請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86584完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳家麟(Ja-Ling Wu) | |
| dc.contributor.author | Kuo-Shen Huang | en |
| dc.contributor.author | 黃國珅 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:04:41Z | - |
| dc.date.copyright | 2022-08-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-10 | |
| dc.identifier.citation | [1] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-preserving remote diagnostics. In Proceedings of the 14th ACM conference on Computer and communications security, pages 498–507, 2007. [2] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016. [3] Tsu-Wang Shen, WJ Tompkins, and YH Hu. One-lead ecg for identity verification. In Proceedings of the second joint 24th annual conference and the annual fall meeting of the biomedical engineering society][engineering in medicine and biology, volume 1, pages 62–63. IEEE, 2002. [4] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International conference on the theory and applications of cryptographic techniques, pages 223–238. Springer, 1999. [5] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of approximate numbers. In International conference on the theory and application of cryptology and information security, pages 409–437. Springer, 2017. [6] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982. [7] Eduardo Jos´e da S Luz, William Robson Schwartz, Guillermo C´amara-Ch´avez, and David Menotti. Ecg-based heartbeat classification for arrhythmia detection: A survey. Computer methods and programs in biomedicine, 127:144–164, 2016. [8] S Sahoo, M Dash, S Behera, and S Sabut. Machine learning approach to detect cardiac arrhythmias in ecg signals: a survey. Irbm, 41(4):185–194, 2020. [9] Chaur-Heh Hsieh, Yan-Shuo Li, Bor-Jiunn Hwang, and Ching-Hua Hsiao. Detection of atrial fibrillation using 1d convolutional neural network. Sensors, 20(7):2136, 2020. [10] Gari D Clifford, Chengyu Liu, Benjamin Moody, H Lehman Li-wei, Ikaro Silva, Qiao Li, AE Johnson, and Roger G Mark. Af classification from a short single lead ecg recording: The physionet/computing in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC), pages 1–4. IEEE, 2017. [11] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX Security 18), pages 1651–1669, 2018. [12] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022. Microsoft Research, Redmond, WA. [13] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pages 619–631, 2017. [14] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-protocol secure two-party computation. In NDSS, 2015. [15] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over encrypted data. arXiv preprint arXiv:1711.05189, 2017. [16] Remote ecg interpretation consultancy services for cardiovascular disease. https://www.nice.org.uk/advice/mib152, 2018. [17] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee, Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating homomorphic encryption for private inference. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 26– 39. IEEE, 2021. 45 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86584 | - |
| dc.description.abstract | 憑藉模型準確度與雲端運算能力的發展,產業界逐漸有了機器學習服務的出現。然而隨著使用者對隱私保護日漸重視,使得使用醫療資料這類高度隱私相關的服務變得難以推廣。我們將利用同態加密與混淆電路並基於現存的架構與工具實作出具有隱私保護能力的心電圖診斷系統。除了能對加密後的心電圖進行診斷,該系統還能同時保護服務供應商的診斷模型免於外流,並且能提供匹敵甚至是優於現存遠端心電圖診斷服務的產能。本文將從介紹使用到的工具與架構開始並說明實作時所面對的各種困難,最後比較各式改進效能的方法以及提出實務上可行的方案作為參考。 | zh_TW |
| dc.description.abstract | Machine learning as a Service (MLaaS) is a new industry trend driven by powerful machine learning models and cloud computing resources. However, with the rise of awareness of personal privacy issues, these services become challenging to promote, especially when the data involved are highly sensitive, such as medical or financial data. In this work, we implement a privacy-preserving ECG inference system with the aid of the homomorphic encryption scheme and garbled circuits based on some existing analytic frameworks and libraries. Our system could perform inference on encrypted ECG signals and avoid the service provider’s model from leakage. Moreover, it provides a higher capacity than real-world ECG interpretation services. First, we will introduce the cryptographic schemes and related tools we referenced, then address a series of issues we confronted while implementing our system. At last, we demonstrate the effectiveness of the various mechanisms we applied to our system that helped us overcome those issues and obtain a feasible performance for real-world application. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:04:41Z (GMT). No. of bitstreams: 1 U0001-1008202216002900.pdf: 1696301 bytes, checksum: feff551238219e0dae3a9a13cd6dc13c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 1 Introduction 1 1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Preliminaries 4 2.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Related work 11 3.1 ECG Diagnosing Model . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Secure Inference Frameworks . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 CryptoNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 MiniONN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Gazelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Implementation and Experiments 21 4.1 CryptoNets-based Implementation . . . . . . . . . . . . . . . . . . . . 21 4.1.1 Model Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 Model Compression . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Gazelle-based Implementation . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 Model Adjustment . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Model Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.3 Circuit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.4 Improved ReLU Circuit . . . . . . . . . . . . . . . . . . . . . 36 5 Performance and Discussions 38 5.1 ECG Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Garbled Circuit’s Offline Phase . . . . . . . . . . . . . . . . . . . . . 39 5.3 Real-World Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 Conclusions and Future Work 41 References 43 | |
| dc.language.iso | en | |
| dc.subject | 遠端醫療 | zh_TW |
| dc.subject | 隱私保護 | zh_TW |
| dc.subject | 同態加密 | zh_TW |
| dc.subject | 混淆電路 | zh_TW |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 心電圖 | zh_TW |
| dc.subject | 遠端醫療 | zh_TW |
| dc.subject | 混淆電路 | zh_TW |
| dc.subject | 同態加密 | zh_TW |
| dc.subject | 隱私保護 | zh_TW |
| dc.subject | Telehealth | en |
| dc.subject | Privacy-Preserving | en |
| dc.subject | Homomorphic Encryption | en |
| dc.subject | Garbled Circuit | en |
| dc.subject | ECG | en |
| dc.subject | Telehealth | en |
| dc.subject | Privacy-Preserving | en |
| dc.subject | Homomorphic Encryption | en |
| dc.subject | Garbled Circuit | en |
| dc.subject | ECG | en |
| dc.title | 基於同態加密和混淆電路之遠程醫療心電圖信號的隱私保護診斷 | zh_TW |
| dc.title | Homomorphic Encryption and Garbled Circuit Based Privacy-Preserving Diagnosis on ECG Signals for Telehealth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文進(Wen-Chin Chen),許超雲(Chau-Yun Hsu) | |
| dc.subject.keyword | 隱私保護,同態加密,混淆電路,心電圖,遠端醫療, | zh_TW |
| dc.subject.keyword | Privacy-Preserving,Homomorphic Encryption,Garbled Circuit,ECG,Telehealth, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU202202264 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-15 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202216002900.pdf | 1.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
