Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬劍清(Chien-Ching Ma)
dc.contributor.authorYu-Hsin Huangen
dc.contributor.author黃宇欣zh_TW
dc.date.accessioned2021-05-20T19:59:23Z-
dc.date.available2011-06-24
dc.date.available2021-05-20T19:59:23Z-
dc.date.copyright2010-06-24
dc.date.issued2010
dc.date.submitted2010-06-17
dc.identifier.citation[1] R. Ryntz and D. Britz, 'Scratch resistance behavior of automotive plastic coatings,' Journal of Coatings Technology, vol. 74, pp. 77-81, 2002.
[2] N. Tahmassebi and S. Moradian, 'Predicting the performances of basecoat/clearcoat automotive paint systems by the use of adhesion, scratch and mar resistance measurements,' Polymer Degradation and Stability, vol. 83, pp. 405-410, 2004.
[3] J. Lange, A. Luisier, and A. Hult, 'Influence of crosslink density, glass transition temperature and addition of pigment and wax on the scratch resistance of an epoxy coating,' Journal of Coatings Technology, vol. 69, pp. 77-82, 1997.
[4] J. M. Torres, C. M. Stafford, and B. D. Vogt, 'Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature,' Acs Nano, vol. 3, pp. 2677-2685, 2009.
[5] R. Fernando and L. Sung, Nanotechnology applications in coatings: ACS Symposium Series, Washington DC, 2009.
[6] N. Tahmassebi, S. Moradian, B. Ramezanzadeh, A. Khosravi, and S. Behdad, 'Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat,' Tribology International, vol. 43, pp. 685-693, 2010.
[7] J. W. Martin, R.A. Ryntz, and R.A. Dickie, Service life prediction: challenging the status quo Pennsylvania: Federation of Societies for Coatings Technology, Pennsylvania 2005.
[8] The Polymer Surface/Interface (PSI) scratch test method was developed under the research corporation agreement of the NIST/Industry Polymer Interphase Consortium (PIC, renamed as Polymer Surface/Interface, PSI in 2009). Brief description were in L. Sung, P. Drzal, M. VanLandingham, T. Wu, and S. Chang, 'Metrology for characterizing scratch resistance of polymer coatings,' Journal of Coatings Technology and Research, vol. 2, pp. 583-589, 2005.
[9] L. Sperling, Introduction to physical polymer science: John Wiley and sons, New Jersey, 2006.
[10] H. Eyring, 'Viscosity, plasticity, and diffusion as examples of absolute reaction rates,' The Journal of Chemical Physics, vol. 4, pp. 283-295, 1936.
[11] T. Fox Jr and P. Flory, 'Intrinsic viscosity relationships for polystyrene1,' Journal of the American Chemical Society, vol. 73, pp. 1915-1920, 1951.
[12] J. Gibbs and E. DiMarzio, 'Nature of the glass transition and the glassy state,' The Journal of Chemical Physics, vol. 28, pp. 373-383, 1958.
[13] M. Wolfgardt, J. Baschnagel, W. Paul, and K. Binder, 'Entropy of glassy polymer melts: Comparison between Gibbs-DiMarzio theory and simulation,' Physical Review E, vol. 54, pp. 1535-1543, 1996.
[14] S. Sinha, Scratching of materials and applications: Elsevier, London, 2006.
[15] P. Morel and V. Jardret, 'Viscoelastic effects on the scratch resistance of polymers: relationship between mechanical properties and scratch properties at various temperatures,' Proceeding of Materials Research Society Symposium, 2002.
[16] C. Gauthier, S. Lafaye, and R. Schirrer, 'Elastic recovery of a scratch in a polymeric surface: experiments and analysis,' Tribology International, vol. 34, pp. 469-479, 2001.
[17] S. Lafaye, C. Gauthier, and R. Schirrer, 'A surface flow line model of a scratching tip: apparent and true local friction coefficients,' Tribology International, vol. 38, pp. 113-127, 2005.
[18] X. Gu, T. Nguyen, L. Sung, M. VanLandingham, M. J. Fasolka, J. W. Martin, Y. C. Jean, D. Nguyen, N. Chang, and T. Wu, 'Advanced techniques for nanocharacterization of polymeric coating surfaces,' Journal of Coatings Technology and Research, vol. 1, pp. 191-200, 2004.
[19] B. Briscoe, 'Isolated contact stress deformations of polymers: the basis for interpreting polymer tribology,' Tribology International, vol. 31, pp. 121-126, 1998.
[20] B. Briscoe, E. Pelillo, and S. Sinha, 'Scratch hardness and deformation maps for polycarbonate and polyethylene,' Polymer engineering and science, vol. 36, pp. 2996-3005, 1996.
