請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8653完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱瑞民(Rea-Min Chu) | |
| dc.contributor.author | WenYing Yu | en |
| dc.contributor.author | 游文瑛 | zh_TW |
| dc.date.accessioned | 2021-05-20T19:59:22Z | - |
| dc.date.available | 2010-06-28 | |
| dc.date.available | 2021-05-20T19:59:22Z | - |
| dc.date.copyright | 2010-06-28 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-06-18 | |
| dc.identifier.citation | Reference
[1] Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 2005 Oct;5(10):772-82. [2] Arnold B, Schonrich G, Hammerling GJ. Multiple levels of peripheral tolerance. Immunol Today 1993 Jan;14(1):12-4. [3] Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 2004 Mar 15;22(6):1136-51. [4] Melamed D, Nemazee D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc Natl Acad Sci U S A 1997 Aug 19;94(17):9267-72. [5] McGargill MA, Derbinski JM, Hogquist KA. Receptor editing in developing T cells. Nat Immunol 2000 Oct;1(4):336-41. [6] Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002 Jan;2(1):11-9. [7] Espinoza-Delgado I. Cancer vaccines. Oncologist 2002;7 Suppl 3:20-33. [8] Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nat Med 1996 Dec;2(12):1361-6. [9] Gastman BR, Atarshi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, et al. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 1999 Oct 15;59(20):5356-64. [10] Walker PR, Saas P, Dietrich PY. Tumor expression of Fas ligand (CD95L) and the consequences. Curr Opin Immunol 1998 Oct;10(5):564-72. [11] Sioud M. Does our current understanding of immune tolerance, autoimmunity, and immunosuppressive mechanisms facilitate the design of efficient cancer vaccines? Scand J Immunol 2009 Dec;70(6):516-25. [12] Neeson P, Paterson Y. Effects of the tumor microenvironment on the efficacy of tumor immunotherapy. Immunol Invest 2006;35(3-4):359-94. [13] Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999 Mar;10(3):281-7. [14] Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol 2008 Oct;20(5):286-95. [15] Santin AD, Bellone S, Palmieri M, Bossini B, Roman JJ, Cannon MJ, et al. Induction of tumor-specific cytotoxicity in tumor infiltrating lymphocytes by HPV16 and HPV18 E7-pulsed autologous dendritic cells in patients with cancer of the uterine cervix. Gynecol Oncol 2003 May;89(2):271-80. [16] Morse MA, Clay TM, Colling K, Hobeika A, Grabstein K, Cheever MA, et al. HER2 dendritic cell vaccines. Clin Breast Cancer 2003 Feb;3 Suppl 4:S164-72. [17] Kim JJ, Trivedi NN, Wilson DM, Mahalingam S, Morrison L, Tsai A, et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene 1998 Dec 17;17(24):3125-35. [18] Lode HN, Pertl U, Xiang R, Gaedicke G, Reisfeld RA. Tyrosine hydroxylase-based DNA-vaccination is effective against murine neuroblastoma. Med Pediatr Oncol 2000 Dec;35(6):641-6. [19] Ohwada A, Nagaoka I, Takahashi F, Tominaga S, Fukuchi Y. DNA vaccination against HuD antigen elicits antitumor activity in a small-cell lung cancer murine model. Am J Respir Cell Mol Biol 1999 Jul;21(1):37-43. [20] Pandha H, Eaton J, Greenhalgh R, Soars D, Dalgleish A. Immunotherapy of murine prostate cancer using whole tumor cells killed ex vivo by herpes simplex viral thymidine kinase/ganciclovir suicide gene therapy. Cancer Gene Ther 2005 Jun;12(6):572-8. [21] Tung C, Federoff HJ, Brownlee M, Karpoff H, Weigel T, Brennan MF, et al. Rapid production of interleukin-2-secreting tumor cells by herpes simplex virus-mediated gene transfer: implications for autologous vaccine production. Hum Gene Ther 1996 Dec 1;7(18):2217-24. [22] Copier J, Dalgleish A. Overview of tumor cell-based vaccines. Int Rev Immunol 2006 Sep-Dec;25(5-6):297-319. [23] Hahn WC. Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 2003 May 15;21(10):2034-43. [24] Beatty GL, Vonderheide RH. Telomerase as a universal tumor antigen for cancer vaccines. Expert Rev Vaccines 2008 Sep;7(7):881-7. [25] Janknecht R. On the road to immortality: hTERT upregulation in cancer cells. FEBS Lett 2004 Apr 23;564(1-2):9-13. [26] Garcia Lozano MC, Orradre Romero JL, Martinez Alvarez A, Saez del Castillo AI, Piris Pinilla MA. [Pronostic value of the MDM-2 protein expression in the larynx cancer]. An Otorrinolaringol Ibero Am 2004;31(6):571-82. [27] Faussillon M, Monnier L, Junien C, Jeanpierre C. Frequent overexpression of cyclin D2/cyclin-dependent kinase 4 in Wilms' tumor. Cancer Lett 2005 Apr 18;221(1):67-75. [28] Huang WS, Wang JP, Wang T, Fang JY, Lan P, Ma JP. ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells. World J Gastroenterol 2007 Dec 28;13(48):6581-7. [29] Hollstein MC, Metcalf RA, Welsh JA, Montesano R, Harris CC. Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci U S A 1990 Dec;87(24):9958-61. [30] Ding Q, Zhang Y, Sun X. [The study of p53 gene mutation in human bladder cancer]. Zhonghua Wai Ke Za Zhi 1995 Nov;33(11):684-6. [31] Zhang B, Cui W, Gao Y. [Mutation of P53 gene in a highly metastatic human lung cancer cell line]. Zhonghua Zhong Liu Za Zhi 1995 Jul;17(4):279-82. [32] Kinoshita H, Yanagisawa A, Watanabe T, Nagawa H, Oya M, Kato Y, et al. Increase in the frequency of K-ras codon 12 point mutation in colorectal carcinoma in elderly males in Japan: the 1990s compared with the 1960s. Cancer Sci 2005 Apr;96(4):218-20. [33] Roa JC, Anabalon L, Tapia O, Melo A, de Aretxabala X, Roa I. [Frequency of K-ras mutation in biliary and pancreatic tumors]. Rev Med Chil 2005 Dec;133(12):1434-40. [34] Lee KH, Lee JS, Suh C, Kim SW, Kim SB, Lee JH, et al. Clinicopathologic significance of the K-ras gene codon 12 point mutation in stomach cancer. An analysis of 140 cases. Cancer 1995 Jun 15;75(12):2794-801. [35] Hachisuga T, Tsujioka H, Horiuchi S, Udou T, Emoto M, Kawarabayashi T. K-ras mutation in the endometrium of tamoxifen-treated breast cancer patients, with a comparison of tamoxifen and toremifene. Br J Cancer 2005 Mar 28;92(6):1098-103. [36] Hofmann WK, Komor M, Wassmann B, Jones LC, Gschaidmeier H, Hoelzer D, et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood 2003 Jul 15;102(2):659-61. [37] Stefano R, Agostara B, Calabro M, Campisi I, Ravazzolo B, Traina A, et al. Expression levels and clinical-pathological correlations of HER2/neu in primary and metastatic human breast cancer. Ann N Y Acad Sci 2004 Dec;1028:463-72. [38] Tuziak T, Olszewski WP, Olszewski W, Pienkowski T. Expression of HER2/neu in primary and metastatic breast cancer. Pol J Pathol 2001;52(1-2):21-6. [39] Korrapati V, Gaffney M, Larsson LG, Di Nunno L, Riggs M, Beissner RS, et al. Effect of HER2/neu expression on survival in non-small-cell lung cancer. Clin Lung Cancer 2001 Feb;2(3):216-9. [40] Yoshino I, Peoples GE, Goedegebuure PS, Maziarz R, Eberlein TJ. Association of HER2/neu expression with sensitivity to tumor-specific CTL in human ovarian cancer. J Immunol 1994 Mar 1;152(5):2393-400. [41] Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996 Oct 1;88(7):2450-7. [42] Batra SK, Hollingsworth MA. Expression of the human mucin gene, Muc 1, in normal tissues and metastatic pancreatic tumors. Int J Pancreatol 1991 Nov-Dec;10(3-4):287-92. [43] Nakagawa K, Akagi J, Takai E, Tamori Y, Okino T, Kako H, et al. Prognostic values of MUC-1 molecule expressing cytokine receptor-like epitope and DF3 in patients with gastric carcinoma. Int J Oncol 1999 Mar;14(3):425-35. [44] Gao P, Zhou GY, Zhang QH, Xiang L, Ma C, Yu HP, et al. [Expression of mucin 1 and tumor invasiveness in breast carcinoma]. Zhonghua Yi Xue Za Zhi 2005 Feb 16;85(6):381-4. [45] Willsher PC, Xing PX, Clarke CP, Ho DW, McKenzie IF. Mucin 1 antigens in the serum and bronchial lavage fluid of patients with lung cancer. Cancer 1993 Nov 15;72(10):2936-42. [46] Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 1994 Jun 1;54(11):2856-60. [47] Teruya-Feldstein J, Donnelly GB, Goy A, Hegde A, Nanjangud G, Qin J, et al. MUC-1 mucin protein expression in B-cell lymphomas. Appl Immunohistochem Mol Morphol 2003 Mar;11(1):28-32. [48] Cardillo MR, Castagna G, Memeo L, De Bernardinis E, Di Silverio F. Epidermal growth factor receptor, MUC-1 and MUC-2 in bladder cancer. J Exp Clin Cancer Res 2000 Jun;19(2):225-33. [49] Inoue K, Sugiyama H. [WT 1 and leukemia]. Rinsho Ketsueki 1995 Jun;36(6):552-8. [50] Heatley MK. WT-1 in ovarian and endometrioid serous carcinoma: a meta-analysis. Histopathology 2005 Apr;46(4):468. [51] Marincola FM, Hijazi YM, Fetsch P, Salgaller ML, Rivoltini L, Cormier J, et al. Analysis of expression of the melanoma-associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in in situ lesions. J Immunother Emphasis Tumor Immunol 1996 May;19(3):192-205. [52] Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 2001 Dec;7(12):3862-8. [53] Hassan R, Kreitman RJ, Pastan I, Willingham MC. Localization of mesothelin in epithelial ovarian cancer. Appl Immunohistochem Mol Morphol 2005 Sep;13(3):243-7. [54] Ordonez NG. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol 2003 Mar;16(3):192-7. [55] Cui WG, Zhao H, Song YZ, Zhang J, Zhang LG, Shi JD, et al. [Clinical significance of expression of PSA, hK2, PSMA in the peripheral blood of patients with prostate cancer]. Zhonghua Zhong Liu Za Zhi 2004 Aug;26(8):479-81. [56] Foekens JA, Diamandis EP, Yu H, Look MP, Meijer-van Gelder ME, van Putten WL, et al. Expression of prostate-specific antigen (PSA) correlates with poor response to tamoxifen therapy in recurrent breast cancer. Br J Cancer 1999 Feb;79(5-6):888-94. [57] Dalerba P, Ricci A, Russo V, Rigatti D, Nicotra MR, Mottolese M, et al. High homogeneity of MAGE, BAGE, GAGE, tyrosinase and Melan-A/MART-1 gene expression in clusters of multiple simultaneous metastases of human melanoma: implications for protocol design of therapeutic antigen-specific vaccination strategies. Int J Cancer 1998 Jul 17;77(2):200-4. [58] Reinke S, Koniger P, Herberth G, Audring H, Wang H, Ma J, et al. Differential expression of MART-1, tyrosinase, and SM5-1 in primary and metastatic melanoma. Am J Dermatopathol 2005 Oct;27(5):401-6. [59] Wagner SN, Wagner C, Schultewolter T, Goos M. Analysis of Pmel17/gp100 expression in primary human tissue specimens: implications for melanoma immuno- and gene-therapy. Cancer Immunol Immunother 1997 Jun;44(4):239-47. [60] Nishioka E, Funasaka Y, Kondoh H, Chakraborty AK, Mishima Y, Ichihashi M. Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res 1999 Oct;9(5):433-43. [61] Neumann E, Engelsberg A, Decker J, Storkel S, Jaeger E, Huber C, et al. Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res 1998 Sep 15;58(18):4090-5. [62] Yamada A, Kataoka A, Shichijo S, Kamura T, Imai Y, Nishida T, et al. Expression of MAGE-1, MAGE-2, MAGE-3/-6 and MAGE-4a/-4b genes in ovarian tumors. Int J Cancer 1995 Dec 20;64(6):388-93. [63] Tesarova P, Kalousova M, Jachymova M, Mestek O, Petruzelka L, Zima T. Receptor for advanced glycation end products (RAGE)--soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 2007 Dec;25(8):720-5. [64] Ishiguro H, Nakaigawa N, Miyoshi Y, Fujinami K, Kubota Y, Uemura H. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 2005 Jun 15;64(1):92-100. [65] Aubry F, Satie AP, Rioux-Leclercq N, Rajpert-De Meyts E, Spagnoli GC, Chomez P, et al. MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer 2001 Dec 1;92(11):2778-85. [66] Satie AP, Auger J, Chevrier C, Le Bon C, Jouannet P, Samson M, et al. Seminal expression of NY-ESO-1 and MAGE-A4 as markers for the testicular cancer. Int J Androl 2009 Jan 20. [67] Kocher T, Zheng M, Bolli M, Simon R, Forster T, Schultz-Thater E, et al. Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: a tissue microarray study. Int J Cancer 2002 Aug 20;100(6):702-5. [68] Suzuki S, Sasajima K, Sato Y, Watanabe H, Matsutani T, Iida S, et al. MAGE-A protein and MAGE-A10 gene expressions in liver metastasis in patients with stomach cancer. Br J Cancer 2008 Jul 22;99(2):350-6. [69] Akcakanat A, Kanda T, Tanabe T, Komukai S, Yajima K, Nakagawa S, et al. Heterogeneous expression of GAGE, NY-ESO-1, MAGE-A and SSX proteins in esophageal cancer: Implications for immunotherapy. Int J Cancer 2006 Jan 1;118(1):123-8. [70] Shao JB, Chen Z. [Expression of MAGE, GAGE, and BAGE genes in human hepatocellular carcinoma]. Zhonghua Gan Zang Bing Za Zhi 2003 Mar;11(3):142-4. [71] Shichijo S, Hayashi A, Takamori S, Tsunosue R, Hoshino T, Sakata M, et al. Detection of MAGE-4 protein in lung cancers. Int J Cancer 1995 Jun 22;64(3):158-65. [72] Iwamoto O, Nagao Y, Shichijo S, Eura M, Kameyama T, Itoh K. Detection of MAGE-4 protein in sera of patients with head-and-neck squamous-cell carcinoma. Int J Cancer 1997 Jan 27;70(3):287-90. [73] Levy R, Levy S, Brown SL, Kon S, Carroll W. Anti-idiotype antibodies reveal the existence of somatic mutation in human B cell lymphoma. Monogr Allergy 1987;22:194-203. [74] Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2007 Jan;81(1):15-27. [75] Binder RJ. Heat shock protein vaccines: from bench to bedside. Int Rev Immunol 2006 Sep-Dec;25(5-6):353-75. [76] Calderwood SK, Mambula SS, Gray PJ, Jr., Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett 2007 Jul 31;581(19):3689-94. [77] Manjili MH, Wang XY, Park J, Facciponte JG, Repasky EA, Subjeck JR. Immunotherapy of cancer using heat shock proteins. Front Biosci 2002 Jan 1;7:d43-52. [78] Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008 Oct;7(8):1185-99. [79] Sherman M, Multhoff G. Heat shock proteins in cancer. Ann N Y Acad Sci 2007 Oct;1113:192-201. [80] Radons J, Multhoff G. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 2005;11:17-33. [81] Chu RM, Sun TJ, Yang HY, Wang DG, Liao KW, Chuang TF, et al. Heat shock proteins in canine transmissible venereal tumor. Vet Immunol Immunopathol 2001 Sep 28;82(1-2):9-21. [82] Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M. Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone. Scand J Immunol 1997 Jun;45(6):605-12. [83] Grossmann ME, Madden BJ, Gao F, Pang YP, Carpenter JE, McCormick D, et al. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 2004 Jul 1;297(1):108-17. [84] Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 2002 Sep 30;158(7):1277-85. [85] Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000 Aug;1(2):151-5. [86] Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000 Apr;6(4):435-42. [87] Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002 Apr 26;277(17):15028-34. [88] Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR, et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 2003 Nov 17;22(22):6127-36. [89] Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002 Sep;17(3):353-62. [90] Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, et al. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 2001 Oct;6(4):337-44. [91] Gross C, Hansch D, Gastpar R, Multhoff G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 2003 Feb;384(2):267-79. [92] Roigas J, Wallen ES, Loening SA, Moseley PL. Heat shock protein (HSP72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol 1998;451:225-9. [93] Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 1999 Nov;27(11):1627-36. [94] Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 2007 Oct 15;179(8):5523-33. [95] Nanbu K, Konishi I, Mandai M, Kuroda H, Hamid AA, Komatsu T, et al. Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect Prev 1998;22(6):549-55. [96] Vargas-Roig LM, Fanelli MA, Lopez LA, Gago FE, Tello O, Aznar JC, et al. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 1997;21(5):441-51. [97] Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res 1999 Apr 10;248(1):30-43. [98] Ciocca DR, Clark GM, Tandon AK, Fuqua SA, Welch WJ, McGuire WL. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 1993 Apr 7;85(7):570-4. [99] Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 1995 Apr 10;61(2):272-9. [100]Jaattela M. Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 1995 Mar 3;60(5):689-93. [101]Volloch VZ, Sherman MY. Oncogenic potential of Hsp72. Oncogene 1999 Jun 17;18(24):3648-51. [102]Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW. Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chaperones 2001 Oct;6(4):316-25. [103]Kaur J, Ralhan R. Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. Int J Cancer 2000 Jan 1;85(1):1-5. [104]Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol Immunother 1995 Feb;40(2):73-8. [105]Nylandsted J, Brand K, Jaattela M. Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 2000;926:122-5. [106]Gabai VL, Meriin AB, Yaglom JA, Wei JY, Mosser DD, Sherman MY. Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stewss-induced inhibition of JNK dephosphorylation. J Biol Chem 2000 Dec 1;275(48):38088-94. [107]Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene 2003 Dec 8;22(56):9007-21. [108]Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999 Oct 15;13(20):2658-69. [109]Shevchik Iu S, Kurbatova EA, Sveshnikov PG, Akhmatova NK, Egorova NB. [Recombinant heat-shock protein (rHSP70) boosts activation of innate and adaptive immunity during simultaneous administration with bacterial antigens in experiment]. Zh Mikrobiol Epidemiol Immunobiol 2009 Jan-Feb(1):42-6. [110]Karyampudi L, Ghosh SK. Mycobacterial HSP70 as an adjuvant in the design of an idiotype vaccine against a murine lymphoma. Cell Immunol 2008;254(1):74-80. [111]Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A 1986 May;83(10):3121-5. [112]Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 1994 Jun 1;152(11):5398-403. [113]Zong J, Peng Q, Wang Q, Zhang T, Fan D, Xu X. Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncol Rep 2009 Oct;22(4):953-61. [114]Wang L, Rollins L, Gu Q, Chen SY, Huang XF. A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity. Vaccine 2009 Dec 11;28(2):561-70. [115]Liu B, Ye D, Song X, Zhao X, Yi L, Song J, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine 2008 Mar 4;26(10):1387-96. [116]Marshall DJ, San Mateo LR, Rudnick KA, McCarthy SG, Harris MC, McCauley C, et al. Induction of Th1-type immunity and tumor protection with a prostate-specific antigen DNA vaccine. Cancer Immunol Immunother 2005 Nov;54(11):1082-94. [117]Iversen PO, Emanuel PD, Sioud M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 2002 Jun 1;99(11):4147-53. [118]Iversen PO, Sioud M. Modulation of granulocyte-macrophage colony-stimulating factor gene expression by a tumor necrosis factor specific ribozyme in juvenile myelomonocytic leukemic cells. Blood 1998 Dec 1;92(11):4263-8. [119]Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995 Sep 1;86(5):2041-50. [120]Stauss HJ. Immunotherapy with CTLs restricted by nonself MHC. Immunol Today 1999 Apr;20(4):180-3. [121]Gao L, Yang TH, Tourdot S, Sadovnikova E, Hasserjian R, Stauss HJ. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood 1999 Nov 1;94(9):2999-3006. [122]Tzai TS, Shiau AL, Lin CS, Wu CL, Lin JS. Modulation of the immunostimulating effect of autologous tumor vaccine by anti-TGF-beta antibody and interferon-alpha on murine MBT-2 bladder cancer. Anticancer Res 1997 Mar-Apr;17(2A):1073-8. [123]Rodeck U, Williams N, Murthy U, Herlyn M. Monoclonal antibody 425 inhibits growth stimulation of carcinoma cells by exogenous EGF and tumor-derived EGF/TGF-alpha. J Cell Biochem 1990 Oct;44(2):69-79. [124]Andre S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol 2009 May;174(5):1575-87. [125]Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 2005 Dec;54(6):369-77. [126]Comes A, Rosso O, Orengo AM, Di Carlo E, Sorrentino C, Meazza R, et al. CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J Immunol 2006 Feb 1;176(3):1750-8. [127]Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 2007 Nov;7(11):880-7. [128]Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood 2009 Oct 29;114(18):3793-802. [129]Liu Z, Dai H, Wan N, Wang T, Bertera S, Trucco M, et al. Suppression of memory CD8 T cell generation and function by tryptophan catabolism. J Immunol 2007 Apr 1;178(7):4260-6. [130Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003 May;24(5):242-8. [131]Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007 May;117(5):1147-54. [132]Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, et al. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 2006 Jul 1;177(1):130-7. [133]Yen MC, Lin CC, Chen YL, Huang SS, Yang HJ, Chang CP, et al. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin Cancer Res 2009 Jan 15;15(2):641-9. [134]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 May 24;411(6836):494-8. [135]Sioud M. Therapeutic siRNAs. Trends Pharmacol Sci 2004 Jan;25(1):22-8. [136]Dharmapuri S, Aurisicchio L, Biondo A, Welsh N, Ciliberto G, La Monica N. Antiapoptotic small interfering RNA as potent adjuvant of DNA vaccination in a mouse mammary tumor model. Hum Gene Ther 2009 Jun;20(6):589-97. [137]Srinivasan R, Wolchok JD. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med 2004 Apr 16;2(1):12. [138]Houghton AN. Cancer antigens: immune recognition of self and altered self. J Exp Med 1994 Jul 1;180(1):1-4. [139]Sioud M, Hansen MH. Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur J Immunol 2001 Mar;31(3):716-25. [140]Naftzger C, Takechi Y, Kohda H, Hara I, Vijayasaradhi S, Houghton AN. Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl Acad Sci U S A 1996 Dec 10;93(25):14809-14. [141Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 2007 Nov;15(11):2044-50. [142]Bergman PJ. Canine oral melanoma. Clin Tech Small Anim Pract 2007 May;22(2):55-60. [143]Kim JJ, Yang JS, Nottingham LK, Tang W, Dang K, Manson KH, et al. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen. Oncogene 2001 Jul 27;20(33):4497-506. [144]Kamstock D, Elmslie R, Thamm D, Dow S. Evaluation of a xenogeneic VEGF vaccine in dogs with soft tissue sarcoma. Cancer Immunol Immunother 2007 Aug;56(8):1299-309. [145]Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 2006 May 22;24(21):4582-5. [146]Hawkins WG, Gold JS, Dyall R, Wolchok JD, Hoos A, Bowne WB, et al. Immunization with DNA coding for gp100 results in CD4 T-cell independent antitumor immunity. Surgery 2000 Aug;128(2):273-80. [147]Weber LW, Bowne WB, Wolchok JD, Srinivasan R, Qin J, Moroi Y, et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J Clin Invest 1998 Sep 15;102(6):1258-64. [148]Haupt K, Roggendorf M, Mann K. The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood) 2002 Apr;227(4):227-37. [149]Anderson RJ, Schneider J. Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 2007 Sep 27;25 Suppl 2:B24-34. [150]Yoo GH, Moon J, Leblanc M, Lonardo F, Urba S, Kim H, et al. A phase 2 trial of surgery with perioperative INGN 201 (Ad5CMV-p53) gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: report of the Southwest Oncology Group. Arch Otolaryngol Head Neck Surg 2009 Sep;135(9):869-74. [151]Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P, et al. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci U S A 2004 Oct 5;101 Suppl 2:14567-71. [152]Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006 Oct 1;58(8):931-47. [153]VandenDriessche T, Collen D, Chuah MK. Biosafety of onco-retroviral vectors. Curr Gene Ther 2003 Dec;3(6):501-15. [154]Chuah MK, Collen D, VandenDriessche T. Biosafety of adenoviral vectors. Curr Gene Ther 2003 Dec;3(6):527-43. [155]Gallo-Penn AM, Shirley PS, Andrews JL, Tinlin S, Webster S, Cameron C, et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs. Blood 2001 Jan 1;97(1):107-13. [156]Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003 Jun;10(11):935-40. [157]Godbey WT, Wu KK, Hirasaki GJ, Mikos AG. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 1999 Aug;6(8):1380-8. [158]Leutenegger CM, Boretti FS, Mislin CN, Flynn JN, Schroff M, Habel A, et al. Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gp140 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG motif. J Virol 2000 Nov;74(22):10447-57. [159]De Rose R, Tennent J, McWaters P, Chaplin PJ, Wood PR, Kimpton W, et al. Efficacy of DNA vaccination by different routes of immunisation in sheep. Vet Immunol Immunopathol 2002 Nov;90(1-2):55-63. [160]Kodihalli S, Haynes JR, Robinson HL, Webster RG. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin. J Virol 1997 May;71(5):3391-6. [161]Lodmell DL, Ray NB, Parnell MJ, Ewalt LC, Hanlon CA, Shaddock JH, et al. DNA immunization protects nonhuman primates against rabies virus. Nat Med 1998 Aug;4(8):949-52. [162]Macklin MD, McCabe D, McGregor MW, Neumann V, Meyer T, Callan R, et al. Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus. J Virol 1998 Feb;72(2):1491-6. [163]Tischer BK, Schumacher D, Beer M, Beyer J, Teifke JP, Osterrieder K, et al. A DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. J Gen Virol 2002 Oct;83(Pt 10):2367-76. [164]Chuang YC, Yang LC, Chiang PH, Kang HY, Ma WL, Wu PC, et al. Gene gun particle encoding preproenkephalin cDNA produces analgesia against capsaicin-induced bladder pain in rats. Urology 2005 Apr;65(4):804-10. [165]McMahon JM, Wells DJ. Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 2004;18(3):155-65. [166]Bodles-Brakhop AM, Heller R, Draghia-Ak | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8653 | - |
| dc.description.abstract | 接種異種動物之去氧核醣核酸 (xenogeneic DNA) 被認為是一種有效治療腫瘤的方式,此種疫苗可使免疫系統針對表現於腫瘤之自我抗原,產生特異性抗體及毒殺型T細胞,克服腫瘤免疫耐受性。熱休克蛋白70 (HSP70) 表現於許多腫瘤,且被認為與腫瘤生長有密切的關係。本研究乃接種雞 (chicken HSP70, chHSP70) DNA疫苗至具傳染性花柳性腫瘤犬隻,作為異種動物DNA以引發對抗自我抗原的免疫反應。實驗共分三組:第一組 (G1) 於接種腫瘤前施打此DNA疫苗,用以評估預防效果。第二組 (G2) 於接種腫瘤後施打疫苗,用以評估此 DNA疫苗之治療效果。第三組 (G3)的免疫計劃與第一組相同,僅於第三劑給予方式由肌肉電衝改為經皮注射。另有4隻未經治療的腫瘤接種犬 (No treatment, NT) 做為控制組。除此之外,每組疫苗組皆另有一隻腫瘤接種犬隻注射空白載體做為質體控制組。結果顯示,本疫苗於G1有明顯抑制腫瘤生長的效果 (第9周),其腫瘤也比第G2 (第18周)、G3 (第12周)和NT組 (第14周) 較早消退。在腫瘤消退期,G1之CD4+腫瘤浸潤淋巴球也顯著的高於G2及NT (56.77% vs. 23.56% and 22.73% )。週邊血液單核細胞對腫瘤細胞的毒殺能力在三組疫苗組中皆顯著性上升。ELISpot試驗顯示,於腫瘤消退期,G1之犬 HSP70 特異性IFN- | zh_TW |
| dc.description.abstract | Immunization with xenogeneic DNA is a promising cancer treatment, as it generates autoantibodies and cytotoxic T cells to break the tumor tolerance against self-antigens. Heat shock protein 70 (HSP70) is overexpressed in many kinds of tumors and is believed to be heavily involved in tumor progression. This study employed a xenogeneic chicken HSP70 (chHSP70) DNA vaccine in a canine transmissible venereal tumor (CTVT) model in beagles to break the tumor tolerance by inducing immune responses towards canine HSP70 self-antigens. In this study, three vaccination groups were created: the first (G1) was designed to evaluate the prophylactic efficiency of the chHSP70 DNA vaccine by delivering the vaccine prior to tumor inoculation; the second (G2) was designed to evaluate the therapeutic efficacy in developed tumors by vaccinating the dogs after tumor inoculation; and the third (G3) consisted of the same vaccination schedule as that of G1, with the exception that the intramuscular injection/electroporation method used to administer the third vaccination in G1 was replaced with a transdermal injection. Four CTVT-bearing dogs that received no treatment (NT) served as controls, and one dog in each vaccination group immunized with empty vector served as a vector control. Tumor growth was notably inhibited only in the G1 dogs, in which the vaccination program triggered tumor regression much sooner (beginning in week 9) than in the G2 (week 18), G3 (week 12) and NT (week 14) dogs. The CD4+ subpopulation of tumor-infiltrating lymphocytes was significantly increased during tumor regression in the G1 dogs as compared with the G2 and NT dogs (56.77% vs. 23.56% and 22.73%, respectively) and was similar to that of G3. The tumor-specific cytotoxicity of peripheral blood mononuclear cells (PBMCs) in all dogs in the three vaccination groups was dramatically enhanced, and ELISpot assay indicated that canine HSP70-specific IFN- | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T19:59:22Z (GMT). No. of bitstreams: 1 ntu-99-R96629020-1.pdf: 1382090 bytes, checksum: 7d81ef13185b376fe6d1c9d3ca87d3f3 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
審定書 I 誌謝 II 中文摘要 III Abstract IV Abbreviation VI Contents VII Chapter 1. Background and Literatures review 1 1.1 THE IMMUNOLOGICAL TOLERANCE 1 1.2 TUMOR ESCAPING MECHANISM 2 1.3 TUMOR ANTIGENS 3 Table 1 Identified tumor antigens in human 4 1.4 HEAT SHOCK PROTEIN (HSP) 5 1.5 THE STRATEGIES TO BREAK TUMOR TOLERANCE 8 1.5.1 Tumor antigens overexpression 8 1.5.2 Difference in HLA molecules needed to present shared antigens 9 1.5.3 Inhibition of immunosuppressive mechanisms 9 1.5.4. Co-encapsulation of dual siRNAs and tumour antigens 9 1.5.5 XENOGENEIC ANTIGENS. 10 1.6 THE DELIVERY SYSTEM FOR DNA VACCINES 11 1.6.1 Viral vector 11 1.6.2 Non-viral vector 12 1.6.2.1 Electroporation 13 1.6.2.2 Needle-free injection 15 1.7 CURRENT PROGRESSES OF XENOGENEIC DNA VACCINE IN TREATING CANCERS IN CANINE AND HUMANS 16 1.8 CANINE TRANSMISSIBLE VENEREAL TUMOR (CTVT) MODEL AND VACCINE DEVELOPMENT 18 1.9 OBJECTIVES OF THIS STUDY 20 Chapter 2. Introduction 21 Chapter 3. Material & Method 24 3.1 CHICKEN HSP70 XENOGENEIC DNA VACCINE 24 3.3 SAMPLE COLLECTION 25 3.4 CTVT INOCULATION 26 3.5 PERIPHERAL BLOOD MONONUCLEAR CELL PREPARATION 26 3.6 CTVT SAMPLES AND TILS ISOLATION 27 3.7 FLOW CYTOMETRY ANALYSIS 27 3.8 IMMUNOHISTOCHEMICAL STAINING 28 3.9 CTVT SPECIFIC CYTOTOXICITY ASSAY 28 3.10 IFN-Γ SECRETING AND HSP70 SPECIFIC LYMPHOCYTES DETECTION 29 3.11 NK CYTOTOXICITY ASSAY 30 3.12 ELISA 30 3.13 STATISTICS 31 Chapter 4. Results 32 4.1 VACCINATIONS FOLLOWED BY ELECTROPORATION PRIOR TO TUMOR INOCULATION SUPPRESSED THE TUMOR GROWTH MORE EFFICIENTLY. 32 4.2 INFILTRATION OF TUMOR MASSES BY MANY T LYMPHOCYTES IN G1 TUMORS BEGAN IN P PHASE 33 4.3 CYTOTOXICITY TOWARD CTVT WAS HIGHER IN G1 DOGS. 34 4.4 XENOGENEIC CHHSP70 DNA VACCINATION INDUCED CAHSP70-SPECIFIC TH1 RESPONSE. 34 4.5 NK CYTOTOXICITY MAY NOT CONTRIBUTION TO THE TUMOR INHIBITION. 35 4.6 HUMORAL RESPONSE AGAINST CANINE AND CHHSP70 DID NOT DIFFER BETWEEN GROUPS. 35 4.7 THE TOXICITY OF CHHSP70 VACCINATION. 35 Chapter 5. Discussion 37 Figures 43 FIGURE 1 SCHEMATIC MAP OF THE PCG073 PLASMID MAP OF WHICH ENCODED CHICKEN HSP70 SEQUENCE. 43 FIGURE 2 THE HOMOLOGY BETWEEN CANINE AND CHICKEN HSP70. 44 FIGURE 3 VACCINATION STRATEGIES IN GROUPS. 45 FIGURE 4 INHIBITION OF TUMOR GROWTH AFTER VACCINATIONS. 47 FIGURE 5 HISTOPATHOLOGY OF CTVT AT P PHASE. 48 FIGURE 6 CD4+ AND CD8+ TILS SUBPOPULATIONS AT P PHASE AND R PHASE IN DOGS. 49 FIGURE 7 IMMUNOHISTOCHEMISTRY STAINING AT P PHASE FOR CD3 LYMPHOCYTES. 51 FIGURE 8 THE CYTOTOXICITY OF PBMC TO CTVT FROM DOGS IMMUNIZED THE XENOGENEIC CHHSP70 DNA VACCINE WERE INCREASED. 53 FIGURE 9 CANINE HSP70-SPECIFIC IFN- | |
| dc.language.iso | en | |
| dc.title | 雞熱休克70之DNA異種疫苗可抑制犬腫瘤生長 | zh_TW |
| dc.title | Chicken HSP70 DNA xenogeneic vaccine vaccine inhibits tumor growth in a canine cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文權(Wen-Chiuan Li),廖光文(Guang-Wen Liao),詹東榮(Tung-Jung Chan),廖泰慶(Tai-Ching Liao) | |
| dc.subject.keyword | 異種去氧核醣核酸疫苗,熱休克蛋白70,犬傳染性花柳性腫瘤,經皮注射, | zh_TW |
| dc.subject.keyword | Xenogeneic DNA vaccines,HSP70,CTVT,Transdermal injection, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-06-20 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 1.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
