請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Nien-Ting Chung | en |
| dc.contributor.author | 鍾念廷 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:03:03Z | - |
| dc.date.copyright | 2022-08-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-11 | |
| dc.identifier.citation | [1]T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, 'DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques,' IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, July 2016.László Tihanyi: Electromagnetic Compatibility in Power Electronics, IEEE Press, 1995, p. 403 [2]A. Soebandrio, R. T. Bambang, A. S. Rohman, C. J. Dronkers, R. Ortega, and A. Sasongko, ‘‘Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 1992–2002, Nov. 2014 [3]D. Feroldi, M. Serra and J. Riera,” Design and Analysis of FuelCell Hybrid Systems Oriented to Automotive Applications,” IEEE Trans. Veh. Technol., vol. 58, no. 9, Nov. 2009. [4]Shigeroni Inoue and Hirofumi Akagi. “A BiDirectional DC/DC Converter for an Energy Storage System,” 22nd Annual IEEE Applied Power Electronics Conference, February 25 – March 1 2007, Pages: 761 – 767. [5]S. Inoue and H. Akagi, 'A Bidirectional DC–DC Converter for an Energy Storage System With Galvanic Isolation,' in IEEE Trans. on Power Electron., vol. 22, DOI: 10.1109/TPEL.2007.909248, no. 6, pp. 2299- 2306, Nov. 2007. [6]N. M. L. Tan, T. Abe and H. Akagi, 'Design and Performance of a Bidirectional Isolated DC–DC Converter for a Battery Energy Storage System,' in IEEE Trans. on Power Electron., vol. 27, DOI: 10.1109/TPEL.2011.2108317, no. 3, pp. 1237-1248, March 2012 [7]B. Zhao, Q. Song, W. Liu, and Y. Sun, “A synthetic discrete design methodology of high-frequency isolated bidirectional DC/DC converter for grid-connected battery energy storage system using advanced components,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5402–5410, Oct. 2014 [8]Tytelmaier, K., Husev, O., Veligorskyi, O., & Yershov, R. “A review of non-isolated bidirectional dc-dc converters for energy storage system,”. 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF).,2016 [9]Aghabali, Iman, et al. '800V Electric Vehicle Powertrains: Review and Analysis of Benefits, Challenges, and Future Trends.' IEEE Transactions on Transportation Electrification (2020). [10]B. Kim, K. Kim, and S. Choi, “A 800V/14V soft-switched converter with low-voltage rating of switch for xEV applications,” in Proc. Int. Power Electron. Conf., May 2018, pp. 256–260. [11]J. -Y. Kim, B. -S. Lee, D. -H. Kwon, D. -W. Lee, and J. -K. Kim, “Low voltage charging technique for electric vehicles with 800 V battery,” IEEE Trans. Power Electron., to be published, [12]I. Aghabali, J. Bauman, P. J. Kollmeyer, Y. Wang, B. Bilgin, and A. Emadi, ‘‘800-V electric vehicle powertrains: Review and analysis of benefits, challenges, and future trends,’’ IEEE Trans. Transport. Electrific., vol. 7, no. 3, pp. 927–948, Sep. 2021 [13]S. A. Gorji, H. G. Sahebi, M. Ektesabi and A. B. Rad, 'Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview,' IEEE Access, vol. 7, pp. 117997-118019, 2019. [14]R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. on Industry Applications, vol. 27, no. 1, pp. 63–73, Jan./Feb. 1991. [15]M.H. Kheraluwala, R.W. Gascoigne, D.M. Divan, E.D. Baumann, “Performance characterization of a high-power dual active bridge DCto-DC converter,” IEEE Trans. Ind. Application., vol.28, no. 6, pp. 1294-1301, Nov./Dec. 1992. [16]Y. Miura, M. Kaga, Y. Horita and T. Ise, 'Bidirectional isolated dual full-bridge dcdc converter with active clamp for EDLC,' in Proc. IEEE ECCE, 2010, pp. 1136– 106 1143. [17]J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, Design Considerations for high–voltage high–power full.bridge zerovoltage-switching PWM converter. in Proc. IEEE Appl. Power Electron. Conf., 1990, pp. 275-284. [18]A. K. Rathore, A. K. Bhat, R. Oruganti, A comparison of soft-switched dc-dc converters for fuel cell to utility interface application, IEEJ Transactions on Industry Applications 128 (4) (2008) 450–458. [19]Kunrong Wang, Lizhi Zhu, Dayu Qu, H. Odendaal, J. Lai and F. C. Lee, 'Design, implementation, and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' in Proc. IEEE PESC, 2000, pp. 1058–1063. [20]J.A. Sabate, V. Vlatkovic, R.B. Ridley, and F.C. Lee, 'High-voltage, high power, ZVS, full-bridge PWM converter employing an active snubber,' in Conf. Rec., IEEE Appl. Power Electron., 1991, pp. 158-163. [21]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee and J. S. Lai, 'Bi-directional DC to DC converters for fuel cell systems,' in Proc. Power Electron. Transport., Oct. 22–23, 1998, pp. 47–51 [22]P. U R and A. K. Rathore, 'Extended Range ZVS Active-Clamped Current-Fed FullBridge Isolated DC/DC Converter for Fuel Cell Applications: Analysis, Design, and Experimental Results,' IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661-2672, July 2013. [23]J. G. Cho, G. H. Rim, and F. C. Lee, “Zero voltage and zero current switching full bridge pwm converter with secondary active clamp,” in Proc. IEEE PESC’96, 1996, pp. 657–663. [24]Kunrong Wang, F. C. Lee and J. Lai, 'Operation principles of bi-directional fullbridge DC/DC converter with unified soft-switching scheme and soft-starting capability,' in Proc. 15th IEEE APEC, 2000, vol. 1, pp. 111–118. [25]許蕙瀅, 二次側調變方法之主動箝位電流饋入式雙主動橋式轉換器。國立台灣大學, 電機資訊學院電機工程學系碩士學位論文, 2021年6月。 [26]Y. Wang, K. Wang, C. Li, Z. Zheng and Y. Li, 'System-Level Efficiency Evaluation of Isolated DC/DC Converters in Power Electronics Transformers for Medium-Voltage DC Systems,' IEEE Access, vol. 7, pp. 48445-48458, 2019. [27]Y. Shi and H. Li, ‘‘Isolated modular multilevel DC–DC converter with DC fault current control capability based on current-fed dual active bridge for MVDC application,’’ IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2145–2161, Mar. 2018. [28]A. Mohammadpour, L. Parsa, M. H. Todorovic, R. Lai, R. Datta, and L. Garces, ‘‘Series-input parallel-output modular-phase DC–DC converter with soft-switching and high-frequency isolation,’’ IEEE Trans. Power Electron., vol. 31, no. 1, pp. 111–119, Jan. 2016. [29]D. W. Perkins and M. W. Smith, “Regulated power supply having a series arrangement of inverters,” US Patent 4062057, Dec. 6, 1977. [30]S.