強度的趨勢符合。zh_TW
dc.description.abstractThis study is mainly about precipitation hardening mechanism in 7075 aluminum alloy, by using different heat treatment to affect the evolution of nano-scale precipitates, combined with the information of nano-precipitates, such as size, distribution, volume fraction, etc., find out the relationship between nano-precipitates and the mechanical properties in 7075 aluminum alloy. The research about the main strengthening phase, η’ precipitates, is done by Transmission Electron Microscope and Small Angle X-ray Scattering. The size, morphology and distribution of η’ precipitates is observed by Transmission Electron Microscope image, from [110]Al zone axis, there are two types of η’ precipitates in edge-on condition, while others are projected on (110) Al . After some revise and statistic, the equivalent diameter and thickness of η’ precipitates will be well measured. To identify the type of precipitates, the image from High-Resolution Transmission Electron Microscope (HRTEM) is important, by Fast Fourier Transform, the diffraction pattern of precipitates will be acquired. Furthermore, Small Angle X-ray Scattering can collect the precipitates’ signal and get the information of nano-precipitates, such as size, morphology and volume fraction. Compared with the result from TEM, the size and morphology is determined. Thus, the relationship between nano-scale precipitates and mechanical property can be analyze, base on the theorem of precipitation hardening mechanism, when the particle size equal to the critical size, the hardening effect will be the strongest. In this research, 7075 aluminum alloy after NA0d120℃-24h, has the strongest hardening effect.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:04:55Z (GMT). No. of bitstreams: 1
U0001-0908202217193200.pdf: 19673642 bytes, checksum: 44b3e577ed563b8abd49a69c0f026232 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xv Chapter 1 前言 1 Chapter 2 文獻回顧 2 2.1 鋁合金介紹 2 2.1.1 鋁合金之發展及應用 2 2.1.2 鋁合金之熱處理 5 2.1.3 添加合金元素對鋁合金之影響 13 2.2 鋁合金之強化機制介紹 15 2.2.1 析出強化機制 15 2.2.2 析出物種類 18 2.2.3 析出物鑑定 19 2.3 鋁合金之析出物量化統計 32 2.3.1 量化工作簡介 32 2.3.2 穿透式電子顯微鏡影像 33 2.3.3 小角度X-ray散射實驗 35 Chapter 3 實驗設計及步驟 38 3.1 實驗步驟 38 3.1.1 實驗材料 38 3.1.2 熱處理設計 38 3.2 實驗儀器與試片製備 41 3.2.1 HV顯微硬度計(Vickers Hardness Tester) 41 3.2.2 拉伸試驗機(Tensile Tester) 41 3.2.3 差式掃描熱量分析儀(Differential Scanning Calorimetry) 42 3.2.4 穿透式電子顯微鏡(Transmission Electron Microscope) 43 3.2.5 小角度X-ray散射儀(Small Angle X-ray Scattering, SAXS) 44 Chapter 4 結果與討論 45 4.1 自然時效階段之熱處理 45 4.1.1 HV微硬度結果分析 45 4.1.2 拉伸試驗結果 46 4.1.3 TEM顯微結構觀察分析 47 4.1.4 SAXS實驗結果分析 51 4.2 NA7d與人工時效階段之熱處理 54 4.2.1 HV微硬度結果分析 54 4.2.2 拉伸試驗結果 55 4.2.3 TEM顯微結構觀察分析 59 4.2.4 SAXS實驗結果分析 70 4.3 NA0d與人工時效階段之熱處理 73 4.3.1 HV微硬度結果分析 73 4.3.2 拉伸試驗結果 75 4.3.3 TEM顯微結構觀察分析 79 4.3.4 SAXS實驗結果分析 87 4.4 NA7d及NA0d與人工時效階段熱處理之小結 90 Chapter 5 結論 95 Chapter 6 未來工作 97 REFERENCE 98
dc.language.isozh-TW
dc.subject小角度X-ray散射實驗zh_TW
dc.subject7075鋁合金zh_TW
dc.subject析出強化zh_TW
dc.subject自然時效zh_TW
dc.subject人工時效zh_TW
dc.subjectGP Zoneszh_TW
dc.subjectη’析出物zh_TW
dc.subjectη析出物zh_TW
dc.subject穿透式電子顯微鏡影像zh_TW
dc.subject小角度X-ray散射實驗zh_TW
dc.subject7075鋁合金zh_TW
dc.subject析出強化zh_TW
dc.subject自然時效zh_TW
dc.subject人工時效zh_TW
dc.subjectGP Zoneszh_TW
dc.subjectη’析出物zh_TW
dc.subjectη析出物zh_TW
dc.subject穿透式電子顯微鏡影像zh_TW
dc.subjectSAXSen
dc.subject7075 Aluminum alloyen
dc.subject7075 Aluminum alloyen
dc.subjectPrecipitation strengtheningen
dc.subjectNatural Agingen
dc.subjectArtificial Agingen
dc.subjectGP Zonesen
dc.subjectη’ precipitatesen
dc.subjectη precipitatesen
dc.subjectTEMen
dc.subjectSAXSen
dc.subjectPrecipitation strengtheningen
dc.subjectNatural Agingen
dc.subjectArtificial Agingen
dc.subjectGP Zonesen
dc.subjectη’ precipitatesen
dc.subjectη precipitatesen
dc.subjectTEMen
dc.title7075鋁合金之奈米級析出物與機械性質關聯性研究zh_TW
dc.titleA Study on the Relationship between nano-scale Precipitates and Mechanical Property in the 7075 Aluminum Alloyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王星豪(Shing-Hoa Wang),陳志遠(Chih-Yuan Chen),蘇德徵(Te Cheng Su),黃慶淵
dc.subject.keyword7075鋁合金,析出強化,自然時效,人工時效,GP Zones,η’析出物,η析出物,穿透式電子顯微鏡影像,小角度X-ray散射實驗,zh_TW
dc.subject.keyword7075 Aluminum alloy,Precipitation strengthening,Natural Aging,Artificial Aging,GP Zones,η’ precipitates,η precipitates,TEM,SAXS,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202202217
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-12-
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
U0001-0908202217193200.pdf19.21 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved