請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86574完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Yu-Cheng Liu | en |
| dc.contributor.author | 劉禹呈 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:04:06Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-09 | |
| dc.identifier.citation | 1. Gupta, S., et al., The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology (Oxford), 2005. 44(12): p. 1531-7. 2. Phull, A., et al., Applications of Chondrocyte-Based Cartilage Engineering: An Overview. BioMed Research International, 2016. 2016: p. 1-17. 3. Chen, C., et al., Effect of Low-Intensity Pulsed Ultrasound After Autologous Adipose-Derived Stromal Cell Transplantation for Bone-Tendon Healing in a Rabbit Model. Am J Sports Med, 2019. 47(4): p. 942-953. 4. Liu, D.D., et al., The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med, 2020. 9(8): p. 850-866. 5. Fu, X., et al., Mesenchymal Stem Cell Migration and Tissue Repair. Cells, 2019. 8(8). 6. Uddin, S.M.Z., et al., Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med, 2021. 10(12). 7. Leighton, T.G., What is ultrasound? Progress in Biophysics and Molecular Biology, 2007. 93(1): p. 3-83. 8. Liu, S., et al., Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 2019. 5(2): p. 261-275. 9. Reddy, U.M., R.A. Filly, and J.A. Copel, Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet Gynecol, 2008. 112(1): p. 145-57. 10. ter Haar, G., Therapeutic ultrasound. European Journal of Ultrasound, 1999. 9(1): p. 3-9. 11. Kavros, S.J., et al., Expedited Wound Healing with Noncontact, Low-Frequency Ultrasound Therapy in Chronic Wounds: A Retrospective Analysis. Advances in Skin & Wound Care, 2008. 21(9). 12. Busse, J.W., et al., The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis. Cmaj, 2002. 166(4): p. 437-41. 13. Yang, J., A Review of a Few Topics in Piezoelectricity. Applied Mechanics Reviews, 2006. 59(6): p. 335-345. 14. Bunde, R.L., E.J. Jarvi, and J.J. Rosentreter, Piezoelectric quartz crystal biosensors. Talanta, 1998. 46(6): p. 1223-1236. 15. Saigusa, Y., Chapter 5 - Quartz-Based Piezoelectric Materials, in Advanced Piezoelectric Materials (Second Edition), K. Uchino, Editor. 2017, Woodhead Publishing. p. 197-233. 16. Fukada, E., Piezoelectricity as a fundamental property of wood. Wood Science and Technology, 1968. 2(4): p. 299-307. 17. Kubo, T., Piezoelectricity of bone and electrical callus. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association, 2012. 17: p. 105-6. 18. Denning, D., et al., Piezoelectric properties of aligned collagen membranes. J Biomed Mater Res B Appl Biomater, 2014. 102(2): p. 284-92. 19. Chamberlain, G., et al., Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 2007. 25(11): p. 2739-2749. 20. Pittenger, M.F., et al., Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine, 2019. 4(1): p. 22. 21. James, A.W., Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica, 2013. 2013: p. 684736. 22. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 23. Li, X., et al., Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med, 2014. 34(3): p. 695-704. 24. Seong, J., et al., Stem cells in bone tissue engineering. Biomedical materials (Bristol, England), 2010. 5: p. 062001. 25. Hernández-Bule, M.L., et al., Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell Physiol Biochem, 2014. 34(5): p. 1741-55. 26. Park, S.R., B.H. Choi, and B.H. Min, Low-Intensity Ultrasound (LIUS) as an Innovative Tool for Chondrogenesis of Mesenchymal Stem Cells (MSCs). Organogenesis, 2007. 3(2): p. 74-8. 27. Damaraju, S.M., et al., Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017. 149: p. 51-62. 28. Kwon, H.J., G.S. Lee, and H. Chun, Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Scientific Reports, 2016. 6(1): p. 39302. 29. Archer, C.W. and P. Francis-West, The chondrocyte. The International Journal of Biochemistry & Cell Biology, 2003. 35(4): p. 401-404. 30. Akkiraju, H. and A. Nohe, Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J Dev Biol, 2015. 3(4): p. 177-192. 31. Sanchez-Adams, J., et al., The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep, 2014. 16(10): p. 451. 32. Aigner, T., et al., Mechanisms of Disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nature Clinical Practice Rheumatology, 2007. 3(7): p. 391-399. 33. Bauer, J., et al., Tissue Engineering of Cartilage on Ground-Based Facilities. Microgravity Science and Technology, 2016. 28. 34. Whitney, N.P., et al., Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol, 2012. 38(10): p. 1734-43. 35. Uddin, S.M., et al., Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cartilage, 2016. 24(11): p. 1989-1998. 36. Mitra, S.K. and D.D. Schlaepfer, Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol, 2006. 18(5): p. 516-23. 37. Karginov, A., et al., Corrigendum: Dissecting motility signaling through activation of specific Src-effector complexes. Nature chemical biology, 2014. 10. 38. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 2005. 6(1): p. 56-68. 39. Matsui, H., I. Harada, and Y. Sawada, Src, p130Cas, and Mechanotransduction in Cancer Cells. Genes & cancer, 2012. 3(5-6): p. 394-401. 40. Kasahara, K., et al., Src Signaling Regulates Completion of Abscission in Cytokinesis through ERK/MAPK Activation at the Midbody*. Journal of Biological Chemistry, 2007. 282(8): p. 5327-5339. 41. Mayor, R. and S. Etienne-Manneville, The front and rear of collective cell migration. Nature Reviews Molecular Cell Biology, 2016. 17(2): p. 97-109. 42. Etienne-Manneville, S., Actin and microtubules in cell motility: which one is in control? Traffic, 2004. 5(7): p. 470-7. 43. Noriega, S., G. Hasanova, and A. Subramanian, The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs, 2013. 197(1): p. 14-26. 44. Lim, J., et al., Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochemistry and Biophysics Reports, 2022. 30: p. 101265. 45. Smits, P., et al., Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J Cell Biol, 2004. 164(5): p. 747-58. 46. McGlashan, S.R., et al., Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biology, 2007. 26(4): p. 234-246. 47. Song, B., et al., Development of the post-natal growth plate requires intraflagellar transport proteins. Developmental Biology, 2007. 305(1): p. 202-216. 48. Kang, J.-H., Protein Kinase C (PKC) Isozymes and Cancer. New Journal of Science, 2014. 2014: p. 231418. 49. Etienne-Manneville, S. and A. Hall, Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKCζ. Cell, 2001. 106(4): p. 489-498. 50. Etienne-Manneville, S., et al., Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol, 2005. 170(6): p. 895-901. 51. Lim, J., et al., Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling. Communications Biology, 2020. 3(1): p. 45. 52. 黃少湘, 三維培養之髓核細胞退化模型探討. 2022, 國立台灣大學. 53. Dulai, J.S., E.S.J. Smith, and T. Rahman, Acid-sensing ion channel 3: An analgesic target. Channels (Austin), 2021. 15(1): p. 94-127. 54. Chu, Y.C., et al., Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound Med Biol, 2021. 47(7): p. 1775-1784. 55. Ikeuchi, M., et al., Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain, 2008. 137(3): p. 662-669. 56. 何建穎, 適用於動物及細胞實驗之超音波探頭設計. 2022, 國立台灣大學碩士論文. 57. 林宇宣, 超音波刺激裝置設計與模擬, in 臺灣大學醫學工程學研究所學位論文. 2021, 國立臺灣大學. p. 1-138. 58. Hayat, M.A., Stains and cytochemical methods. 1993: Springer Science & Business Media. 59. Hardingham, T.E. and A.J. Fosang, Proteoglycans: many forms and many functions. The FASEB journal, 1992. 6(3): p. 861-870. 60. Sharma, A., et al., Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage. Arthritis Research & Therapy, 2007. 9(4): p. R79. 61. Rigueur, D. and K.M. Lyons, Whole-Mount Skeletal Staining, in Skeletal Development and Repair: Methods and Protocols, M.J. Hilton, Editor. 2014, Humana Press: Totowa, NJ. p. 113-121. 62. Mahmood, T. and P.C. Yang, Western blot: technique, theory, and trouble shooting. N Am J Med Sci, 2012. 4(9): p. 429-34. 63. Beadnell, T.C., et al., Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis, 2018. 7(2): p. 23. 64. Dessauer, C.W. and B.T. Nguyen, Relaxin stimulates multiple signaling pathways: activation of cAMP, PI3K, and PKCzeta in THP-1 cells. Ann N Y Acad Sci, 2005. 1041: p. 272-9. 65. 黃文顥, 壓電刺激對人類間質幹細胞增生、分化與聚合的影響, in 臺灣大學醫學工程學研究所學位論文. 2020, 國立臺灣大學. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86574 | - |
| dc.description.abstract | 在軟骨損傷及退化性關節炎中,軟骨再生的速度緩慢,不易修復。在治療方面,骨髓間質幹細胞再生以及超音波刺激對於骨癒合的幫助擁有巨大的潛力,許多研究也嘗試加速幹細胞及軟骨細胞的分化、修復速率。本研究亦是針對骨髓間質幹細胞之遷移,以及軟骨細胞分佈及蛋白訊息傳遞來進行研究。 因骨骼為一種壓電材料,故超音波與壓電效應在人體內的作用難以分別討論,對於骨癒合的幫助是純超音波提供或是壓電效應造成的是一個值得探討的課題。本實驗中,使用實驗室開發的超音波刺激載台 (LIC與mini-LIC),對細胞提供純超音波刺激及壓電刺激。為了模擬體內骨骼系統之壓電環境,本實驗使用石英片來提供細胞壓電效應的電場刺激。 骨髓間質幹細胞之遷移以傷口復原實驗來觀察遷移效率及受刺激後影響程度。在傷口復原效率中壓電刺激較未刺激組提升1.4倍,超音波刺激則較未刺激組提升1.2倍。分析細胞初級纖毛觀察細胞極性,超音波刺激與壓電刺激皆對細胞極性有所影響。 在軟骨細胞實驗中,壓電刺激造成軟骨細胞有明顯聚合現象,使用Alcian blue染色可確定其確實有軟骨特性。壓電刺激亦誘導軟骨細胞重新排列以及細胞極性改變,而純超音波刺激則沒有對軟骨細胞造成上述的明顯改變。在使用Src、PKCζ與ASIC3抑制劑抑制其蛋白作用後,前二者皆阻止了壓電刺激造成的細胞重排與極性改變,ASIC3抑制劑則是造成部分抑制,並沒有前兩者的抑制效果明顯,而三者皆沒有逆轉壓電刺激誘導的細胞大小減小。使用Western blot測定Src、ASIC3被抑制後PKCζ磷酸化程度,兩者皆阻止了壓電刺激所造成的PKCζ磷酸化,故PKCζ極可能受Src、ASIC3所調控。 | zh_TW |
| dc.description.abstract | Cartilage repair is an intractable issue due to difficult repair and slow regeneration in Cartilage damage and Osteoarthritis. In terms of treatment, bone marrow mesenchymal stem cell and ultrasonic stimulation both showing great potential for bone healing. Various approaches also willing to find the ways to accelerate healing process. In this study, the migration of bone marrow mesenchymal stem cells, and distribution and protein signaling of chondrocytes were the research project. Ultrasound and Piezoelectric field is difficult to separate in vivo because of the Piezoelectric property in bone. We wondering pure ultrasound or piezoelectric stimulate is the aid for bone healing. Ultrasound stimulation (US) or Piezoelectric field stimulation (PE) were provided by Ultrasound stimulation device (LIC or mini-LIC). To simulate bone skeletal system in vivo, We used quartz to provide Piezoelectric field. In bone marrow mesenchymal stem cells wound healing experiment, the wound healing (migration) efficiency in PE was 1.4 times higher than that in the unstimulated (Control) group, more significant than the US group (1.2 times to Control). Analyzing the direction of primary cilia to evaluate cell polarity, both US and PE had effects. Chondrocyte rearrangement and aggregation were significant under Piezoelectric field stimulation. Using Alcian blue staining to make sure that Chondrocyte in Piezoelectric field stimulation maintain the cartilage properties. The rearrangement of chondrocytes and the orientation of primary cilia were significantly different from Control and US groups, while