[21] R. Misra, R. Hadal, and S. Duncan, 'Surface damage behavior during scratch deformation of mineral reinforced polymer composites,' Acta Materialia, vol. 52, pp. 4363-4376, 2004.
[22] J. Chu, C. Xiang, H. Sue, and R. Hollis, 'Scratch resistance of mineral-filled polypropylene materials,' Polymer Engineering and Science, vol. 40, pp. 944-955, 2000.
[23] M. Wong, G. Lim, A. Moyse, J. Reddy, and H. Sue, 'A new test methodology for evaluating scratch resistance of polymers,' Wear, vol. 256, pp. 1214-1227, 2004.
[24] H. Jiang, R. Browning, and H. Sue, 'Understanding of scratch-induced damage mechanisms in polymers,' Polymer, vol. 50, pp. 4056-4065, 2009.
[25] http://www.zeiss.de/ ( link of software: LSM image browser rel. 4.2)
[26] T. Corle and G. Kino, Confocal scanning optical microscopy and related imaging systems: Academic Pr, California, 1996.
[27] V. Koinkar and B. Bhushan, 'Effect of scan size and surface roughness on microscale friction measurements,' Journal of Applied Physics, vol. 81, pp. 2472-2479, 1997.
[28] L. Sung, J. Jasmin, X. Gu, T. Nguyen, and J. W. Martin, 'Use of laser scanning confocal microscopy for characterizing changes in film thickness and local surface morphology of UV-exposed polymer coatings,' Journal of Coatings Technology and Research, vol. 1, pp. 267-276, 2004.
[29] J. Faucheu, K. Wood, L. Sung, and J. W. Martin, 'Relating gloss loss to topographical features of a PVDF coating,' Journal of Coatings Technology and Research, vol. 3, pp. 29-39, 2006.
[30] Y. Pang, S. S. Watson, A. M. Foster, and L. Sung, 'Correlating nanoparticle dispersion to surface mechanical properties of TiO2/polymer composites,' Proceeding of Materials Research Society Symposium, 2009.
[31] J. Courter, 'Mar resistance of automotive clearcoats: relationship to coating mechanical properties,' Journal of Coating Technology, vol. 69, pp. 866-872, 1997.
[32] M. VanLandingham, L. Sung, N. Chang, T. Wu, S. Chang, and V. D. Jardret, 'Measurement approaches to develop a fundamental understanding of scratch and mar resistance,' Journal of Coatings Technology and Research, vol. 1, pp. 257-266, 2004.
[33] G. Pharr, W. Oliver, and F. Brotzen, 'On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,' Journal of Materials Research, vol. 7, pp. 613-617, 1992.
[34] W. C. Oliver and G. M. Pharr, 'An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,' Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[35] W. C. Oliver and G. M. Pharr, 'Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,' Journal of Materials Research, vol. 19, pp. 3-20, 2004.
[36] I. Sneddon, 'The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,' International Journal of Engineering Science, vol. 3, pp. 47-57, 1965.
[37] B. Lucas, W. Oliver, and J. Swindeman, 'Dynamics of frequency-specific, depth-sensing indentation testing,' Proceeding of Materials Research Society Symposium, 1998.
[38] A. Fischer-Cripps, Nanoindentation: Springer Verlag, New York, 2004.
[39] L. Sung, J. Comer, A. M. Forster, H. Hu, B. Floryancic, L. Brickweg, and R. H. Fernando, 'Scratch behavior of nano-alumina/polyurethane coatings,' Journal of Coatings Technology and Research, vol. 5, pp. 419-430, 2008.
[40] B. Beake and G. Leggett, 'Nanoindentation and nanoscratch testing of uniaxially and biaxially drawn poly (ethylene terephthalate) film,' Polymer, vol. 43, pp. 319-327, 2002.
[41] S. Wen, R. Zong, F. Zeng, S. Guo, and F. Pan, 'Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers,' Applied Surface Science, vol. 255, pp. 4558-4562, 2009.
[42] A. Dasari, S. Sarang, and R. Misra, 'Strain rate sensitivity of homopolymer polypropylenes and micrometric wollastonite-filled polypropylene composites,' Materials Science and Engineering A, vol. 368, pp. 191-204, 2004.
[43] J. Wong, H. Sue, K. Zeng, R. Li, and Y. Mai, 'Scratch damage of polymers in nanoscale,' Acta Materialia, vol. 52, pp. 431-443, 2004.
[44] J. Swadener, E. George, and G. Pharr, 'The correlation of the indentation size effect measured with indenters of various shapes,' Journal of the Mechanics and Physics of Solids, vol. 50, pp. 681-694, 2002.
[45] W. Gerberich, N. Tymiak, J. Grunlan, M. Horstemeyer, and M. Baskes, 'Interpretations of indentation size effects,' Journal of applied mechanics, vol. 69, pp. 433-442, 2002.
[46] K. Menard, Dynamic mechanical analysis: a practical introduction: CRC Press, Boca Raton, 2008.
[47] H. Brinson and L. Brinson, Polymer engineering science and viscoelasticity: an introduction: Springer Verlag, New York, 2007.
[48] H. Leaderman and T. Foundation, Elastic and creep properties of filamentous materials and other high polymers: The Textile Foundation, Washington, DC, 1943.
[49] A. Tobolsky, Properties and structure of polymers: John Wiley and Sons, New Jersey, 1960.
[50] J. Ferry, Viscoelastic properties of polymers: John Wiley and Sons, New Jersey, 1980.
[51] M. Williams, R. Landel, and J. Ferry, 'The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,' Journal of the American Chemical Society, vol. 77, pp. 3701-3707, 1955.
[52] V. Kenner, B. Harper, and V. Itkin, 'Stress relaxation in molding compounds,' Journal of Electronic Materials, vol. 26, pp. 821-826, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8655-
dc.description.abstract本論文結合了奈米壓痕試驗 (instrumented indentation technique) 及雷射共軛焦顯微技術 (laser scanning confocal microscopy) 來評估高分子系統的耐刮性 (scratch resistance),並且研究不同玻璃轉移溫度與奈米添加物極性,對於高分子聚合物表面機械性質的影響。利用連續剛性量測技術 (continuous stiffness measurement method),奈米材料的彈性模數與硬度可以由奈米壓痕試驗所測定。耐刮性研究主要是基於測量刮痕的損傷變形,佐以分析刮痕測試得到的深度、寬度、彈性回復指數、摩擦係數等資訊來定性評估材料的耐久性 (durability)。刮痕測試的施行,包括了連續增加負載與定量負載兩種方式。連續增加負載的刮痕測試提供了傷痕由無到有生成的完整資訊,並且可用來粗估代表了材料彈性至塑性變形的臨界破壞力 (onset force);一系列定量負載的刮痕測試,則可用來精確評估材料的臨界破壞力,並藉此作為材料間傷痕肇始 (彈性至塑性變形) 相對於耐刮性比較的依據。本文中所有的刮痕形態,包括了刮痕深度、寬度和邊緣堆積高度,皆是使用雷射共軛焦顯微技術量測和分析,並且進一步用作耐刮性的評估。
實驗材料包括了兩個高分子系統: 1. 交聯結構的環氧樹脂 (epoxy) ,具有不同的玻璃轉移溫度 2. 聚胺甲酸酯 (polyurethane) 薄膜,添加了2% 不同極性的奈米矽顆粒。在第一個研究個案中,玻璃轉移溫度對於刮痕測試的影響非常顯著,高的玻璃轉移溫度對應於高的耐刮性。第二個研究個案中,兩組含有奈米矽的聚胺甲酸酯薄膜按照不同的製備方式製成。第一組的材料較薄而且有著較高的玻璃轉移溫度 (~ 90 ℃),第二組材料較厚而且有著較低的玻璃轉移溫度 (~ 55 ℃)。第一組的實驗試片 (control sample) 與對照組試片 (reference group)有著非常近似的機械性質與刮痕形態,因此耐刮性的評估並不顯著。另一方面,第二組的實驗試片對於傷痕的抵抗力較弱,刮痕測試後得到的初始損傷深度是最嚴重的。然而,經過了16個小時,其復原的行為卻比其他對照組試片都快,傷痕變得寬而淺,可見度也降低了。依照整體來觀察,玻璃轉移溫度較低的聚胺甲酸酯組別,在刮痕試驗裡表現出了較嚴重的損傷變形。因此,由兩個高分子系統的研究中共同顯示,增加材料的玻璃轉移溫度可以使得抗刮性提升。
zh_TW
dc.description.abstractIn this thesis, a combination of instrumented indentation technique (IIT) and laser scanning confocal microscopy (LSCM) was used to assess the scratch resistance of polymer systems. The effect of glass transition temperatures Tg and nanoparticle additive polarities on the surface mechanical properties and scratch resistance of polymers were investigated. By the continuous stiffness measurement (CSM) method, the elastic modulus and hardness of polymer systems were measured using IIT. The scratch resistance assessment was based on measuring the damage deformation and analyzing the scratch data, such as the scratch depths, scratch width, recovery, and friction coefficient as a qualitative method to evaluate the durability of the polymer system. Two types of scratch test methods were used: the progressive force and constant force scratch tests. The onset force at which scratch damage changed from elastic (total recover, invisible) to plastic (visible) deformation was approximately estimated from the progressive force scratch test. From an array of constant force scratch test, the onset force was determined more accurately. The onset force of elastic-plastic deformation can be used as an indicator to rank scratch resistance of a polymer system. The scratch morphology including scratch depths, scratch width, pile-up height were measured using LSCM. The scratch morphological data were analyzed and also used to assess the scratch resistance of the system.