-W. Choi, J.-M. Lee, and J.-Y. Lee, “High-efficiency portable welding machine based on full-bridge converter with ISOP-connected single transformer and active snubber,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4868–4877, Aug. 2016. [31]X. Ruan, W. Chen, L. Cheng, C. Tse, H. Yan, and T. Zhang, “Control strategy for input-series-output-parallel converters,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1174–1185, Apr. 2009. [32]W. Chen, G. Wang, X. Ruan, W. Jiang, and W. Gu, “Wireless inputvoltage-sharing control strategy for input-series output-parallel (ISOP) system based on positive output-voltage gradient method,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6022–6030, Nov. 2014. [33]B. Zhao, Q. Song, W. Liu, G. Liu and Y. Zhao, 'Universal High-Frequency-Link Characterization and Practical Fundamental-Optimal Strategy for Dual-ActiveBridge DC-DC Converter Under PWM Plus Phase-Shift Control,' IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6488-6494, Dec. 2015. [34]‘MOSFET Gate-Charge Origin and its Applications’, AND9083/D Application Note, ON Semiconductor [35]J. Shi, J. Luo, X He, “Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC–DC converter modules,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3318-3329, Nov. 2011. [36]S. H. Kim, B. J. Kim and C. Y. Won, 'A Study on Decentralized InverseDroop Control for Input Voltage Sharing of ISOP Converter in the Current Control Loop,' 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), 2019, pp. 2382-2387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86557 | - |
| dc.description.abstract | 本論文的目標是研製模組化主動箝位電流饋入型雙主動橋式(Active Clamped Current-Fed Dual Active Bridge, AC-CFDAB)轉換器。首先根據使用二次側調變(Secondary-Side Modulation)控制方法的AC-CFDAB提出效率分析,然後根據推導出的效率數學模型分析出在不同負載下最適合操作的模組數,藉以提高電路整體效率。 電源轉換器的效率受電氣規格、元件特性與操作方式的影響很大。不同於現有已知文獻,本論文提出了考量死區(deadtime)時間與寄生元件影響之數學模型,以提升效率分析的準確度。另一方面,使用模組化串並聯式電路架構會遇到串聯電容電壓不平衡的問題。因此本論文使用改良型去中心式逆下垂控制(Decentralized Inverse-Droop Control),確保在雙向操作下串聯電容電壓都能保持平衡。 本論文所提出的效率數學模型採用商用電路模擬軟體進行驗證。並實作一套三組共2.7kW的AC-CFDAB轉換器進行實際量測,以驗證效率數學模型的準確度與控制方法的可行性。 | zh_TW |
| dc.description.abstract | The objective of this thesis is to design and implement modular active-clamped current-fed dual active bridge (AC-CFDAB) converters. Based on the secondary-side modulation method, the mathematical model of the AC-CFDAB’s power conversion efficiency is developed. According to the derived efficiency model, the number of operating modules under different demanded power can be determined to increase the efficiency of the overall system. It is well-known that the converter’s efficiency is highly affected by the specifications, component characteristics, and operation modes. Different from those published papers, the thesis includes the influence of switching deadtime and parasitic components for mathematical model development to improve the accuracy of the efficiency analysis. On the other hand, the proposed modular converters are connected in parallel at the current-fed side to reduce the current ripple and are connected in series at the voltage side to reduce the component’s voltage stress. Hower, the unbalanced voltages on the series-connected capacitors become a stability issue. In this thesis, an improved decentralized inverse-droop control (IDIC) is proposed to achieve voltage balancing among series-connected capacitors for bidirectional power operations. The proposed mathematical efficiency model is verified by using commercializied circuit simulation software. A 2.7kW AC-CFDAB consists of 3 modules is built and tested to verify the accuracy of the mathematical efficiency model and the performance of the proposed IDIC. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:03:03Z (GMT). No. of bitstreams: 1 U0001-0808202220174700.pdf: 12529926 bytes, checksum: cd47f5a9168ec91aa996d7ecc9571fee (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 口試委員審定書.............................................i 致謝.....................................................ii 摘要....................................................iii ABSTRACT.................................................iv 目錄......................................................v 圖目錄..................................................vii 表目錄..................................................xii 第一章 緒論...............................................1 1-1 研究背景..............................................1 1-2 文獻回顧與動機........................................2 1-3 章節概要..............................................6 第二章 主動箝位電流饋入型雙主動橋式轉換器....................7 2-1 電路架構..............................................7 2-2 電路操作..............................................7 2-2.1 操作原理............................................7 2-2.2 開關控制訊號調變....................................10 2-3 二次側調變方法穩態電流分析.............................13 2-3.1 降壓模式...........................................13 2-3.2 升壓模式...........................................25 第三章主動箝位電流饋入型雙主動橋式轉換器效率分析與模組化研製..33 3-1 考慮延遲時間與死區時間以及寄生元件影響..................33 3-1.1 停滯時間與死區時間..................................34 3-1.2 寄生電阻...........................................36 3-1.3 變壓器激磁感.......................................38 3-2 模組化架構...........................................42 3-2.1 模組化電路.........................................42 3-2.2 模組化電路之效率分析................................43 3-3 串聯電容電壓平衡控制..................................56 3-3.1 串聯電容電壓分析....................................56 3-3.2 去中心式逆下垂控制..................................57 3-3.3 降壓模式電容電壓平衡控制.............................58 3-3.4 升壓模式電容電壓平衡控制.............................59 第四章 電腦模擬驗證........................................61 4-1 降壓模式..............................................62 4-1.1 模組數2,N=2........................................62 4-1.2 模組數3,N=3........................................72 4-2 升壓模式..............................................81 4-2.1 模組數2,N=2........................................81 4-2.2 模組數3,N=3........................................91 4-3串聯電容電壓平衡.......................................101 第五章 硬體電路實作驗證...................................109 5-1 實作電路及實驗設置....................................109 5-2 降壓模式.............................................112 5-2.1 模組數2,N=2.......................................112 5-2.2 模組數3,N=3.......................................117 5-3 升壓模式.............................................124 5-3.1 模組數2,N=2.......................................124 5-3.2 模組數3,N=3.......................................129 5-4串聯電容電壓平衡.......................................136 第六章 結論與未來發展.....................................143 6-1 結論.................................................143 6-2 未來研究方向..........................................144 參考文獻.................................................145 圖目錄 圖1.1 直流微電網..................................................1 圖1.2 電動車電力系統..............................................1 圖1.3 主動箝位電流饋入型雙主動橋式轉換器(AC-CFDAB)..................2 圖1.4 提升電路額定功率常見電路拓樸..................................5 圖1.5 串聯電容電壓平衡控制架構......................................5 圖2.1 主動箝位電流饋入型雙主動橋式轉換器電路.........................8 圖2.2 主動箝位電流饋入型雙主動橋式轉換器開關切換狀態與切換節點之關係...9 圖2.3 週期性波V_ab與V_cd與α_1、α_2、之關係.........................9 圖2.4 升壓模式開關V_GS訊號與切換節點V_ab、V_cd之關係................12 圖2.5 降壓模式開關V_GS訊號與切換節點V_ab、V_cd之關係................13 圖2.6 降壓模式電路操作與電流流向之關係..............................14 圖2.7 降壓模式在穩態時的操作波形...................................16 圖2.8 升壓模式電路操作與電流流向之關係..............................25 圖2.9 升壓模式在穩態時的操作波形...................................27 圖3.1 考慮延遲時間與死區時間影響之升壓模式穩態操作波形...............34 圖3.2 降壓模式電路操作與寄生電阻的影響..............................37 圖3.3 升壓模式電路操作與寄生電阻的影響..............................37 圖3.4 降壓模式與升壓模式考慮變壓器激磁感之變壓器簡化電路與電流參考方向.38 圖3.5 考慮變壓器激磁感之降壓模式穩態操作波形.........................39 圖3.6 考慮變壓器激磁感之升壓模式穩態操作波形.........................39 圖3.7 模組化高壓側串聯低壓側並聯主動箝位電流饋入型雙主動橋式轉換器.....43 圖3.8 開關導通時V_DS與I_DS以及V_GS的暫態切換波形....................47 圖3.9 降壓模式時 3 組操作與 2 組操作的效率曲線.......................51 圖3.10 降壓模式時 3 組操作在滿載下的功率損失分類......................51 圖3.11 降壓模式時 3 組操作在半載下的功率損失分類......................51 圖3.12 降壓模式時 3 組操作在10%載下的功率損失分類.....................52 圖3.13 降壓模式時 2 組操作在滿載下的功率損失分類......................52 圖3.14 降壓模式時 2 組操作在半載下的功率損失分類......................52 圖3.15 降壓模式時 2 組操作在10%載下的功率損失分類.....................53 圖3.16 升壓模式時 3 組操作與 2 組操作的效率曲線.......................53 圖3.17 升壓模式時 3 組操作在滿載下的功率損失分類......................54 圖3.18 升壓模式時 3 組操作在半載下的功率損失分類......................54 圖3.19 升壓模式時 3 組操作在10%載下的功率損失分類.....................54 圖3.20 升壓模式時 2 組操作在滿載下的功率損失分類......................55 圖3.21 升壓模式時 2 組操作在半載下的功率損失分類......................55 圖3.22 升壓模式時 2 組操作在10%載下的功率損失分類.....................55 圖3.23 模組化主動箝位電流饋入型雙主動橋式轉換器.......................57 圖3.24 去中心式逆下垂控制...........................................58 圖3.25 降壓模式下的串聯電容電壓平衡控制..............................59 圖3.26 升壓模式操作下各模組電流流向..................................60 圖3.27 升壓模式下的串聯電容電壓平衡控制..............................60 圖4.1 降壓模式,N=2,1350W 漏感電流波形與開關訊號調變................62 圖4.2 降壓模式,N=2,1350W 各開關軟切換情況.........................63 圖4.3 降壓模式,N=2,945W 漏感電流波形與開關訊號調變.................64 圖4.4 降壓模式,N=2,945W 各開關軟切換情況..........................65 圖4.5 降壓模式,N=2,675W 漏感電流波形與開關訊號調變.................66 圖4.6 降壓模式,N=2,675W 各開關軟切換情況..........................67 圖4.7 降壓模式,N=2,135W 漏感電流波形與開關訊號調變.................68 圖4.8 降壓模式,N=2,135W 各開關軟切換情況..........................69 圖4.9 降壓模式,N=3,900W 漏感電流波形與開關訊號調變.................72 圖4.10 降壓模式,N=3,900W 各開關軟切換情況..........................73 圖4.11 降壓模式,N=3,630W 漏感電流波形與開關訊號調變.................74 圖4.12 降壓模式,N=3,630W 各開關軟切換情況.........................75 圖4.13 降壓模式,N=3,450W 漏感電流波形與開關訊號調變.................75 圖4.14 降壓模式,N=3,450W 各開關軟切換情況..........................76 圖4.15 降壓模式,N=3,90W 漏感電流波形與開關訊號調變..................77 圖4.16 降壓模式,N=3,90W 各開關軟切換情況...........................78 圖4.17 升壓模式,N=2,1350W 漏感電流波形與開關訊號調變................81 圖4.18 升壓模式,N=2,1350W 各開關軟切換情況.........................82 圖4.19 升壓模式,N=2,945W 漏感電流波形與開關訊號調變.................83 圖4.20 升壓模式,N=2,945W 各開關軟切換情況..........................84 圖4.21 升壓模式,N=2,675W 漏感電流波形與開關訊號調變.................85 圖4.22 升壓模式,N=2,675W 各開關軟切換情況..........................86 圖4.23 升壓模式,N=2,135W 漏感電流波形與開關訊號調變.................87 圖4.24 升壓模式,N=2,135W 各開關軟切換情況..........................88 圖4.25 升壓模式,N=3,900W 漏感電流波形與開關訊號調變.................91 圖4.26 升壓模式,N=3,900W 各開關軟切換情況..........................92 圖4.27 升壓模式,N=3,630W 漏感電流波形與開關訊號調變.................93 圖4.28 升壓模式,N=3,630W 各開關軟切換情況..........................94 圖4.29 升壓模式,N=3,450W 漏感電流波形與開關訊號調變.................95 圖4.30 升壓模式,N=3,450W 各開關軟切換情況..........................96 圖4.31 升壓模式,N=3,90W 漏感電流波形與開關訊號調變..................97 圖4.32 升壓模式,N=3,90W 各開關軟切換情況...........................98 圖4.33 降壓模式,N=2,540W 各模組串聯電容電壓暫態波形................102 圖4.34 降壓模式,N=2,540W 各模組串聯電容電壓與漏感電流穩態波形.......102 圖4.35 降壓模式,N=2,540W 各模組低壓側電感電流與負載電流穩態波形.....103 圖4.36 升壓模式,N=2,270W 各模組串聯電容電壓暫態波形................104 圖4.37 升壓模式,N=2,270W 各模組串聯電容電壓與漏感電流穩態波形.......104 圖4.38 升壓模式,N=2,270W 各模組低壓側電感電流與負載電流穩態波形.....104 圖4.39 降壓模式,N=3,810W 各模組串聯電容電壓暫態波形................105 圖4.40 降壓模式,N=3,810W 各模組漏感電流穩態波形....................106 圖4.41 降壓模式,N=3,810W 各模組低壓側電感電流與負載電流穩態波形.....106 圖4.42 升壓模式,N=3,810W 各模組串聯電容電壓暫態波形................107 圖4.43 升壓模式,N=3,810W 各模組漏感電流穩態波形....................108 圖4.44 升壓模式,N=3,810W 各模組低壓側電感電流與負載電流穩態波形.....108 圖5.1 模組化主動箝位電流饋入型雙主動橋式轉換器實作電路圖.............110 圖5.2 模組化主動箝位電流饋入型雙主動橋式轉換器電路與控制方塊圖........111 圖5.3 降壓模式,N=2,1350W 漏感電流波形與開關訊號調變...............112 圖5.4 降壓模式,N=2,1350W 各開關軟切換情況........................113 圖5.5 降壓模式,N=2,945W 漏感電流波形與開關訊號調變................113 圖5.6 降壓模式,N=2,945W 各開關軟切換情況.........................114 圖5.7 降壓模式,N=2,675W 漏感電流波形與開關訊號調變................115 圖5.8 降壓模式,N=2,675W 各開關軟切換情況........................115 圖5.9 降壓模式,N=2,135W 漏感電流波形與開關訊號調變...............116 圖5.10 降壓模式,N=2,135W 各開關軟切換情況.........................117 圖5.11 降壓模式,N=3,900W 漏感電流波形與開關訊號調變...............117 圖5.12 降壓模式,N=3,900W 各開關軟切換情況.......................118 圖5.13 降壓模式,N=3,630W 漏感電流波形與開關訊號調變................119 圖5.14 降壓模式,N=3,630W 各開關軟切換情況.........................119 圖5.15 降壓模式,N=3,450W 漏感電流波形與開關訊號調變..............120 圖5.16 降壓模式,N=3,450W 各開關軟切換情況.........................121 圖5.17 降壓模式,N=3,90W 漏感電流波形與開關訊號調變.................121 圖5.18 降壓模式,N=3,90W 各開關軟切換情況..........................122 圖5.19 降壓模式 2 組操作與 3 組操作在不同負載下的效率曲線.............123 圖5.20 升壓模式,N=2,1350W 漏感電流波形與開關訊號調變...............124 圖5.21 升壓模式,N=2,1350W 各開關軟切換情況........................125 圖5.22 升壓模式,N=2,945W 漏感電流波形與開關訊號調變................125 圖5.23 升壓模式,N=2,945W 各開關軟切換情況.........................126 圖5.24 升壓模式,N=2,675W 漏感電流波形與開關訊號調變................127 圖5.25 升壓模式,N=2,675W 各開關軟切換情況.........................127 圖5.26 升壓模式,N=2,135W 漏感電流波形與開關訊號調變................128 圖5.27 升壓模式,N=2,135W 各開關軟切換情況.........................129 圖5.28 升壓模式,N=3,900W 漏感電流波形與開關訊號調變................129 圖5.29 升壓模式,N=3,900W 各開關軟切換情況.........................130 圖5.30 升壓模式,N=3,630W 漏感電流波形與開關訊號調變................131 圖5.31 升壓模式,N=3,630W 各開關軟切換情況.........................131 圖5.32 升壓模式,N=3,450W 漏感電流波形與開關訊號調變................132 圖5.33 升壓模式,N=3,450W 各開關軟切換情況.........................133 圖5.34 升壓模式,N=3,90W 漏感電流波形與開關訊號調變.................133 圖5.35 升壓模式,N=3,90W 各開關軟切換情況..........................134 圖5.36 升壓模式 2 組操作與 3 組操作在不同負載下的效率曲線.............135 圖5.37 降壓模式,N=2,540W 各模組串聯電容電壓與漏感電流的穩態波形.....136 圖5.38 降壓模式,N=2,540W 各模組低壓側電感電流與負載電流穩態波形.....137 圖5.39 升壓模式,N=2,270W 各模組串聯電容電壓與漏感電流的穩態波形.....138 圖5.40 升壓模式,N=2,270W 各模組低壓側電感電流與負載電流穩態波形.....138 圖5.41 降壓模式,N=3,810W 各模組串聯電容電壓穩態波形................139 圖5.42 降壓模式,N=3,810W 各模組漏感電流穩態波形....................140 圖5.43 降壓模式,N=3,810W 各模組低壓側電感電流與負載電流穩態波形.....140 圖5.44 降壓模式,N=3,810W 各模組串聯電容電壓穩態波形................141 圖5.45 降壓模式,N=3,810W 各模組漏感電流穩態波形....................142 圖5.46 降壓模式,N=3,810W 各模組低壓側電感電流與負載電流穩態波形.....142 表目錄 表2.1 降壓模式各操作區間漏感跨壓與平均漏感電流以及時間符號定義........22 表3.1 升壓模式各操作區間漏感跨壓與時間符號定義......................35 表3.2 主動箝位電流饋入型雙主動橋式轉換器元件參數理論值...............45 表3.3 變壓器設計誤差造成的參數變動.................................46 表4.1 主動箝位電流饋入型雙主動橋式轉換器參數表......................61 表4.2 降壓模式 N=2 漏感電流峰值理論與模擬結果比較...................70 表4.3 降壓模式 N=2 低壓側漏感電流方均根理論值與模擬結果比較..........70 表4.4 降壓模式 N=2 高壓側漏感電流方均根理論值與模擬結果比較..........71 表4.5 降壓模式 N=2 低壓側開關電流方均根理論值與模擬結果比較..........71 表4.6 降壓模式 N=2 高壓側開關電流方均根理論值與模擬結果比較..........71 表4.7 降壓模式 N=3 漏感電流峰值理論與模擬結果比較...................79 表4.8 降壓模式 N=3 低壓側漏感電流方均根理論值與模擬結果比較..........79 表4.9 降壓模式 N=3 高壓側漏感電流方均根理論值與模擬結果比較..........80 表4.10 降壓模式 N=3 低壓側開關電流方均根理論值與模擬結果比較..........80 表4.11 降壓模式 N=3 高壓側開關電流方均根理論值與模擬結果比較..........80 表4.12 升壓模式 N=2 漏感電流峰值理論與模擬結果比較...................89 表4.13 升壓模式 N=2 低壓側漏感電流方均根理論值與模擬結果比較..........89 表4.14 升壓模式 N=2 高壓側漏感電流方均根理論值與模擬結果比較..........90 表4.15 升壓模式 N=2 低壓側開關電流方均根理論值與模擬結果比較..........90 表4.16 升壓模式 N=2 高壓側開關電流方均根理論值與模擬結果比較..........90 表4.17 升壓模式 N=3 漏感電流峰值理論與模擬結果比較...................99 表4.18 升壓模式 N=3 低壓側漏感電流方均根理論值與模擬結果比較..........99 表4.19 升壓模式 N=3 高壓側漏感電流方均根理論值與模擬結果比較.........100 表4.20 升壓模式 N=3 低壓側開關電流方均根理論值與模擬結果比較.........100 表4.21 升壓模式 N=3 高壓側開關電流方均根理論值與模擬結果比較.........100 表4.22 串聯電容電壓平衡模擬各模組元件參數表.........................101 表4.23 降壓模式,N=2,540W 穩態操作各模組電壓與電流量測結果..........103 表4.24 升壓模式,N=2,270W 穩態操作各模組電壓與電流量測結果..........105 表4.25 降壓模式,N=3,810W 穩態操作各模組電壓與電流量測結果..........106 表4.26 升壓模式,N=3,810W 穩態操作各模組電壓與電流量測結果..........108 表5.1 各模組實作電路漏感感值與變壓器匝數比以及激磁感感值.............109 表5.2 兩組操作下漏感電流峰值實驗結果與理論值以及模擬結果比較.........123 表5.3 三組操作下漏感電流峰值實驗結果與理論值以及模擬結果比較.........123 表5.4 兩組操作下漏感電流峰值實驗結果與理論值以及模擬結果比較.........135 表5.5 三組操作下漏感電流峰值實驗結果與理論值以及模擬結果比較.........135 表5.6 降壓模式,N=2,540W 穩態操作各模組電壓與電流量測結果..........137 表5.7 升壓模式,N=2,270W 穩態操作各模組電壓與電流量測結果..........138 表5.8 降壓模式,N=2,540W 穩態操作各模組電壓與電流量測結果..........140 表5.9 降壓模式,N=2,540W 穩態操作各模組電壓與電流量測結果..........142 | |
| dc.language.iso | zh-TW | |
| dc.subject | 效率分析 | zh_TW |
| dc.subject | 去中心式逆下垂控制 | zh_TW |
| dc.subject | 雙向轉換器 | zh_TW |
| dc.subject | 去中心式逆下垂控制 | zh_TW |
| dc.subject | 電流源型雙主動橋式轉換器 | zh_TW |
| dc.subject | 模組化轉換器 | zh_TW |
| dc.subject | 雙向轉換器 | zh_TW |
| dc.subject | 效率分析 | zh_TW |
| dc.subject | 模組化轉換器 | zh_TW |
| dc.subject | 電流源型雙主動橋式轉換器 | zh_TW |
| dc.subject | Efficiency Analysis | en |
| dc.subject | Decentralized Inverse-Droop Control | en |
| dc.subject | Modular Converters | en |
| dc.subject | Efficiency Analysis | en |
| dc.subject | Bidirectional Converter | en |
| dc.subject | Modular Converters | en |
| dc.subject | Current-Fed Dual Active Bridge Converter | en |
| dc.subject | Decentralized Inverse-Droop Control | en |
| dc.subject | Bidirectional Converter | en |
| dc.subject | Current-Fed Dual Active Bridge Converter | en |
| dc.title | 主動箝位電流饋入型雙主動橋式轉換器模組化研製 | zh_TW |
| dc.title | Design and Implementation of Modular Active-Clamped Current-Fed Dual Active Bridge Converters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉倫(Woei-Luen Chen),陳景然(Ching-Jan Chen),楊士進(Shih-Chin Yang),唐丞譽(Cheng-Yu Tang),黃仁宏(Peter J. Huang) | |
| dc.subject.keyword | 模組化轉換器,電流源型雙主動橋式轉換器,去中心式逆下垂控制,效率分析,雙向轉換器, | zh_TW |
| dc.subject.keyword | Modular Converters,Current-Fed Dual Active Bridge Converter,Decentralized Inverse-Droop Control,Efficiency Analysis,Bidirectional Converter, | en |
| dc.relation.page | 149 | |
| dc.identifier.doi | 10.6342/NTU202202164 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-01 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0808202220174700.pdf | 12.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
