請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86550
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
dc.contributor.author | Zih-Yu Huang | en |
dc.contributor.author | 黃姿瑜 | zh_TW |
dc.date.accessioned | 2023-03-20T00:02:37Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-28 | |
dc.identifier.citation | [1] J.P.Michenaud, Electron and hole transport in bismuth. J.Phys.C, 1972. 5. [2] S.M.Sze, Physics of Semiconductor Devices, third ed. 2007: Willey. [3] Cowley, A.M. and S.M. Sze, Surface States and Barrier Height of Metal‐Semiconductor Systems. Journal of Applied Physics, 1965. 36(10): p. 3212-3220. [4] Padovani, F.A. and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, 1966. 9(7): p. 695-707. [5] Lee, S.-C., Physics of Semiconductor Devices. 1995: San Min. [6] Hofmann, P., The surfaces of bismuth: Structural and electronic properties. Progress in Surface Science, 2006. 81(5): p. 191-245. [7] Isaacson, R.T. and G.A. Williams, Alfvén-Wave Propagation in Solid-Stae Plasmas. III. Quantum Oscillations of the Fermi Surface of Bismuth. Physical Review, 1969. 185(2): p. 682-688. [8] Vecchi, M.P. and M.S. Dresselhaus, Temperature dependence of the band parameters of bismuth. Physical Review B, 1974. 10(2): p. 771-774. [9] Levin, A.J., M.R. Black, and M.S. Dresselhaus, Indirect L to T point optical transition in bismuth nanowires. Physical Review B, 2009. 79(16). [10] Smith, G.E., G.A. Baraff, and J.M. Rowell, Effective g Factor of Electrons and Holes in Bismuth. Physical Review, 1964. 135(4A): p. A1118-A1124. [11] Lax, B., et al., Infrared Magnetoreflection in Bismuth. I. High Fields. Physical Review Letters, 1960. 5(6): p. 241-243. [12] Gallo, C.F., B.S. Chandrasekhar, and P.H. Sutter, Transport Properties of Bismuth Single Crystals. Journal of Applied Physics, 1963. 34(1): p. 144-152. [13] Mayergoyz, I.D., Solution of the nonlinear Poisson equation of semiconductor device theory. Journal of Applied Physics, 1986. 59(1): p. 195-199. [14] Rose, A., Space-Charge-Limited Currents in Solids. Physical Review, 1955. 97(6): p. 1538-1544. [15] Gelmont, B. and M. Shur, Spreading resistance of a round ohmic contact. Solid-State Electronics, 1993. 36(2): p. 143-146. [16] Lin, H.-H., Ek dispersion for 1D quantized bismuth conduction bands. 2022. [17] Stern, F. and W.E. Howard, Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit. Physical Review, 1967. 163(3): p. 816-835. [18] Jupnik, H., Photoelectric Properties of Bismuth. Physical Review, 1941. 60(12): p. 884-889. [19] Apker, L., E. Taft, and J. Dickey, Some Semimetallic Characteristics of the Photoelectric Emission from As, Sb, and Bi. Physical Review, 1949. 76(2): p. 270-272. [20] Turner, M.J. and E.H. Rhoderick, Metal-silicon Schottky barriers. Solid-State Electronics, 1968. 11(3): p. 291-300. [21] Gobeli, G.W. and F.G. Allen, Direct and Indirect Excitation Processes in Photoelectric Emission from Silicon. Physical Review, 1962. 127(1): p. 141-149. [22] Toudert, J., et al., Optical properties of bismuth nanostructures towards the ultrathin film regime. Optical Materials Express, 2019. 9(7): p. 2924-2936. [23] Nishimura, T., et al., Almost pinning-free bismuth/Ge and /Si interfaces. AIP Advances, 2019. 9(9): p. 095013. [24] Çankaya, G. and N. Uçar, Schottky Barrier Height Dependence on the Metal Work Function for p-type Si Schottky Diodes. Zeitschrift für Naturforschung A, 2004. 59(11): p. 795-798. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86550 | - |