Two polymer systems were studied in this thesis: 1. Crosslinked epoxy (EP) systems with different glass transition temperatures; 2. Polyurethane (PU) thin films containing 2 % nanosilica (SiO2) with dispersant/additive of different polarities. In the first case study, the effect of glass transition temperature on the scratch behavior was evident. The higher glass transition temperature, the higher scratch resistance. In the second case study, two series of the PU-SiO2 films were used due to different preparation conditions. Series 1 is thinner and has a higher glass transition temperature (~ 90 oC), and series 2 is thicker and has a lower glass transition temperature (~ 55 oC). In series 1, the control sample and reference group had similar mechanical data and scratch morphology so that the final ranking of scratch resistance is not clear. On the other hand, the control sample in the series 2 has the weakest scratch resistance and worst damage right after scratched. However, after 16 hours, the scratch damage of control sample (in series 2) recovered faster than that of the reference group. The scratch morphology of control sample (in series 2) became wider and shallower and less visible. Overall, the scratch damages were found to be more severe in the series with the lower glass transition temperature. Therefore, the testing results in both case studies indicated that the higher glass transition temperature had a stronger scratch resistance.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:59:23Z (GMT). No. of bitstreams: 1
ntu-99-R97522502-1.pdf: 14232918 bytes, checksum: 6d836afb0c3f8a22d64a217a941dc957 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsABSTRACT i
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiv
Chapter 1 INTRODUCTION 1
1-1 Research Motivation 1
1-2 Literature Review 6
1-2.1 Introduce to Glass Transition Temperature 6
1-2.2 Introduce to Nanoparticle Additives 8
1-2.3 Introduce to Scratch Testing 9
1-3 Thesis Organization 17
Chapter 2 EXPERIMENTAL PROCEDURE AND MATERIALS 18
2-1 Experimental Procedure 18
2-1.1 Introduction 18
2-1.2 Protocol 21
2-1.3 Report 27
2-2 Materials 29
2-2.1 Epoxy 29
2-2.2 Polyurethane – Nanosilica Coatings 30
Chapter 3 INSTRUMENTATION AND ITS APPLICATIONS 33
3-1 Laser Scanning Confocal Microscopy (LSCM) 33
3-1.1 Basic Principle of Laser Scanning Confocal Microscopy 33
3-1.2 Examples of LSCM Application 40
3-2 Instrumented Indentation Testing (IIT) 46
3-2.1 Basic Principle of Instrumented Indentation Testing 46
3-2.2 Examples of IIT Application 53
Chapter 4 RESULTS AND DISCUSSION 57
4-1 Epoxy 57
4-1.1 Indentation Data 57
4-1.2 PS Data 59
4-1.3 CS Data 67
4-1.4 Summary 77
4-2 Polyurethane Series 1 80
4-2.1 Indentation Data 80
4-2.2 PS Data 86
4-2.3 CS Data 93
4-2.4 Summary 95
4-3 Polyurethane Series 2 97
4-3.1 Indentation Data 97
4-3.2 PS Data 103
4-3.3 CS Data 110
4-3.4 Summary 112
Chapter 5 CONCLUSIONS AND FUTURE WORKS 115
Appendix A: Introduce to Tip Geometries 117
Appendix B: PIC Scratch Test Method- January 2007 122
Appendix C: Dynamic Mechanical Thermal Analysis and Results 139
REFERENCE 171
dc.language.isoen
dc.subject硬&#64001zh_TW
dc.subject雷射共軛焦顯微技術zh_TW
dc.subject奈米碳zh_TW
dc.subject玻璃轉移溫&#64001zh_TW
dc.subject彈性模&#63849zh_TW
dc.subject奈米壓痕試驗zh_TW
dc.subject耐刮性zh_TW
dc.title以奈米壓痕試驗及雷射掃描式共軛焦顯微技術評估高分子系統的耐刮性zh_TW
dc.titleScratch Resistance Assessments of Polymeric Systems – Using Instrumented Indentation Testing and Laser Scanning Confocal Microscopyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor宋麗品(Li-Piin Sung)
dc.contributor.oralexamcommittee張所鋐,盧中仁
dc.subject.keyword奈米壓痕試驗,雷射共軛焦顯微技術,奈米碳,玻璃轉移溫&#64001,彈性模&#63849,硬&#64001,耐刮性,zh_TW
dc.subject.keywordInstrumented indentation technique,Laser scanning confocal microscopy,Nanoparticle silica,Glass transition temperature,Elastic modulus,Hardness,Scratch resistance,en
dc.relation.page178
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-06-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf13.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved