Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧子彬(TZU-PIN LU)
dc.contributor.authorChia-Hung Tsaien
dc.contributor.author蔡佳宏zh_TW
dc.date.accessioned2023-03-20T00:01:49Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-08-13
dc.identifier.citation1. World Health Organization, WHO. Obesity. https://www.who.int/health-topics/obesity#tab=tab_1. 2. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. The Lancet 384, 755–765 (2014). 3. Keimling, M. et al. Comparison of Associations of Body Mass Index, Abdominal Adiposity, and Risk of Colorectal Cancer in a Large Prospective Cohort Study. Cancer Epidemiol. Biomarkers Prev. 22, 1383–1394 (2013). 4. Wang, L. et al. Cancer incidence in relation to body fatness among 0.5 million men and women: Findings from the China Kadoorie Biobank. Int. J. Cancer 146, 987–998 (2020). 5. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394–424 (2018). 6. 衛生福利部國民健康署. 衛生福利部國民健康署-乳癌防治. 7. World Cancer Research Fund, WCRF. Obesity, weight and cancer risk - Preventing cancer. World Cancer Research Fund https://www.wcrf-uk.org/preventing-cancer/what-can-increase-your-risk-of-cancer/obesity-weight-and-cancer-risk/. 8. American Institute for Cancer Research, AICR. What You Need To Know About Obesity and Cancer. American Institute for Cancer Research https://www.aicr.org/resources/media-library/what-you-need-to-know-about-obesity-and-cancer/. 9. Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ 356, j477 (2017). 10. Fewell, Z., Davey Smith, G. & Sterne, J. A. C. The Impact of Residual and Unmeasured Confounding in Epidemiologic Studies: A Simulation Study. Am. J. Epidemiol. 166, 646–655 (2007). 11. Matthews, S. B. et al. Excess Weight Gain Accelerates 1-Methyl-1-Nitrosourea–Induced Mammary Carcinogenesis in a Rat Model of Premenopausal Breast Cancer. Cancer Prev. Res. (Phila. Pa.) 7, 310–318 (2014). 12. De Angel, R. E. et al. The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by RAD001. Mol. Carcinog. 52, 446–458 (2013). 13. Giles, E. D. et al. Obesity and Overfeeding Affecting Both Tumor and Systemic Metabolism Activates the Progesterone Receptor to Contribute to Postmenopausal Breast Cancer. Cancer Res. 72, 6490–6501 (2012). 14. Ecker, B. L. et al. Impact of obesity on breast cancer recurrence and minimal residual disease. Breast Cancer Res. 21, 41 (2019). 15. Amadou, A. et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes. Rev. 14, 665–678 (2013). 16. Parra-Soto, S. et al. Associations of six adiposity-related markers with incidence and mortality from 24 cancers—findings from the UK Biobank prospective cohort study. BMC Med. 19, 7 (2021). 17. Freuer, D. et al. Body Fat Distribution and Risk of Breast, Endometrial, and Ovarian Cancer: A Two-Sample Mendelian Randomization Study. Cancers 13, 5053 (2021). 18. Vithayathil, M. et al. Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: A mendelian randomisation study. PLOS Med. 18, e1003706 (2021). 