pure ultrasound stimulation did not cause significant changes. After inhibiting Src, PKCζ and ASIC3, the head two prevented cell rearrangement that induced by piezo stimulation, and ASIC3 inhibitor cause partial inhibition, but none of them reversed the reduction of cell size that induced by Piezoelectric field stimulation. We determined the degree of PKCζ phosphorylation by using Western blot after adding Src and ASIC3 inhibitors. The result shows that both of them inhibited the phosphorylation of PKCζ that induced by piezoelectric stimulation. Depends on the result, PKCζ may be regulated by Src and ASIC3. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:04:06Z (GMT). No. of bitstreams: 1 U0001-0208202211151000.pdf: 5128189 bytes, checksum: 398a96ef42bec0082ecffdb3d0c03666 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 第 1 章 緒論 1 1.1研究背景 1 1.2 超音波簡介 2 1.2.1 醫用超音波 2 1.3 超音波刺激與壓電效應 3 1.4 間質幹細胞簡介 4 1.5 軟骨細胞簡介 5 1.6細胞內蛋白分子簡介 6 1.6.1 Src與其signal pathway 6 1.6.2 細胞骨架、肌動蛋白、微管蛋白及初級纖毛 7 1.6.2 PKCζ 9 1.6.3 ASIC3 10 1.6實驗目的 13 第 2 章 材料與方法 14 2.1 幹細胞培養 14 2.1.1繼代 14 2.2 軟骨細胞培養 15 2.3 超音波刺激與超音波驅動壓電刺激之裝置 16 2.3.1 LIC與mini-LIC 之超音波刺激與壓電刺激 16 2.3.2 Cellex 18 2.3.3 能量量測與電場模擬(由台大醫工所林宇宣提供) [57] 18 2.4 骨髓間質幹細胞傷口恢復實驗 21 2.4.1 實驗組別 21 2.4.2 實驗流程 22 2.4.3傷口恢復實驗免疫螢光染色 23 2.5 軟骨細胞聚合及分佈實驗 25 2.5.1 實驗組別 25 2.5.2 實驗流程 26 2.5.3 Alcian blue染色法簡介及步驟 27 2.5.4 軟骨細胞聚合及分佈實驗免疫螢光染色 28 2.6 軟骨細胞內蛋白訊號傳遞實驗 29 2.6.1 實驗組別 30 2.6.2 實驗流程 30 2.6.3 軟骨細胞訊號蛋白實驗Western blot 32 第 3 章 第三章 實驗結果與討論 34 3.1 骨髓間質幹細胞傷口恢復實驗 34 3.1.1 傷口恢復面積結果 34 傷口周圍細胞primary cilia之方向 37 3.2 軟骨細胞聚合及分佈實驗 41 3.2.1 軟骨細胞聚合及分佈前導實驗 ---- Alcian blue 41 3.2.2軟骨細胞聚合及分佈螢光染色分析 42 3.3 軟骨細胞內蛋白訊息傳遞實驗 55 3.3.1 Src與PKCζ 55 3.3.2 ASIC3與PKCζ 57 3.3.3 小結 59 第 4 章 第四章 結論、討論、未來展望 60 4-1結論 60 4-1-1間質幹細胞傷口恢復實驗結論 60 4-1-2軟骨細胞分佈實驗與細胞訊息傳遞實驗結論 60 4-1-3骨癒合中的影響:壓電刺激>純超音波刺激 61 4-2討論 62 4-2-1間質幹細胞傷口恢復實驗討論 62 4-2-2軟骨細胞分佈實驗與細胞訊息傳遞實驗討論 62 4-3未來展望 64 第 5 章 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | Src | zh_TW |
| dc.subject | 人類骨髓間質幹細胞 | zh_TW |
| dc.subject | 微能量超音波 | zh_TW |
| dc.subject | PKCζ | zh_TW |
| dc.subject | 壓電刺激 | zh_TW |
| dc.subject | ASIC3 | zh_TW |
| dc.subject | 壓電刺激 | zh_TW |
| dc.subject | 微能量超音波 | zh_TW |
| dc.subject | 人類骨髓間質幹細胞 | zh_TW |
| dc.subject | 軟骨細胞 | zh_TW |
| dc.subject | Src | zh_TW |
| dc.subject | PKCζ | zh_TW |
| dc.subject | 軟骨細胞 | zh_TW |
| dc.subject | ASIC3 | zh_TW |
| dc.subject | Chondrocyte | en |
| dc.subject | Piezoelectric | en |
| dc.subject | low-intensity Ultrasound | en |
| dc.subject | Human bone marrow mesenchymal Stem cell | en |
| dc.subject | Src | en |
| dc.subject | PKCζ | en |
| dc.subject | ASIC3 | en |
| dc.subject | Piezoelectric | en |
| dc.subject | low-intensity Ultrasound | en |
| dc.subject | Human bone marrow mesenchymal Stem cell | en |
| dc.subject | Chondrocyte | en |
| dc.subject | Src | en |
| dc.subject | PKCζ | en |
| dc.subject | ASIC3 | en |
| dc.title | 超音波與壓電刺激對人類骨髓間質幹細胞遷移,與軟骨細胞分佈的影響 | zh_TW |
| dc.title | Effects of Ultrasound and Piezoelectric stimulation on human mesenchymal stem cell migration and chondrocyte distribution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志成(Chih-Cheng Chen),吳爵宏(Chueh-Hung Wu) | |
| dc.subject.keyword | 壓電刺激,微能量超音波,人類骨髓間質幹細胞,軟骨細胞,Src,PKCζ,ASIC3, | zh_TW |
| dc.subject.keyword | Piezoelectric,low-intensity Ultrasound,Human bone marrow mesenchymal Stem cell,Chondrocyte,Src,PKCζ,ASIC3, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202201961 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202211151000.pdf | 5.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