dc.description.abstract | 本論文研究金/鉍/矽 金屬-半金屬-半導體接面的電壓電流特性。在實驗上,我們以分子束磊晶法在n型與p型的(111)Si基板成長不同厚度的鉍薄膜,再以電子束蒸鍍法鍍上金薄膜,完成接面並進行電壓電流量測以獲取接面能障。在理論計算上,我們以一維Poisson方程式求解接面的位能分布,獲取能帶結構圖,據以獲得鉍矽接面的能障。並與實驗獲得的能障比較;兩者的結果大致相符。 我們從理論計算發現,鉍矽接面能障會隨著偏壓與鉍薄膜的厚度而改變。此點與金屬半導體蕭基接面具有固定的能障值不同。此可變的能障源自於鉍的低本質載子濃度與量子侷限效應,加上鉍的雙極性使的鉍矽接面類似於np或nn半導體之異質接面特性。此點也獲得了實驗的支持。 我們也在金/鉍/n-矽的電性逆偏量測時,發現了不尋常的指數型上升電流。我們利用前述的能帶結構圖計算獲取不同逆偏壓下的矽鉍接面處電場,以熱游子場穿隧放射模型(TFE model)計算由鉍注入電子進入矽的電壓電流特性。此計算結果與實驗值相當接近,證實了模型的正確性。此項發現顯示了鉍的電子電洞雙極特性,及其在新穎元件應用的潛力。 | zh_TW |
dc.description.abstract | This thesis studied on Au/Bi/Si, metal/semimetal/semiconductor, contact IV characteristics. In experimental work, Bi thin films with different thickness were deposited on the (111) p- and n-Si substrate by MBE. After the MBE growth, Au dots were deposited on the Bi film with an e-beam evaporator to complete contact structure. In theoretical calculation, we solved 1D Poisson’s equation to find contact potential profile, get the band diagram and determine SBH at the Bi/Si interface. The comparison between theoretical calculation and experimental results showed rough similarity. From theoretical calculation, we found out that Bi/Si contact SBH would change with different bias voltage and bismuth film thickness. This result is far different from well-known fixed SBH value. The variable SBH is due to the low intrinsic carrier density of Bi, the quantum confinement effects and Bismuth bipolar characteristic, making Bi/Si contact behave like np or nn semiconductor heterojunction. And above points meet with experimental support. While measuring Au/Bi/n-Si reverse current, we found an unusual exponential increasing current. Applying aforementioned band diagram calculation, we got contact field values under varying reverse bias and fit the current with TFE model as electrons injecting from Bi to Si. The calculations fit well with experimental results proving the accuracy of applied model. The results of our study indicate bismuth possessing electron-hole bipolar characteristic and show the promising potential in novel device applications. | en |
dc.description.provenance | Made available in DSpace on 2023-03-20T00:02:37Z (GMT). No. of bitstreams: 1 U0001-2509202212001300.pdf: 3293242 bytes, checksum: 84103a5ee70fb20d75cf80d4a2c842ff (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 、緒論 1 1-1研究動機 1 1-2 論文架構 1 第二章 、相關理論 2 2-1 金屬與半導體接面相關理論 2 2-1-1理想蕭基接面 2 2-1-2 非理想狀態接面 4 2-1-3熱離子發射電流 (Thermionic-Emission Currennt) 6 2-1-4熱游子場穿隧放射電流(Thermionic Field Emission Current, TFE Current) 8 2-2能帶摹擬相關理論 10 2-2-1 鉍之晶體結構 10 2-2-2 一維帕松方程式 15 第三章 、實驗製程與量測 16 3-1 電性量測樣品規格與製備 16 3-2 電性量測 18 第四章 、接面特性分析 25 4-1 接面能帶模擬 25 4-1-1 二維鉍能帶結構 25 4-1-2一維帕松方程式解金/鉍/矽接面 31 4-2 金/鉍/p-矽接面能帶 34 4-3 金/鉍/n-矽接面能帶 39 第五章 、結論 44 參考資料 45 | |
dc.language.iso | zh-TW | |
dc.title | 金/鉍/矽 金屬-半金屬-半導體接面的研究 | zh_TW |
dc.title | Studies on Au/Bi/Si metal-semimetal-semiconductor contacts | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建宏(Jian-Hong Chen),毛明華(Ming-Hua Mao),王智祥(Jhih-Siang Wang) | |
dc.subject.keyword | 鉍薄膜,蕭基能障,金屬-半導體接面,量子侷限效應,半金屬, | zh_TW |
dc.subject.keyword | Bi thin film,Schottky barrier height,Metal-semiconductor junction,quantum confinement effect,semimetal, | en |
dc.relation.page | 46 | |
dc.identifier.doi | 10.6342/NTU202203995 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-28 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2509202212001300.pdf | 3.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。