19. Kyle, U. G., Schutz, Y., Dupertuis, Y. M. & Pichard, C. Body composition interpretation: Contributions of the fat-free mass index and the body fat mass index. Nutrition 19, 597–604 (2003). 20. Amin, H. A. et al. Mendelian randomisation analyses of UK Biobank and published data suggest that increased adiposity lowers risk of breast and prostate cancer. Sci. Rep. 12, 909 (2022). 21. Guo, Y. et al. Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLOS Med. 13, e1002105 (2016). 22. Gao, C. et al. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. Int. J. Epidemiol. 45, 896–908 (2016). 23. Ahmed, M. et al. Adiposity and cancer: a Mendelian randomization analysis in the UK biobank. Int. J. Obes. 45, 2657–2665 (2021). 24. Kabuto, M., Akiba, S., Stevens, R. G., Neriishi, K. & Land, C. E. A Prospective Study of Estradiol and Breast Cancer in Japanese Women1. Cancer Epidemiol. Biomarkers Prev. 9, 575–579 (2000). 25. Jansen, A., Lyche, J. L., Polder, A., Aaseth, J. & Skaug, M. A. Increased blood levels of persistent organic pollutants (POP) in obese individuals after weight loss—A review. J. Toxicol. Environ. Health Part B 20, 22–37 (2017). 26. Papadimitriou, N. et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat. Commun. 11, 597 (2020). 27. Liu, Y.-S. et al. Body mass index and type 2 diabetes and breast cancer survival: a Mendelian randomization study. Am. J. Cancer Res. 11, 3921–3934 (2021). 28. Zhang, H. et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 52, 572–581 (2020). 29. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). 30. Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017). 31. Minelli, C. et al. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int. J. Epidemiol. 50, 1651–1659 (2021). 32. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015). 33. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 40, 304–314 (2016). 34. Boef, A. G. C., Dekkers, O. M. & le Cessie, S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int. J. Epidemiol. 44, 496–511 (2015). 35. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018). 36. R: The R Project for Statistical Computing. https://www.r-project.org/. 37. Colleoni, M. et al. Outcome of special types of luminal breast cancer. Ann. Oncol. 23, 1428–1436 (2012). 38. McCart Reed, A. E., Kalinowski, L., Simpson, P. T. & Lakhani, S. R. Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res. 23, 6 (2021). 39. Luveta, J., Parks, R. M., Heery, D. M., Cheung, K.-L. & Johnston, S. J. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol. Ther. 8, 1–11 (2020). 40. | VariED. http://varied.cgm.ntu.edu.tw/. 41. Safran, M. et al. GeneCards Version 3: the human gene integrator. Database 2010, baq020 (2010). 42. Fan, C.-T., Lin, J.-C. & Lee, C.-H. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 9, 235–246 (2008). 43. Loos, R. J. F. & Bouchard, C. Obesity – is it a genetic disorder? J. Intern. Med. 254, 401–425 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86537-
dc.description.abstract背景: 乳癌為女性發生率首位的癌症,其中之一的主要風險因子為肥胖,肥胖的測量指標眾多,然而在孟德爾隨機化試驗(Mendelian randomization, MR)的文獻回顧中,不同的肥胖指標對乳癌風險皆為保護因子或是不顯著,與臨床上肥胖作為乳癌的風險因子情況並不吻合。 為了探討肥胖指標對乳癌為保護因果關係的原因,我們將體重指標進行拆解,分別針對脂肪重量與去脂肪重量進行因果推論,透過拆解指標的方式來了解究竟是脂肪重量還是肌肉重量對乳癌風險有保護作用。我們希望確認肥胖與乳癌發生之間的因果關係,了解兩者之相關性不僅有助於提早找出罹患乳癌的高風險個案。在臨床意義上,更可以透過介入手段增加個體的去脂肪體重,進而作為預防措施。在本研究中,我們將使用孟德爾隨機化試驗,釐清兩者之間的因果關係。 方法: 本研究使用英國生物資料庫的女性乳癌患者資料,進行單樣本孟德爾隨機化試驗,分別篩選出164與98個變異位點作為去脂肪體重(Free fat mass, FFM)與全身肪體重(Body fat mass, BFM)的工具變數(Instrumental variables, IV),使用二階段迴歸、逆方差加權之估計方法衡量兩者間的因果關係,並額外利用加權中位數方法、MR-Egger迴歸進行穩健的因果推斷。在敏感性研究中,藉由將乳癌設定為曝露變項,去脂肪體重作為結果變項,探索兩個變數間是否存在雙向的因果關係。 在外部驗證中,我們使用從英國生物資料庫中所篩選的164個變異位點,針對去脂肪體重進行雙樣本孟德爾隨機化試驗:首先使用乳腺癌協會聯盟(Breast Cancer Association Consortium, BCAC)的匯總性全基因組關聯分析(Genome-wide association study, GWAS)資料進行驗證;接下來,使用臺灣生物資料庫的資料進行雙樣本孟德爾隨機化試驗,試圖在漢族人群中重現同樣的去脂肪體重與乳癌的因果關係。 結果: 其結果顯示(β ̂_2SLS= -0.012, OR_2SLS=0.988, P_2SLS =0.283;β ̂_IVW= -0.024, OR_IVW=0.976, P_IVW =0.012),去脂肪體重與乳癌存在負向因果關係,然而在不同統計方法上的統計效力並不穩定。在敏感性研究中(β ̂_2SLS= 0.352, OR_2SLS=1.422, P_2SLS =0.296;β ̂_IVW= 0.062, OR_IVW=1.064, P_IVW =0.175)驗證了僅有去脂肪體重增加會降低乳癌風險的因果關係,反向因果關係不存在,罹患乳癌不會影響去脂肪體重的增加或減少。 根據乳腺癌協會聯盟的外部驗證結果(β ̂_IVW= 0.002, OR_IVW=1.002, P_IVW =0.733),與臺灣生物資料庫的外部驗證結果(β ̂_IVW= -0.056, OR_IVW=0.946, P_IVW =0.448),去脂肪體重的雙樣本孟德爾隨機化試驗,並不顯著,我們認為可能由於不同資料庫間的人種差異與篩選差異所導致。 結論: 本研究使用英國生物資料庫進行的單樣本孟德爾隨機化試驗,確認了去脂肪體重為乳癌風險的保護因子,兩者存在負向的因果關係,並且不存在反向因果關係。而全身脂肪體重與乳癌風險間,則不存在任何統計顯著的因果關係。 我們針對肥胖對於乳癌,在孟德爾隨機化試驗中不尋常的保護作用,提出了可能的解釋,利用將體重拆分成去脂肪體重與全身脂肪體重,分別進行單樣本孟德爾隨機化試驗與雙樣本隨機化試驗,我們可以更清楚的了解到,究竟是脂肪重量的增加,亦或是肌肉重量的增加,導致了乳癌風險的下降。並得出了是肌肉重量(去脂肪體重)的增加降低了乳癌風險的可能。 雖然該結果於台灣族群中不具備外推性,但可能是由於乳癌在不同種族間的機轉差異導致,在未來研究中,可能需要使用漢族的去脂肪體重資料篩選出工具變數,進一步考慮乳癌族群差異造成的影響。 在本研究中,去脂肪體重作為能夠將低乳癌風險發生的保護因子,與停經後的體內激素水平息息相關,台灣女性的平均更年期為48-52歲,與台灣乳癌發生率高峰45-69歲有著很高的重合時段。站在疾病預防的角度上,應當注意女性在更年期後運動習慣是否發生改變,以及其肌肉流失的狀態,因為兩者皆有可能造成乳癌風險的增加。建議鼓勵停經期後女性進行適當的運動作為介入手段,維持體內激素水平,以降低罹患乳癌的風險。zh_TW
dc.description.abstractBackground: Breast cancer is the most common cancer in women, and one of the main risk factors is obesity. There are many measurements of obesity. However, in the literature review of Mendelian randomization (MR), obesity plays a different role in breast cancer. Mendelian randomization‘s results are either protective or insignificant, which are not consistent with the clinical result that obesity is a risk factor for breast cancer. To investigate the causal relationship between obesity measurements and breast cancer protection, we divide body weight into body fat weight (BFM) and free fat weight (FFM), and made causal inferences for BFM and FFM respectively. Understanding the correlation between obesity indicators and breast cancer will not only help to identify high-risk cases of breast cancer early, but also can increase the individual's fat-free body weight through interventional methods, which can be used as a preventive measure. In this study, we will use Mendelian randomization to clarify the causal relationship between obesity indicators and breast cancer. Method: This study uses the data of female breast cancer patients from the UK Biobank to conduct one-sample Mendelian randomization, extracting 164 and 98 variants as FFM’s and BFM’s instrumental variables (IV). Using two-stage least squares and inverse variance weighted estimation measures the causal relationship between obesity indicators and breast cancer. We also use the weighted median method, MR-Egger regression for the robust causal inference. In a sensitivity study, by setting breast cancer as the exposure variable and FFM as the outcome variable, we investigate whether there is a bidirectional causal relationship between the two variables. In external validation, we perform two-sample Mendelian randomization by using FFM’s 164 variants extracted from the UK Biobank. We first collect Genome-wide association study (GWAS) data from the Breast Cancer Association Consortium (BCAC). Next, two-sample Mendelian randomization is performed with data from the Taiwan Biobank to reproduce the same causal relationship between FFM and breast cancer in Han Chinese. Result: The results show (β ̂_2SLS= -0.012, OR_2SLS=0.988, P_2SLS =0.283;β ̂_IVW= -0.024, OR_IVW=0.976, P_IVW =0.012), a negative causal relationship between FFM and breast cancer, but the statistical power is not stable in different statistical methods. The sensitivity study(β ̂_2SLS= 0.352, OR_2SLS=1.422, P_2SLS =0.296;β ̂_IVW= 0.062, OR_IVW=1.064, P_IVW =0.175)tests a causal relationship that only increased FFM is associated with a reduced risk of breast cancer, the reverse causality did not exist and having breast cancer did not affect the gain or loss of FFM. Conclusion: In this study, one-sample Mendelian randomization conducted by the UK Biobank confirms that FFM is a protective factor for breast cancer risk with the result that there exists a negative causality and no reverse causality. There is no statistically significant causal relationship between BFM and breast cancer risk. We propose possible explanations for the unusual protective effect of obesity on breast cancer in previous Mendelian randomization papers by splitting off body weight into FFM and BFM and using one-sample Mendelian randomization and two-sample randomization. Therefore, we can understand whether an increase in fat mass or an increase in muscle mass leads to a decrease in breast cancer risk more clearly. And we come to the conclusion that the increase in muscle mass (FFM) may reduce the risk of breast cancer. This result may not be significant in the Taiwanese ethnic group because of the difference in the mechanism of breast cancer among different ethnic groups. In future studies, it would be necessary to use the FFM data of the Han Chinese to extract instrumental variables and further consider breast cancer differences between ethnic. In this study, FFM, as a protective factor that can reduce the risk of breast cancer, is closely related to hormone levels after menopause. The average menopause age of Taiwanese women is 48-52 years old, which is almost matching to the peak incidence of breast cancer in Taiwan at 45-69 years old. From the perspective of disease prevention, it should be noted that postmenopausal women may increase the risk of breast cancer if their exercise habits change after menopause or their muscle loss. It is recommended for postmenopausal women to develop exercise habits as an intervention to maintain hormone levels in the body to reduce the risk of breast cancer.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:01:49Z (GMT). No. of bitstreams: 1
U0001-0808202223164400.pdf: 4082630 bytes, checksum: 6cb6daed8d89b54ebdac6901ac4785e5 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 1 致謝 2 中文摘要: 3 ABSTRACT: 5 第一章 導論 11 1.1 研究背景 11 1.2 研究動機與目的 12 第二章 研究材料與方法 13 2.1 資料來源 13 2.2 樣本篩選-英國生物資料庫 15 2.3本研究方法論述 16 2.4 孟德爾隨機化試驗方法論述 18 2.5 敏感性分析 19 2.6 工具變數的相關分析 20 2.7 外部驗證 21 第三章 結果 23 3.1 資料展示與變數評估 23 3.2 孟德爾隨機化試驗-主要結果 24 3.3 敏感性分析 24 3.4 工具變數的相關分析 26 3.5 外部驗證 27 第四章 結論與討論 27 4.1 主要發現 27 4.2 研究討論 28 4.3結論 30 4.4 研究限制 30 參考文獻 32 圖表資料: 36 圖一:研究架構 36 圖二:樣本篩選流程 37 圖三:孟德爾隨機化試驗所使用之假設 38 表一:英國生物資料庫人口特徵-依照種族分群 39 表二 :英國生物資料庫-人口學特徵資料展示 41 表三 :英國生物資料庫-肥胖指標資料展示 43 圖四 :英國生物資料庫-相關肥胖指標展示 45 表四:去脂肪體重-乳癌風險的主要孟德爾隨機化試驗結果 46 表五:身體脂肪體重-乳癌風險的主要孟德爾隨機化試驗結果 47 表六:敏感性分析-陰性對照:罹患乳癌是否會影響去脂肪體重的敏感性孟德爾隨機化試驗結果 48 表七 :敏感性分析-孟德爾隨機化試驗 群集分析(是否停經):停經後確診 49 表八 :敏感性分析-孟德爾隨機化試驗 群集分析(組織亞型):乳腺癌 51 表九:將去脂肪體重所使用164個變異位點,進行基因註釋。 52 圖五:單一變異位點(RS12055445)的全表型組關聯分析結果 57 表十:使用164個去脂肪體重工具變數變異位點,依次進行全表型組關聯分析,並彙整出顯著的變異位點與表型結果。 58 表十一:針對表十中的表型,統整出現次數 61 表十二:外部驗證-乳腺癌協會聯盟2020:使用雙樣本孟德爾隨機化試驗,驗證在歐洲人種中,去脂肪體重與乳癌風險因果關係的一致性 63 表十三:外部驗證-乳腺癌協會聯盟2020:使用雙樣本孟德爾隨機化試驗,驗證在歐洲人種中,全身脂肪體重與乳癌風險因果關係的一致性 64 表十四:外部驗證-臺灣生物資料庫:使用雙樣本孟德爾隨機化試驗,驗證在歐洲人與漢人間,去脂肪體重與乳癌風險的因果關係,是否存在一致性 65 表十五:外部驗證-臺灣生物資料庫:使用雙樣本孟德爾隨機化試驗,驗證在歐洲人與漢人間,全身脂肪體重與乳癌風險的因果關係,是否存在一致性 66 附錄補充-圖表資料: 67 附錄圖一:主成分分析 三維散佈圖 依照種族 67 附錄圖二:主成分分析 二維散佈圖(A圖為依照各種族的散佈圖,B圖為針對英國白人族群的進一步篩選,僅選擇主成分分析相近的作為研究對象,如圖B的藍色部分所示) 68 附錄表一:英國生物資料庫-變項與對照編碼 69 附錄表二:英國生物資料庫,肥胖指標重複測量之時間段與數據可用性彙整 71 附錄表三:台灣生物資料庫-資料展示 72 附錄表四:去脂肪體重之工具變數所使用之變異位點-英國生物資料庫 74 附錄表五:全身脂肪體重之工具變數所使用之變異位點-英國生物資料庫 78 附錄圖三:全基因組關聯分析曼哈頓圖-去脂肪體重 81 附錄圖四:全基因組關聯分析 QQ-PLOT-去脂肪體重 82 附錄圖五:全基因組關聯分析曼哈頓圖 全身脂肪體重 83 附錄圖六:全基因組關聯分析 QQ-PLOT 全身脂肪體重 84 附錄圖七:去脂肪體重單一突變位點的WALD比率估計 85 附錄圖八:全身脂肪體重單一突變位點的WALD比率估計 86 附錄表六:乳癌風險之工具變數所使用之變異位點-英國生物資料庫 87 附錄表七:體脂率-乳癌風險的單樣本孟德爾隨機化試驗結果 89 附錄表八:去脂肪體重指數-乳癌風險的單樣本孟德爾隨機化試驗結果 90 附錄表九:全身脂肪體重指數-乳癌風險的單樣本孟德爾隨機化試驗結果 91 中英對照與縮寫表: 92
dc.language.isozh-TW
dc.title使用孟德爾隨機化試驗針對歐洲英國族群與漢族,探索去脂肪體重與全身脂肪重量對乳癌的因果關係zh_TW
dc.titleInvestigate causality of body fat mass and free fat mass between breast cancer risk with Mendelian randomization of European ancestry and Han Chineseen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王彥雯(CHARLOTTE WANG),馮嬿臻(YEN-CHEN ANNE FENG),黃其晟(Huang Chi-Cheng),游宗憲(Yu TH)
dc.subject.keyword乳癌,去脂肪體重,全身脂肪體重,孟德爾隨機化試驗,因果關係,英國生物資料庫,台灣生物資料庫,zh_TW
dc.subject.keywordbreast cancer,body fat mass,free fat mass,Mendelian randomization,causality,UK Biobank,Taiwan Biobank,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202202175
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-15
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2022-10-05-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0808202223164400.pdf3.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved